
Type Checking

COS 326
David Walker

Princeton University

slides copyright 2018 David Walker
permission granted to reuse these slides for non-commercial educational purposes



Implementing an Interpreter

let x = 3 in
x + x

Let (“x”, 
Num 3, 
Binop(Plus, Var “x”, Var “x”))

Num 6 

6 

Parsing

Evaluation

Pretty
Printing

2



Implementing an Interpreter

let x = 3 in
x + x

Let (“x”, 
Num 3, 
Binop(Plus, Var “x”, Var “x”))

Num 6 

6 

Parsing

Evaluation

Pretty
Printing

3

Type Checking



Language Syntax
type t = IntT | BoolT | ArrT of t * t

type x = string   (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e = 
Const of c

| Op of e * o * e
| Var of x
| If of e * e * e
| Fun of x * typ * e
| Call of e * e
| Let of x * e * e



Language Syntax

type t = IntT | BoolT | ArrT of t * t

type x = string   (* variables *)

type c = Int of int | Bool of bool

type o = Plus | Minus | LessThan

type e = 

Const of c

| Op of e * o * e

| Var of x

| If of e * e * e

| Fun of x * typ * e

| Call of e * e

| Let of x * e * e

Notice that we require
a type annotation here.

We'll see why this is required
for our type checking algorithm later.



Language Syntax (BNF Definition)

t ::= int | bool | t -> t

b       -- ranges over booleans
n       -- ranges over integers

x        -- ranges over variable names
c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

type t = IntT | BoolT | ArrT of t * t

type x = string   (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e = 
Const of c

| Op of e * o * e
| Var of x
| If of e * e * e
| Fun of x * typ * e
| Call of e * e
| Let of x * e * e



Recall Inference Rule Notation

When defining how evaluation worked, we used this notation:

e1 -->* λx.e e2 -->* v2          e[v2/x] -->* v
e1 e2  -->* v

“if e1 evaluates to a function with argument x and body e
and e2 evaluates to a value v2
and e with v2 substituted for x evaluates to v
then e1 applied to e2 evaluates to v”

In English:

And we were also able to translate each rule into 1 case of
a function in OCaml.  Together all the rules formed the basis
for an interpreter for the language.



The evaluation judgement
This notation:

was read in English as "e evaluates to v."  

It described a relation between two things – an expression e and 
a value v.  (And e was related to v whenever e evaluated to v.)

Note also that we usually thought of e on the left as "given" and
the v on the right as computed from e (according to the rules).

e -->* v



The typing judgement
This notation:

is read in English as "e has type t in context G."  It is going to
define how type checking works.  

It describes a relation between three things – a type checking 
context G, an expression e, and a type t.

We are going to think of G and e as given, and we are going to
compute t.  The typing rules are going to tell us how.

G |- e : t



Typing Contexts

What is the type checking context  G?

Technically, I'm going to treat G as if it were a (partial) function 
that maps variable names to types.  Notation:

G(x) -- look up x's type in G
G,x:t -- extend G so that x maps to t

When G is empty, I'm just going to omit it.  So I'll sometimes just 
write:      |- e : t



Example Typing Contexts
Here's an example context:

x:int, y:bool, z:int

Think of a context as a series of "assumptions" or "hypotheses"

Read it as the assumption that "x has type int, y has type bool
and z has type int"

In the subsitution model, if you assumed x has type int, that 
means that when you run the code, you had better actually wind 
up substituting an integer for x.



Typing Contexts and Free Variables
One more bit of intuition:

If an expression e contains free variables x, y, and z then we need 
to supply a context G that contains types for at least x, y and z.  If 
we don't, we won't be able to type check e. 



Type Checking Rules

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

Goal: Give rules that define
the relation "G |- e : t".

To do that, we are going to give
one rule for every sort of expression.

(We can turn each rule into
a case of a recursive function that
implements it pretty directly.)



