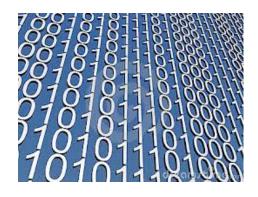
Princeton University

Computer Science 217: Introduction to Programming Systems

Number Systems and Number Representation

Q: Why do computer programmers confuse Christmas and Halloween?

A: Because 25 Dec = 31 Oct



Goals of this Lecture

Help you learn (or refresh your memory) about:

- The binary, hexadecimal, and octal number systems
- Finite representation of unsigned integers
- Finite representation of signed integers
- Finite representation of rational numbers (if time)

Why?

 A power programmer must know number systems and data representation to fully understand C's primitive data types

Primitive values and the operations on them

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

The Decimal Number System

Name

• "decem" (Latin) ⇒ ten

Characteristics

- Ten symbols
 - 0 1 2 3 4 5 6 7 8 9
- Positional
 - $2945 \neq 2495$
 - $2945 = (2*10^3) + (9*10^2) + (4*10^1) + (5*10^0)$

(Most) people use the decimal number system

The Binary Number System

binary

adjective: being in a state of one of two mutually exclusive conditions such as on or off, true or false, molten or frozen, presence or absence of a signal. From Late Latin *bīnārius* ("consisting of two").

Characteristics

- Two symbols
 - 0 1
- Positional
 - $1010_{B} \neq 1100_{B}$

Most (digital) computers use the binary number system

Terminology

- Bit: a binary digit
- Byte: (typically) 8 bits

Why?

Decimal-Binary Equivalence

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

<u>Decimal</u>	Binary
16	10000
17	10001
18	10010
19	10011
20	10100
21	10101
22	10110
23	10111
24	11000
25	11001
26	11010
27	11011
28	11100
29	11101
30	11110
31	11111
	• • •

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

$$100101_{B} = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0})$$

$$= 32 + 0 + 0 + 4 + 0 + 1$$

$$= 37$$

Integer Decimal-Binary Conversion

Integer

Binary to decimal: expand using positional notation

$$100101_{B} = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0})$$

$$= 32 + 0 + 0 + 4 + 0 + 1$$

$$= 37$$

These are integers

They exist as their pure selves no matter how we might choose to *represent* them with our fingers or toes

Integer-Binary Conversion

Integer to binary: do the reverse

• Determine largest power of 2 ≤ number; write template

$$37 = (?*2^5) + (?*2^4) + (?*2^3) + (?*2^2) + (?*2^1) + (?*2^0)$$

Fill in template

```
37 = (1*2^{5}) + (0*2^{4}) + (0*2^{3}) + (1*2^{2}) + (0*2^{1}) + (1*2^{0})
-32
5
-4
1
100101_{B}
-1
0
```

Integer-Binary Conversion

Integer to binary shortcut

Repeatedly divide by 2, consider remainder

```
37 / 2 = 18 R 1

18 / 2 = 9 R 0

9 / 2 = 4 R 1

4 / 2 = 2 R 0

2 / 2 = 1 R 0

1 / 2 = 0 R 1
```

Read from bottom to top: 100101_B

The Hexadecimal Number System

Name

- "hexa" (Greek) ⇒ six
- "decem" (Latin) ⇒ ten

Characteristics

- Sixteen symbols
 - 0 1 2 3 4 5 6 7 8 9 A B C D E F
- Positional
 - $A13D_H \neq 3DA1_H$

Computer programmers often use the hexadecimal number system

Why?

Decimal-Hexadecimal Equivalence

Decimal	<u>Hex</u>
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	A
11	В
12	С
13	D
14	E
15	F

<u>Decimal</u>	<u>Hex</u>
16	10
17	11
18	12
19	13
20	14
21	15
22	16
23	17
24	18
25	19
26	1A
27	1B
28	1C
29	1D
30	1E
31	1F

<u>Decimal</u>	<u>Hex</u>
32	20
33	21
34	22
35	23
36	24
37	25
38	26
39	27
40	28
41	29
42	2A
43	2B
44	2C
45	2D
46	2E
47	2F

Integer-Hexadecimal Conversion

Hexadecimal to integer: expand using positional notation

$$25_{H} = (2*16^{1}) + (5*16^{0})$$

= 32 + 5
= 37

Integer to hexadecimal: use the shortcut

Read from bottom to top: 25_H

Binary-Hexadecimal Conversion

Observation: $16^1 = 2^4$

Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

1010000100111101_B
A 1 3 D_H

Digit count in binary number not a multiple of 4 ⇒ pad with zeros on left

Hexadecimal to binary

A 1 3 D_H 1010000100111101_B

Discard leading zeros from binary number if appropriate

Is it clear why programmers often use hexadecimal?

