
1

Concurrency Control II (OCC, MVCC)

COS 418: Distributed Systems
Lecture 18

Michael Freedman

Serializability

Execution of a set of transactions
over multiple items is equivalent
to some serial execution of txns

2

• Big Global Lock: Results in a serial transaction
schedule at the cost of performance

• Two-phase locking with finer-grain locks:
– Growing phase when txn acquires locks

– Shrinking phase when txn releases locks (typically commit)

– Allows txn to execute concurrently, improvoing performance

3

Lock-based concurrency control

Q: What if access patterns
rarely, if ever, conflict?

4

2

• Goal: Low overhead for non-conflicting txns

• Assume success!
– Process transaction as if would succeed
– Check for serializability only at commit time
– If fails, abort transaction

• Optimistic Concurrency Control (OCC)
– Higher performance when few conflicts vs. locking
– Lower performance when many conflicts vs. locking

5

Be optimistic!

• From ”Rococo” paper in OSDI 2014. Focus on 2PL vs. OCC.

• Observe OCC better when write rate lower (fewer conflicts),
worse than 2PL with write rate higher (more conflicts)

6

2PL vs OCC

• Begin: Record timestamp marking the transaction’s beginning

• Modify phase:
– Txn can read values of committed data items
– Updates only to local copies (versions) of items (in db cache)

• Validate phase

• Commit phase
– If validates, transaction’s updates applied to DB
– Otherwise, transaction restarted
– Care must be taken to avoid “TOCTTOU” issues

7

OCC: Three-phase approach

8

OCC: Why validation is necessary

txn
coord O

Q

P
When commits txn updates,

create new versions at
some timestamp t

• New txn creates shadow
copies of P and Q

• P and Q’s copies at
inconsistent state

txn
coord

3

• Transaction is about to commit. System must ensure:
– Initial consistency: Versions of accessed objects at start consistent
– No conflicting concurrency: No other txn has committed an operation

at object that conflicts with one of this txn’s invocations

• Consider transaction 1. For all other txns N either committed or in
validation phase, one of the following holds:
A. N completes commit before 1 starts modify
B. 1 starts commit after N completes commit,

and ReadSet 1 and WriteSet N are disjoint
C. Both ReadSet 1 and WriteSet 1 are disjoint from WriteSet N,

and N completes modify phase.

• When validating 1, first check (A), then (B), then (C).
If all fail, validation fails and 1 aborted. 9

OCC: Validate Phase

A. N completes commit before 1 starts modify
• Remember that modify includes both read & write. So this just says N

finishes before 1 actually starts any read/write à no conflict

B. 1 starts commit after N completes commit,
and ReadSet 1 and WriteSet N are disjoint
• Nothing 1 has recently read depends on what N has written, and 1’s writes

will all be serialized after N’s (even though may overwrite N’s values)

C. Both ReadSet 1 and WriteSet 1 are disjoint from WriteSet N,
and N completes modify phase.
• If N has already finished reads (during modify), so it’s reads won’t depend

on WriteSet 1, and similarly, 1’s reads don’t depend on N’s writes.
10

OCC: Validate Phase
1 O

Q

P N

• Provides semantics as if only one transaction was
running on DB at time, in serial order

+ Real-time guarantees

• 2PL: Pessimistically get all the locks first

• OCC: Optimistically create copies, but then
recheck all read + written items before commit

11

2PL & OCC = strict serialization

Multi-version
concurrency control

Generalize use of multiple versions of objects

12

4

• Maintain multiple versions of objects, each with own
timestamp. Allocate correct version to reads.

• Prior example of MVCC:

13

Multi-version concurrency control

• Maintain multiple versions of objects, each with own
timestamp. Allocate correct version to reads.