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G |- b : bool

“boolean constants b always have type bool,
no matter what the context G is"

English:

Rule for constant booleans:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G |- n : int

“integer constants n always have type int,
no matter what the context G is"

English:

Rule for constant integers:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G |- e1 : t1      G |- e2 : t2      optype(o) = (t1, t2, t3)
G |- e1 o e2 : t3

“e1 o e2 has type t3, if e1 has type t1, e2 has type t2
and o is an operator that takes arguments of
type t1 and t2 and returns a value of type t3"

where

Rule for operators:

optype (+) = (int, int, int)
optype (-) = (int, int, int)
optype (<) = (int, int, bool)

English:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G |- x : G(x)

“variable x has the type given by the context"

Rule for variables:

English:

Note: this is rule explains (part) of why the
context needs to provide types for all of
the free variables in an expression

look up x in
context G



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G |- e1 : bool G |- e2 : t         G |- e3 : t
G |- if e1 then e2 else e3 : t

“if e1 has type bool
and e2 has type t
and e3 has (the same) type t
then e1 then e2 else e3 has type t "

Rule for if:

English:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G, x:t |- e : t2
G |- λx:t.e : t -> t2

“if G extended with x:t proves e has type t2
then λx:t.e has type t -> t2 "

Rule for functions:

English:

Notice that to know 
how to extend the 
context G, we need
the typing annotation 
on the function argument



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | < 

e ::=

c

| e o e

| x

| if e then e else e

| λx:t.e

| e e

| let x = e in e

G |- e1 : t1 -> t2          G |- e2 : t1
G |- e1 e2 : t2

“if G extended with x:t proves e has type t2
then λx:t.e has type t -> t2 "

Rule for function call:

English:



Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b
o ::= + | - | < 

e ::=
c

| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

G |- e1 : t1          G,x:t1 |- e2 : t2
G |- let x = e1 in e2 : t2

“if e1 has type t1 
and G extended with x:t1 proves e2 has type t2
then let x = e1 in e2 has type t2 "

Rule for let:

English:



A Typing Derivation
A typing derivation is a "proof" that an expression is well-typed 
in a particular context. 

Such proofs consist of a tree of valid rules, with no obligations 
left unfulfilled at the top of the tree.  (ie: no axioms left over).

G, x:int |- x : int G,x:int |- 2 : int
G, x:int |- x + 2 : int
G |- λx:int. x + 2 : int -> int

notice that “int” is associated 
with x in the context



Key Properties
Good type systems are sound.
• ie, well-typed programs have "well-defined" evaluation

• ie, our interpreter should not raise an exception part-way 
through because it doesn't know how to continue evaluation

• colloquial phrase: “sound type systems do not go wrong” 

Examples of OCaml expressions that go wrong:
• true + 3 (addition of booleans not defined)
• let (x,y) = 17 in ... (can’t extract fields of int)
• true (17) (can’t use a bool as if it is a function)

Sound type systems accurately predict run time behavior
• if e : int and e terminates then e evaluates to an integer



Soundness = Progress + Preservation

Proving soundness boils down to two theorems:

Progress Theorem:
If |- e : t then either:

(1) e is a value, or

(2) e --> e'

Preservation Theorem:
If |- e : t and e --> e' then |- e' : t

See COS 510 for proofs of these theorems.

But you have most of the necessary techniques:

Proof by induction on the structure of ... 

... various inductive data types. :-)



The typing rules also define an algorithm for 
... type checking ...

If you view G and e as inputs,
the rules for “G |- e : t” tell you how to compute t

(see demo code)



TYPE INFERENCE

26



Robin Milner

For three distinct and complete achievements:

1. LCF, the mechanization of Scott's Logic of Computable 
Functions, probably the first theoretically based yet 
practical tool for machine assisted proof construction;

2. ML, the first language to include polymorphic type 
inference together with a type-safe exception-
handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full 
abstraction, the study of the relationship between 
operational and denotational semantics.