The Octal Number System

Name

• "octo" (Latin) ⇒ eight

Characteristics

- Eight symbols
 - 0 1 2 3 4 5 6 7
- Positional
 - $1743_{\circ} \neq 7314_{\circ}$

Computer programmers often use the octal number system

(So does Mickey Mouse!)

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

Unsigned Data Types: Java vs. C

Java has type:

- int
 - Can represent signed integers

C has type:

- signed int
 - Can represent signed integers
- int
 - Same as signed int
- unsigned int
 - Can represent only unsigned integers

To understand C, must consider representation of both unsigned and signed integers

Representing Unsigned Integers

Mathematics

Range is 0 to ∞

Computer programming

- Range limited by computer's word size
- Word size is n bits ⇒ range is 0 to 2ⁿ 1
- Exceed range ⇒ overflow

CourseLab computers

• n = 64, so range is 0 to $2^{64} - 1$ (huge!)

Pretend computer

• n = 4, so range is 0 to $2^4 - 1$ (15)

Hereafter, assume word size = 4

All points generalize to word size = 64, word size = n

Representing Unsigned Integers

On pretend computer

Unsigned	
Integer	Rep
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Adding/subtracting binary numbers

Addition

00111010

Subtraction

1010 0111 **Subtraction**

00111010

Adding Unsigned Integers

Addition

Start at right column
Proceed leftward
Carry 1 when necessary

Beware of overflow

Results are mod 24

How would you detect overflow programmatically?

Subtracting Unsigned Integers

Subtraction

```
111

10 1010<sub>B</sub>

- 7 - 0111<sub>B</sub>

-- ----

3 0011<sub>B</sub>
```

Start at right column
Proceed leftward
Borrow when necessary

```
1
3 0011<sub>B</sub>
- 10 - 1010<sub>B</sub>
---
9 1001<sub>B</sub>
```

Beware of overflow

Results are mod 24

How would you detect overflow programmatically?

Shifting Unsigned Integers

Bitwise right shift (>> in C): fill on left with zeros

$$10 >> 1 \Rightarrow 5$$

$$1010_{B} \qquad 0101_{B}$$

$$10 \gg 2 \Rightarrow 2$$

$$1010_{B} \qquad 0010_{B}$$

What is the effect arithmetically?
(No fair looking ahead)

Bitwise left shift (<< in C): fill on right with zeros

$$\begin{array}{ccc}
5 & << 1 \Rightarrow 10 \\
0101_{\text{B}} & 1010_{\text{B}}
\end{array}$$

$$3 << 2 \Rightarrow 12$$
 0011_{B} 1100_{B}

Results are mod 24

Other Operations on Unsigned Ints

Bitwise NOT (~ in C)

Flip each bit

Bitwise AND (& in C)

Logical AND corresponding bits

Useful for setting selected bits to 0

Other Operations on Unsigned Ints

Bitwise OR: (| in C)

Logical OR corresponding bits

10	1010 _B
1	0001 _B
11	1011 _B

Useful for setting selected bits to 1

Bitwise exclusive OR (^ in C)

Logical exclusive OR corresponding bits

```
10 1010<sub>B</sub>

1010<sub>B</sub>

1010<sub>B</sub>

---

0 0000<sub>B</sub>
```

x ^ x sets all bits to 0

Aside: Using Bitwise Ops for Arith

Can use <<, >>, and & to do some arithmetic efficiently

x *
$$2^{y} == x << y$$

 $\cdot 3*4 = 3*2^{2} = 3<<2 \Rightarrow 12$
x / $2^{y} == x >> y$
 $\cdot 13/4 = 13/2^{2} = 13>>2 \Rightarrow 3$
x % $2^{y} == x & (2^{y}-1)$
 $\cdot 13*4 = 13*2^{2} = 13&(2^{2}-1)$
 $= 13&3 \Rightarrow 1$

Fast way to **multiply** by a power of 2

Fast way to **divide**unsigned by power of 2

Fast way to **mod** by a power of 2

Aside: Example C Program


```
#include <stdio.h>
#include <stdlib.h>
int main(void)
{ unsigned int n;
  unsigned int count;
   printf("Enter an unsigned integer: ");
   if (scanf("%u", &n) != 1)
   { fprintf(stderr, "Error: Expect unsigned int.\n");
      exit(EXIT FAILURE);
   for (count = 0; n > 0; (n = n >> 1)
      count += (n & 1);
   printf("%u\n", count);
   return 0;
                                       How could this be
                                       expressed more
          What does it
                                       succinctly?
          write?
```

Aside from the aside...