• Unlike 2PL/OCC, reads never rejected

• Occasionally run garbage collection to clean up

14

Multi-version concurrency control

• Split transaction into read set and write set
– All reads execute as if one “snapshot”

– All writes execute as if one later “snapshot”

• Yields snapshot isolation < serializability

15

MVCC Intuition
• Intuition: Bag of marbles: ½ white, ½ black

• Transactions:
– T1: Change all white marbles to black marbles
– T2: Change all black marbles to white marbles

• Serializability (2PL, OCC)
– T1 → T2 or T2 → T1

– In either case, bag is either ALL white or ALL black

• Snapshot isolation (MVCC)
– T1 → T2 or T2 → T1 or T1 || T2

– Bag is ALL white, ALL black, or ½ white ½ black
16

Serializability vs. Snapshot isolation

5

• Transactions are assigned timestamps, which may
get assigned to objects those txns read/write

• Every object version OV has both read and write TS
– ReadTS: Largest timestamp of txn that reads OV

– WriteTS: Timestamp of txn that wrote OV

17

Timestamps in MVCC

• Perform write of object O or abort if conflicting:
– Find OV s.t. max { WriteTS(OV) | WriteTS(OV) <= TS(T) }
– # Abort if another T’ exists and has read O after T
– If ReadTS(OV) > TS(T)

• Abort and roll-back T
– Else

• Create new version OW

• Set ReadTS(OW) = WriteTS(OW) = TS(T)
18

Executing transaction T in MVCC
• Find version of object O to read:

– # Determine the last version written before read snapshot time
– Find OV s.t. max { WriteTS(OV) | WriteTS(OV) <= TS(T) }
– ReadTS(OV) = max(TS(T), ReadTS(OV))
– Return OV to T

write(O)
by TS=3

19

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

write(O)
by TS=5

20

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

W(1) = 3
R(1) = 3

6

21

Digging deeper

O

W(2) = 5
R(2) = 5

TS = 3

txn txn

TS = 4

txn

TS = 5

Find v such that max WriteTS(v) <= (TS = 4)
Þ v = 1 has (WriteTS = 3) <= 4

If ReadTS(1) > 4, abort
Þ 3 > 4: false

Otherwise, write object

write(O)
by TS = 4

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

W(1) = 3
R(1) = 3

22

Digging deeper

O

W(2) = 5
R(2) = 5

TS = 3

txn txn

TS = 4

txn

TS = 5

W(3) = 4
R(3) = 4

Find v such that max WriteTS(v) <= (TS = 4)
Þ v = 1 has (WriteTS = 3) <= 4

If ReadTS(1) > 4, abort
Þ 3 > 4: false

Otherwise, write object

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

W(1) = 3
R(1) = 3

23

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

BEGIN Transaction
tmp = READ(O)
WRITE (O, tmp + 1)

END Transaction

Find v such that max WriteTS(v) <= (TS = 5)
Þ v = 1 has (WriteTS = 3) <= 5

Set R(1) = max(5, R(1)) = 5

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

W(1) = 3
R(1) = 3R(1) = 5

24

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

Find v such that max WriteTS(v) <= (TS = 5)
Þ v = 1 has (WriteTS = 3) <= 5

If ReadTS(1) > 5, abort
Þ 5 > 5: false

Otherwise, write object

BEGIN Transaction
tmp = READ(O)
WRITE (O, tmp + 1)

END Transaction

W(2) = 5
R(2) = 5

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

W(1) = 3
R(1) = 3R(1) = 5

7

25

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

W(2) = 5
R(2) = 5

Find v such that max WriteTS(v) <= (TS = 4)
Þ v = 1 has (WriteTS = 3) <= 4

If ReadTS(1) > 4, abort
Þ 5 > 4: true

write(O)
by TS = 4

W(1) = 3
R(1) = 3

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

R(1) = 5

26

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

W(2) = 5
R(2) = 5

W(1) = 3
R(1) = 3

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

BEGIN Transaction
tmp = READ(O)
WRITE (P, tmp + 1)

END Transaction

Find v such that max WriteTS(v) <= (TS = 4)
Þ v = 1 has (WriteTS = 3) <= 4

Set R(1) = max(4, R(1)) = 5

R(1) = 5R(1) = 5

Then write on P succeeds as well

No class Wednesday! 🦃

Monday lecture
Distributed Transactions

+ Google Spanner

27