Robin Milner
Turing Award, 1991



Robin Milner

For three distinct and complete achievements:

1. LCF, the mechanization of Scott's Logic of Computable 
Functions, probably the first theoretically based yet 
practical tool for machine assisted proof construction;

2. ML, the first language to include polymorphic type 
inference together with a type-safe exception-
handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full 
abstraction, the study of the relationship between 
operational and denotational semantics.

Robin Milner
Turing Award, 1991

We will be studying Hindley-Milner type inference.  Discovered by 
Hindley, rediscovered by Milner.   Formalized by Damas.  
Broken several times when effects were added to ML.



Language Design for Type Inference
The ML language and type system is designed to support a very 
strong form of type inference.

It’s very convenient we don’t have to annotate f and l with their 
types, as is required by our type checking algorithm.

let rec map f l = 
match l with

[ ] -> [ ]
| hd::tl -> f hd :: map f tl



Language Design for Type Inference
The ML language and type system is designed to support a very 
strong form of type inference.

ML finds this type for map:

let rec map f l = 
match l with

[ ] -> [ ]
| hd::tl -> f hd :: map f tl

map : ('a -> 'b) -> 'a list -> 'b list 



Language Design for Type Inference
The ML language and type system is designed to support a very 
strong form of type inference.

ML finds this type for map:

which is really an abbreviation for this type:

let rec map f l = 
match l with

[ ] -> [ ]
| hd::tl -> f hd :: map f tl

map : ('a -> 'b) -> 'a list -> 'b list 

map : forall 'a,'b.('a -> 'b) -> 'a list -> 'b list 



Language Design for Type Inference

We call this type the principle type (scheme) for map.

Any other ML-style type you can give map is an instance of this type, 
meaning we can obtain the other types via substitution of types for 
parameters from the principle type.

Eg:

('a -> 'a) -> 'a list -> 'a list 

map : ('a -> 'b) -> 'a list -> 'b list 

(bool -> int) -> bool list -> int list 

('a -> int) -> 'a list -> int list 



Language Design for Type Inference
Principle types are great:
• the type inference engine can make a best choice for the type to 

give an expression
• the engine doesn't have to guess (and won't have to guess wrong)

The fact that principle types exist is surprisingly brittle.  If you change 
ML's type system a little bit in either direction, it can fall apart.



Language Design for Type Inference
Suppose we take out polymorphic types and need a type for id:

Then the compiler might guess that id has one (and only one) of 
these types:

id : bool -> bool

let id x = x

id : int -> int



Language Design for Type Inference
Suppose we take out polymorphic types and need a type for id:

Then the compiler might guess that id has one (and only one) of 
these types:

But later on, one of the following code snippets won't type check:

So whatever choice is made, a different one might have been better.

id true

id : bool -> bool

let id x = x

id : int -> int

id 3



Language Design for Type Inference
We showed that removing types from the language causes a failure 
of principle types.

Does adding more types always make type inference easier?



Language Design for Type Inference
We showed that removing types from the language causes a failure 
of principle types.

Does adding more types always make type inference easier?



Language Design for Type Inference
OCaml has universal types on the outside (“prenex quantification”):

It does not have types like this:

forall 'a,’b. (('a -> 'b) -> 'a list -> 'b list)

(forall 'a.'a -> int)-> int -> bool

argument type has its own polymorphic quantifier



Language Design for Type Inference
Consider this program:

.

let f g = (g true, g 3)

notice that parameter g is used inside f as if:
1. it’s argument can have type bool, AND
2. it’s argument can have type int
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Consider this program:

.

let f g = (g true, g 3)

notice that parameter g is used inside f as if:
1. it’s argument can have type bool, AND
2. it’s argument can have type int

Does the following type work?

(‘a -> int) -> int * int



Language Design for Type Inference

Consider this program:

.

let f g = (g true, g 3)

notice that parameter g is used inside f as if:

1. it’s argument can have type bool, AND
2. it’s argument can have type int

Does the following type work?