Personally, I wouldn't put the (count=0) in the for(;;) initializer,

```
for (count = 0; n > 0; n = n >> 1)
count += (n & 1);
```

because it's not really part of the loop iterator. In this case, the iterator is **n**, which (in this case) happens to be already initialized.

So it's perhaps more straightforward to write,

```
count = 0;
for ( ; n > 0; n = n >> 1)
  count += (n & 1);
```

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

Signed Magnitude

Integer -7 -6 -5 -4 -3 -2	Rep 1111 1110 1101 1100 1011
-6 -5 -4 -3	1110 1101 1100
-5 -4 -3	1101 1100
-4 -3	1100
-3	
	1011
-2	
	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-0 0 1 2 3 4 5 6	1001 1000 0000 0001 0010 0011 0100 0101 0110

Definition

High-order bit indicates sign

 $0 \Rightarrow positive$

1 ⇒ negative

Remaining bits indicate magnitude

$$1101_{B} = -101_{B} = -5$$

 $0101_{B} = 101_{B} = 5$

Signed Magnitude (cont.)

Integer	Rep
-7	1111
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative

```
neg(x) = flip high order bit of x

neg(0101_B) = 1101_B

neg(1101_B) = 0101_B
```

Pros and cons

- + easy for people to understand
- + symmetric
- two representations of zero
- can't use the same "add" algorithm for both signed and unsigned numbers

Ones' Complement


```
Integer
         Rep
    -7
         1000
    -6 1001
    -5 1010
    -4 1011
    -3 1100
    -2
        1101
    -1
         1110
    -0
         1111
     0
         0000
     1
         0001
     2
         0010
     3
         0011
     4
         0100
     5
         0101
     6
         0110
         0111
```

Definition

```
High-order bit has weight -7
1010_{B} = (1*-7) + (0*4) + (1*2) + (0*1)
= -5
0010_{B} = (0*-7) + (0*4) + (1*2) + (0*1)
= 2
```

Ones' Complement (cont.)

Integer	Rep
-7	1000
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative

```
neg(x) = ~x

neg(0101_B) = 1010_B

neg(1010_B) = 0101_B
```

Computing negative (alternative)

```
neg(x) = 1111_B - x
neg(0101_B) = 11111_B - 0101_B
= 1010_B
neg(1010_B) = 1111_B - 1010_B
= 0101_B
```

Pros and cons

- + symmetric
- two reps of zero
- can't use the same "add" algorithm for both signed and unsigned numbers

Two's Complement


```
Integer
         Rep
    -8
         1000
    -7
        1001
    -6 1010
    -5 1011
    -4
        1100
    -3
        1101
    -2
        1110
    -1
         1111
     0
         0000
         0001
     1
     2
         0010
     3
         0011
     4
         0100
     5
         0101
     6
         0110
         0111
```

Definition

```
High-order bit has weight -8

1010_B = (1*-8) + (0*4) + (1*2) + (0*1)

= -6

0010_B = (0*-8) + (0*4) + (1*2) + (0*1)

= 2
```

Two's Complement (cont.)

Integer	Rep
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative

```
neg(x) = \sim x + 1

neg(x) = onescomp(x) + 1

neg(0101_B) = 1010_B + 1 = 1011_B

neg(1011_B) = 0100_B + 1 = 0101_B
```

Pros and cons

- not symmetric
- + one representation of zero
- + same algorithm adds unsigned numbers or signed numbers

Two's Complement (cont.)

Almost all computers use two's complement to represent signed integers

Why?

- Arithmetic is easy
 - Will become clear soon

Hereafter, assume two's complement representation of signed integers

Adding Signed Integers

pos + neg

neg + neg

pos + pos (overflow)

How would you detect overflow programmatically?

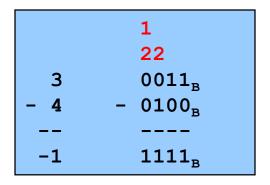
neg + neg (overflow)

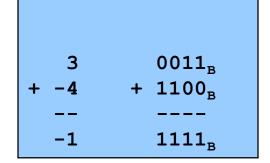
Subtracting Signed Integers

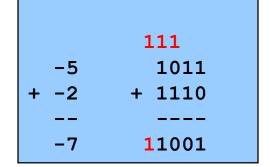
Perform subtraction with borrows

or

Compute two's comp and add







Negating Signed Ints: Math

Question: Why does two's comp arithmetic work?

