COS 318 Project 2
Pre-emptive scheduling



Administrivia
« Contact information
» Srinivas Narayana, or “NG” if you like that.
e narayana@(cs.)princeton.edu

« COS 314
* Friday 2 — 4 pm at the fishbowl

* Design reviews
* Oct 14, Oct 15. 2-4 pm at the fishbowl
* Sign up forms up on the project page

* Please draw pictures and write your idea down (1
piece of paper)

* Project due Wednesday Oct 19 at noon!



Project 2 overview

» Target: Building a kernel that can switch
between executing different tasks (task =
process or kernel thread) in a non-preemptive
fashion.

* Read the project spec for complete details.

» Subtle aspects are important.
* “God lives in the details.”



What you need to deal with

Process control blocks (PCB)
User and kernel stacks
Context switching procedure
Basic system call mechanism

Mutual exclusion



Assumptions for this project

* Processes run under elevated privileges

* Non-preemptible tasks

* Run until they voluntarily yield or exit

* Fixed number of tasks
» Allocate per-task state statically in your program



Process Control Block

» Definition in kernel.h
 What is its purpose?
 What should be in the PCB?
 Pid
« Stack segment information

* Next, previous?
 What else?



Task scheduling example

COS 318: _ife:
go_to_class(); nave_fun();
go_to_precept(); yield();
ylel?l(); play();
coding(); yield();
desi Y
.es|gn_reVIeW(), do_random_ stuff();
yield(); -
| yield();
coding();

exit();



Control Flow

COS 318: _ife:
go_to_class(); ﬂv nave_fun();
go_to_precept(); yield()
ylel?l(); V/ - play();
Cod!ng(), | /i yield();
design_review(); do random_ stuff();
yield(): ' WV

| 5 yield();
coding(); L l
exit();



What is yield()?

o Switch to another task
 For a task itself, it's a normal function call

* Push a return address (EIP) on the stack
* Transfer control to yield()

* The task calling yield() has no knowledge of
what yield() does

e yield():

 Need to save and restore process state



What is this "process state™?

* When a task resumes control of CPU, it
shouldn't have to care what transpired in the
meantime.

* What should you do to give the task this
abstraction?



yield(): stack and registers

» Allocate separate stacks for tasks in kernel.c:
_start()

* yield() should:

e Save general purpose registers (%eayx, ..., including
%esp)

« Save flags
 |nstruction pointer?

* Where do you save these things?
« PCB
* When does yield() return?



Who does yield() return to”?

* Yield() returns immediately to a different task,
not the one that calls it!

* Agenda of yield():
e Save current task state
 Pick the next task T to run

« Restore T's saved state
e Return to task T!

* You just executed a context switch!



Finding the next task

* The kernel must keep track of who hasn't exited
yet

 Run the task that has been inactive for the
longest.

 \What's the natural data structure?

* Please explain your design in the design review!



Calling yield()

 To call yield(), a process needs the addresses
of the functions and be able to access these
addresses.

 Kernel threads: no problem!
e Scheduler.c: do_yield()
» User processes: should not have direct access

* Butin this project, processes run at kernel
privileges

 Now, how to get access?



System calls

* yield() is an example of a system call.
 To make a system call, typically a process:

 Pushes a system call “"number” and its arguments
onto the stack

e Uses an interrupt/trap mechanism to elevate
privileges and jump into the kernel

* |n this project though, processes have elevated
privileges all the time.

» 2 system calls: yield() and exit()



Jumping into the kernel:
kernel _entry()

» Kernel.c: start() stores the address of
kernel_entry at ENTRY _POINT (0xf00)

* Processes make system calls by:

» Loading the address of kernel _entry from
ENTRY_POINT

» Calling the function at this address with a system
call number as an argument

» kernel entry(syscall no) must save the
registers and switch to the kernel stack, and
reverse the process on the way out.



Allocating stacks

* Processes have two stacks

e User stack: for the process to use

» Kernel stack: for the kernel to use when executing
system calls on its behalf

» Kernel threads need only one stack.

« Suggestion: Put them in memory 0x10000-
0x20000.

« 4kb stack should be enough.



\.

Memory layout

£
Entry

Point PCBs
0xfO0

Proc |
0x4000

1

Peoia kernel

stack
0x7000 49000

Proc I’s /

kernel Proc 2’s

stack kernel
0x10000 stack

0x 12000
Proc I’s

user Proc 2’s

stack - user

0x1 1000 stack
0x 13000



Mutual exclusion through locks

* Lock-based synchronization is related to
process scheduling.

 The calls available to threads are
* lock init(lock t *)
* lock acquire(lock t *)

* lock release(lock t ™)

* Precise semantics we want are described in the
Spec.

* There is exactly one correct trace.



Timing a context switch

o util.c: get_timer() returns number of cycles
since boot.

* There is only one process for your timing code,
but it is given twice In tasks.c

» Use a global variable to distinguish the first
execution from the second.



Questions?



Think about...

* \WWhat should you do to jump to a kernel thread
for the first time?

* Process?
 How to save stuff into the PCB? In what order?
» Code up and test incrementally

* Most effort spent in debugging, so keep it simple
o Start early

* Plenty of tricky bits in this assignment
Do move past the design review by Friday!