(‘a -> int) -> int * int

NO:  this says g’s argument can be any type ‘a (it could be int or bool)

Consider g is (fun x -> x + 2) : int -> int.  

Unfortunately,  f g goes wrong when g applied to true inside f.



Language Design for Type Inference
Consider this program again:

We might want to give it this type:

Notice that the universal quantifier appears left of ->

f : (forall a.a->a) -> bool * int

let f g = (g true, g 3)



Language Design for Type Inference
System F is a lot like OCaml, except that it allows universal quantifiers 
in any position.  It could type check f.

Unfortunately, type inference in System F is undecideable.

.

f : (forall a.a->a) -> bool * int

let f g = (g true, g 3)



Language Design for Type Inference
System F is a lot like OCaml, except that it allows universal quantifiers 
in any position.  It could type check f.

Unfortunately, type inference in System F is undecideable.

Developed in 1972 by logician Jean Yves-Girard
who was interested in the consistency
of a logic of 2nd-order arithemetic.

Rediscovered as programming language
by John Reynolds in 1974.

f : (forall a.a->a) -> bool * int

let f g = (g true, g 3)



Language Design for Type Inference
Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints.  What type for this?

let f x = x + x
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let f x = x + x

f : float -> float  ? 



Language Design for Type Inference
Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints.  What type for this?

f : int -> int ? 

let f x = x + x

f : float -> float  ? 

f : 'a -> 'a  ? 



Language Design for Type Inference

Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints.  What type for this?

No type in OCaml's type system works.  In Haskell:

f : int -> int ? 

let f x = x + x

f : float -> float  ? 

f : 'a -> 'a  ? 

f : Num 'a => 'a -> 'a  



INFERRING SIMPLE TYPES

49



Type Schemes
A type scheme contains type variables that may be filled in 
during type inference

s ::= a | int | bool | s -> s

A term scheme is a term that contains type schemes rather than 
proper types.  eg, for functions:

fun (x:s) -> e 

let rec f (x:s) : s = e



Two Algorithms for Inferring Types

Algorithm 1:  
• Declarative; generates constraints to be solved later
• Easier to understand
• Easier to prove correct
• Less efficient, not used in practice

Algorithm 2:
• Imperative; solves constraints and updates as-you-go
• Harder to understand
• Harder to prove correct
• More efficient, used in practice
• See: http://okmij.org/ftp/ML/generalization.html



Algorithm 1
1) Add distinct variables in all places type schemes are needed

52



Algorithm 1
1) Add distinct variables in all places type schemes are needed

2) Generate constraints (equations between types) that must be 
satisfied in order for an expression to type check

• Notice the difference between this and the type checking 
algorithm from last time.  Last time, we tried to:
• eagerly deduce the concrete type when checking every expression 
• reject programs when types didn't match. eg:

• This time, we'll collect up equations like:

53

f e    -- f's argument type must equal e

a -> b = c



Algorithm 1
1) Add distinct variables in all places type schemes are needed

2) Generate constraints (equations between types) that must be 
satisfied in order for an expression to type check

• Notice the difference between this and the type checking 
algorithm from last time.  Last time, we tried to:
• eagerly deduce the concrete type when checking every expression 
• reject programs when types didn't match. eg:

• This time, we'll collect up equations like:

3) Solve the equations, generating substitutions of types for var's
54

f e    -- f's argument type must equal e

a -> b = c



Example:  Inferring types for map

let rec map f l =
match l with

[] -> []
| hd::tl -> f hd :: map f tl



Step 1:  Annotate

let rec map (f:a) (l:b) : c =
match l with

[] -> []
| hd::tl -> f hd :: map f tl



Step 2:  Generate Constraints

let rec map (f:a) (l:b) : c =
match l with

[] -> []
| hd::tl -> f hd :: map f tl b = d list

a = d -> f
...



Step 2:  Generate Constraints

let rec map (f:a) (l:b) : c =
match l with

[] -> []
| hd::tl -> f hd :: map f tl

b = b� list
b = b�� list
b = b��� list
a = a
b = b��� list
a = b�� -> a�
c = c� list
a� = c�
d list = c� list
d list = c

final constraints:



Step 3:  Solve Constraints

let rec map (f:a) (l:b) : c =
match l with

[] -> []
| hd::tl -> f hd :: map f tl

b = b� list
b = b�� list
b = b��� list
a = a
b = b��� list
a = b�� -> a�
c = c� list
a� = c�
d list = c� list
d list = c

final constraints:
[b' -> c'/a]
[b' list/b]
[c' list/c]

final solution:



Step 3:  Solve Constraints

let rec map (f:a) (l:b) : c =
match l with

[] -> []
| hd::tl -> f hd :: map f tl

[b' -> c'/a]
[b' list/b]
[c' list/c]

final solution:

let rec map (f:b' -> c') (l:b' list) : c' list =
match l with

[] -> []
| hd::tl -> f hd :: map f tl



Step 3:  Solve Constraints

let rec map (f:a) (l:b) : c =
match l with

[] -> []
| hd::tl -> f hd :: map f tl

let rec map (f:a -> b) (l:a list) : b list =
match l with

[] -> []
| hd::tl -> f hd :: map f tl

renaming type variables:



Type Inference Details
Type constraints are sets of equations between type schemes

– q ::= {s11 = s12, ..., sn1 = sn2} 

– eg: {b = b� list, a = b -> c}



Constraint Generation
Syntax-directed constraint generation

– our algorithm crawls over abstract syntax of untyped
expressions and generates
• a term scheme
• a set of constraints



Constraint Generation
Syntax-directed constraint generation

– our algorithm crawls over abstract syntax of untyped
expressions and generates
• a term scheme
• a set of constraints

Algorithm defined as set of inference rules:
– G |-- u => e : t, q

context
annotated
expressionunannotated

expression

type (scheme)

constraints that must be solved

inputs outputs



Constraint Generation
Syntax-directed constraint generation

– our algorithm crawls over abstract syntax of untyped
expressions and generates
• a term scheme
• a set of constraints

Algorithm defined as set of inference rules:
– G |-- u => e : t, q

context
annotated
expressionunannotated

expression

type (scheme)

constraints that must be solved

gen : ctxt -> exp -> 
ann_exp * scheme * constraints

in OCaml:

inputs outputs



Constraint Generation
Simple rules:

– G |-- x ==> x : s,  { }      (if G(x) = s)

– G |-- 3 ==> 3 : int, { }    (same for other ints)

– G |-- true ==> true : bool, { }

– G |-- false ==> false : bool, { }



If statements

G |-- u1 ==> e1 : t1, q1
G |-- u2 ==> e2 : t2, q2
G |-- u3 ==> e3 : t3, q3
----------------------------------------------------------------
G |-- if u1 then u2 else u3 ==> if e1 then e2 else e3

: a, q1 U q2 U q3 U {t1 = bool, a = t2, a = t3}



Function Application

G |-- u1 ==> e1 : t1, q1
G |-- u2 ==> e2 : t2, q2             (for a fresh a)
----------------------------------------------------------------
G |-- u1 u2==> e1 e2       :       a, q1 U q2 U {t1 = t2 -> a}



Function Declaration

G, x : a |-- u ==> e : t, q                     (for fresh a)
----------------------------------------------------------------------------------
G |-- fun x -> e ==> fun (x : a) -> e    :     a -> b,      q U {t = b}



Function Declaration

G, f : a -> b, x : a |-- u ==> e : t, q           (for fresh a,b)
-----------------------------------------------------------------------
G |-- rec f(x) = u ==> rec f (x : a) : b = e : a -> b, q U {t = b}



Solving Constraints
A solution to a system of type constraints is a substitution S

– a function from type variables to types
– assume substitutions are defined on all type variables:

• S(a) = a     (for almost all variables a)
• S(a) = s      (for some type scheme s)

– dom(S) = set of variables s.t. S(a) ¹ a



Solving Constraints
A solution to a system of type constraints is a substitution S

– a function from type variables to types
– assume substitutions are defined on all type variables:

• S(a) = a     (for almost all variables a)
• S(a) = s      (for some type scheme s)

– dom(S) = set of variables s.t. S(a) ¹ a

We can also apply a substitution S to a full type scheme s.

apply:  [ int/a,   int->bool/b ]  

to:  b -> a -> b

returns:  (int->bool) -> int -> (int->bool)



Substitutions
When is a substitution S a solution to a set of constraints?

Constraints:  { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

Eg:

a = b -> c
c = int -> bool

constraints:



Substitutions
When is a substitution S a solution to a set of constraints?

Constraints:  { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

Eg:

a = b -> c
c = int -> bool

b -> (int -> bool)/a
int -> bool/c
b/b 

constraints:

solution:



Substitutions
When is a substitution S a solution to a set of constraints?

Constraints:  { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

Eg:

a = b -> c
c = int -> bool

b -> (int -> bool)/a
int -> bool/c
b/b 

b -> (int -> bool)      =     b -> (int -> bool)
int -> bool =   int -> bool

constraints:

solution:

constraints with solution applied:



Substitutions
When is a substitution S a solution to a set of constraints?

Constraints:  { s1 = s2, s3 = s4, s5 = s6, ... }

When the substitution makes both sides of all equations the same.

A second solution

a = b -> c
c = int -> bool

b -> (int -> bool)/a
int -> bool/c
b/b 

constraints:

solution 1:

int -> (int -> bool)/a
int -> bool/c
int/b 

solution 2:



Substitutions
When is one solution better than another to a set of constraints?

a = b -> c
c = int -> bool

b -> (int -> bool)/a
int -> bool/c
b/b 

constraints:

solution 1:
int -> (int -> bool)/a
int -> bool/c
int/b 

solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:



Substitutions

Solution 1 is "more general" – there is more flex.
Solution 2 is "more concrete"
We prefer solution 1.

b -> (int -> bool)/a
int -> bool/c
b/b 

solution 1:
int -> (int -> bool)/a
int -> bool/c
int/b 

solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:



Substitutions

Solution 1 is "more general" – there is more flex.
Solution 2 is "more concrete"
We prefer the more general (less concrete) solution 1.
Technically, we prefer T to S if there exists another substitution U 
and for all types t, S (t) = U (T (t))

b -> (int -> bool)/a
int -> bool/c
b/b 

solution 1:
int -> (int -> bool)/a
int -> bool/c
int/b 

solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:



Substitutions

There is always a best solution, which we can a principle solution.
The best solution is (at least as) preferred as any other solution.

b -> (int -> bool)/a
int -> bool/c
b/b 

solution 1:
int -> (int -> bool)/a
int -> bool/c
int/b 

solution 2:

b -> (int -> bool)

type b -> c with solution applied:

int -> (int -> bool)

type b -> c with solution applied:



Examples
Example 1

– q = {a=int, b=a}
– principal solution S:



Examples
Example 1

– q = {a=int, b=a}
– principal solution S:

• S(a) = S(b) = int
• S(c) = c    (for all c other than a,b)



Examples
Example 2

– q = {a=int, b=a, b=bool}
– principal solution S:



Examples
Example 2

– q = {a=int, b=a, b=bool}
– principal solution S:

• does not exist (there is no solution to q)



Unification
Unification:  An algorithm that provides the principal solution to 
a set of constraints (if one exists)

– Unification systematically simplifies a set of constraints, yielding 
a substitution
• Starting state of unification process: (I,q)
• Final state of unification process: (S, { })



Unification

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail



Unification

unify_step (S, {bool=bool} U q) =   (S, q)

unify_step (S, {int=int} U q) =   (S, q)

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail



Unification

unify_step (S, {bool=bool} U q) =   (S, q)

unify_step (S, {int=int} U q) =   (S, q)

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail

unify_step (S, {a=a}          U q) =   (S, q)



Unification

unify_step (S, {A -> B =   C -> D}    U    q) 

=  (S,  {A = C,   B = D}    U   q)

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail



Unification

unify_step (S, {A -> B =   C -> D}    U    q) 

=  (S,  {A = C,   B = D}    U   q)

type ustate = substitution * constraints

unify_step : ustate -> ustate

Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail



Unification

unify_step (S, {a=s}    U    q) =   ([s/a] o S,    [s/a]q)

when a is not in FreeVars(s)



Unification

unify_step (S, {a=s}    U    q) =   ([s/a] o S,    [s/a]q)

when a is not in FreeVars(s)

the substitution S’ defined to:
do S then substitute s for a

the constraints q’ defined to:
be like q except s replacing a



Occurs Check

Recall this program:

It generates the the constraints:  a -> a = a

What is the solution to {a = a -> a}?

fun x -> x x 



Occurs Check

Recall this program:

It generates the the constraints:  a -> a = a

What is the solution to {a = a -> a}?

There is none!

Notice that a does appear in FreeVars(s)

Whenever a appears in FreeVars(s) and s is not just a,
there is no solution to the system of constraints.

fun x -> x x 



Occurs Check

Recall this program:

It generates the the constraints:  a -> a = a

What is the solution to {a = a -> a}?

There is none!

“when a is not in FreeVars(s)”  is known as the “occurs check”

fun x -> x x 



Irreducible States

Recall: unification simplifies equations step-by-step until
• there are no equations left to simplify:

(S, { }) no constraints left.
S is the final solution!



Irreducible States

In the latter case, the program does not type check.

Recall: unification simplifies equations step-by-step until
• there are no equations left to simplify:

• or we find basic equations are inconsistent:
• int = bool
• s1 -> s2 = int
• s1 -> s2 = bool
• a = s              (s contains a)

(or is symmetric to one of the above)

(S, { }) no constraints left.
S is the final solution!
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Generalization

Where do we introduce polymorphic values?  Consider:

It is tempting to do something like this:

But recall the beginning of the lecture:

if we aren’t careful, we run into decidability issues

(fun x -> 3) : forall a. a -> int

g (fun x -> 3)

g : (forall a. a -> int) -> int



Generalization

Where do we introduce polymorphic values? 

In ML languages:  Only when values bound in ”let declarations”

g (fun x -> 3)

let f : forall a. a -> a = fun x -> 3 in
g f

No polymorphism for fun x -> 3!

Yes polymorphism for f!



Let Polymorphism

Where do we introduce polymorphic values? 

let x = v

Rule:
• if v is a value (or guaranteed to evaluate to a value without effects)

• OCaml has some rules for this
• and v has type scheme s 
• and s has free variables a, b, c, ... 
• and a, b, c, ... do not appear in the types of other values in the context
• then x can have type forall a, b, c. s



Let Polymorphism

Where do we introduce polymorphic values? 

let x = v

Rule:
• if v is a value (or guaranteed to evaluate to a value without effects)

• OCaml has some rules for this
• and v has type scheme s 
• and s has free variables a, b, c, ... 
• and a, b, c, ... do not appear in the types of other values in the context
• then x can have type forall a, b, c. s

That’s a hell of a lot more complicated than you 
thought, eh?



Unsound Generalization Example

Consider this function f – a fancy identity function:

let f = fun x -> let y = x in y

A sensible type for f would be:

f : forall a. a -> a



Unsound Generalization Example

Consider this function f – a fancy identity function:

let f = fun x -> let y = x in y

A bad (unsound) type for f would be:

f : forall a, b. a -> b



Unsound Generalization Example

Consider this function f – a fancy identity function:

let f = fun x -> let y = x in y

A bad (unsound) type for f would be:

f : forall a, b. a -> b

(f true) + 7

goes wrong!  but if f can have the bad type,
it all type checks. This counterexample to soundness shows
that f can’t possible be given the bad type safely



Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a
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Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

then we
can use y
as if it has
any type,
such as y : b



Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

then we
can use y
as if it has
any type,
such as y : b

but now we have inferred that (fun x -> ...) : a -> b
and if we generalize again,
f : forall a,b. a -> b

That’s the bad type!



Unsound Generalization Example

Now, consider doing type inference:

let f = fun x -> let y = x in y

x : a

suppose we generalize and allow y : forall a.a

this was the bad step – y can’t really have
any type at all.  It’s type has got to be the same
as whatever the argument x is.

x was in the context when we tried to generalize y!



The Value Restriction

let x = v

this has got to be a value
to enable polymorphic
generalization



Unsound Generalization Again

let x = ref [] in x : forall a . a list ref

not a value!



Unsound Generalization Again

let x = ref [] in

x := [true];

x : forall a . a list ref

use x at type bool as if x : bool list ref

not a value!



Unsound Generalization Again

let x = ref [] in

x := [true];

List.hd (!x) + 3

x : forall a . a list ref

use x at type bool as if x : bool list ref

use x at type int as if x : int list ref

and we crash ....



What does OCaml do?

let x = ref [] in x : '_weak1 list ref

a “weak” type variable
can’t be generalized

means “I don’t know
what type this is but
it can only be one
particular type”

look for the “_” to begin
a type variable name



What does OCaml do?

let x = ref [] in

x := [true];

x : '_weak1 list ref

x : bool list ref

the “weak” type variable
is now fixed as a bool
and can’t be anything else

bool was substituted for
‘_weak during type
inference



What does OCaml do?

let x = ref [] in

x := [true];

List.hd (!x) + 3

x : '_weak1 list ref

x : bool list ref

Error: This expression has type bool 
but an expression was expected
of type int

type error ...



One other example

let x = fun () -> ref [] in x : forall ’a. unit -> ‘a list ref

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed



One other example

let x = fun () -> ref [] in

x () := [true];

x : forall ’a. unit -> ‘a list ref

x () : bool list ref

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed



One other example

let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

x : forall ’a. unit -> ‘a list ref

x () : bool list ref

what is the result of this program?

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed

x () : int list ref



One other example

let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

x : forall ’a. unit -> ‘a list ref

x () : bool list ref

what is the result of this program?

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

now generalization
is allowed

x () : int list ref

List.hd raises an exception because it is applied to the empty list.  why?



One other example

let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

what is the result of this program?

notice that the RHS is now a value
– it happens to be a function value
but any sort of value will do

List.hd raises an exception because it is applied to the empty list.  why?

creates one reference

creates a second totally
different reference

creates a new, different reference
every time it is called



TYPE INFERENCE:
THINGS TO REMEMBER



Type Inference: Things to remember

Declarative algorithm:  Given a context G, and untyped term u:

– Find e, t, q such that G |- u ==> e : t, q
• understand the constraints that need to be generated

– Find substitution S that acts as a solution to q via unification
• if no solution exists, there is no reconstruction

– Apply S to e, ie our solution is S(e) 
• S(e) contains schematic type variables a,b,c, etc that may be 

instantiated with any type

– Since S is principal, S(e) characterizes all reconstructions.

– If desired, use the type checking algorithm to validate



Type Inference: Things to remember
In order to introduce polymorphic quantifiers, remember:

– Quantifiers must be on the outside only
• this is called “prenex” quantification
• otherwise, type inference may become undecidable

– Quantifiers can only be introduced at let bindings:
• let x = v
• only the type variables that do not appear in the environment may

be generalized

– The expression on the right-hand side must be a value
• no references or exceptions