Answer: $[-b] \mod 2^4 = [twoscomp(b)] \mod 2^4$

```
[-b] mod 2^4
= [2^4 - b] mod 2^4
= [2^4 - 1 - b + 1] mod 2^4
= [(2^4 - 1 - b) + 1] mod 2^4
= [onescomp(b) + 1] mod 2^4
= [twoscomp(b)] mod 2^4
```

See Bryant & O' Hallaron book for much more info

Subtracting Signed Ints: Math

And so:

```
[a - b] \mod 2^4 = [a + twoscomp(b)] \mod 2^4
```

```
[a - b] mod 2^4

= [a + 2^4 - b] mod 2^4

= [a + 2^4 - 1 - b + 1] mod 2^4

= [a + (2^4 - 1 - b) + 1] mod 2^4

= [a + onescomp(b) + 1] mod 2^4

= [a + twoscomp(b)] mod 2^4
```

See Bryant & O' Hallaron book for much more info

Shifting Signed Integers

Bitwise left shift (<< in C): fill on right with zeros

$$\begin{array}{ccc} 3 & << 1 \Rightarrow 6 \\ \hline 0011_{B} & 0110_{B} \end{array}$$

$$\begin{array}{ccc} -3 & << 1 \Rightarrow -6 \\ 1101_{B} & -1010_{B} \end{array}$$

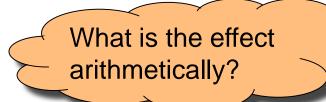
What is the effect arithmetically?

Bitwise arithmetic right shift: fill on left with sign bit

$$\begin{array}{ccc} 6 >> 1 \Rightarrow 3 \\ \hline 0110_{B} & 0011_{B} \end{array}$$

$$\begin{array}{cccc} -6 & >> & 1 & \Rightarrow & -3 \\ \hline 1010_{\scriptscriptstyle B} & & & 1101_{\scriptscriptstyle B} \end{array}$$

Results are mod 24



Shifting Signed Integers (cont.)

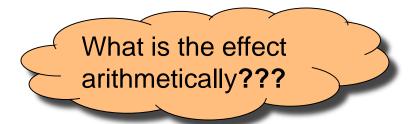
Bitwise logical right shift: fill on left with zeros

$$6 \gg 1 \Rightarrow 3$$

$$0110_{B} \quad 0011_{B}$$

$$-6 \gg 1 \Rightarrow 5$$

$$1010_{B} \quad 0101_{B}$$



In C, right shift (>>) could be logical or arithmetic

- Not specified by C90 standard
- Compiler designer decides

Best to avoid shifting signed integers

(if you must shift signed integers, make sure you're on a 2's complement machine, and do a bitwise-and after shifting)

(Java does this better, with two operators: >> >>)

Shifting Signed Integers (cont.)

Is it after 1980?

OK, then we're surely two's complement

(if you must shift signed integers, <u>make sure you're on a 2's complement</u> <u>machine</u>, and do a bitwise-and after shifting)

Other Operations on Signed Ints

Bitwise NOT (~ in C)

Same as with unsigned ints

Bitwise AND (& in C)

Same as with unsigned ints

Bitwise OR: (| in C)

Same as with unsigned ints

Bitwise exclusive OR (^ in C)

Same as with unsigned ints

Best to avoid with signed integers

Agenda

Number Systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers (if time)

Rational Numbers

Mathematics

- A rational number is one that can be expressed as the ratio of two integers
- Unbounded range and precision

Computer science

- Finite range and precision
- Approximate using floating point number
 - Binary point "floats" across bits

IEEE Floating Point Representation

Common finite representation: IEEE floating point

More precisely: ISO/IEEE 754 standard

Using 32 bits (type float in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 8 bits: exponent + 127

Using 64 bits (type double in C):

- 1 bit: sign (0⇒positive, 1⇒negative)
- 11 bits: exponent + 1023
- 52 bits: binary fraction of the form

Floating Point Example

Sign (1 bit):

• 1 ⇒ negative

32-bit representation

Exponent (8 bits):

- \cdot 10000011_B = 131
- \cdot 131 127 = 4

Fraction (23 bits): also called "mantissa"

- 1 + $(1*2^{-1})$ + $(0*2^{-2})$ + $(1*2^{-3})$ + $(1*2^{-4})$ + $(0*2^{-5})$ + $(1*2^{-6})$ + $(1*2^{-7})$ = 1.7109375

Number:

 \bullet -1.7109375 * 2⁴ = -27.375

When was floating-point invented?

Answer: long before computers!

mantissa

noun

decimal part of a logarithm, 1865, from Latin *mantisa* "a worthless addition, makeweight," perhaps a Gaulish word introduced into Latin via Etruscan (cf. Old Irish *meit*, Welsh *maint* "size").

ac	0	7	3	3	4	ś	6	7	8	9	Δ ₉₆ +	ı	2	*
														-
50	-6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	9	1	2	
51	-7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	8	I	2	
52	-7160		7177			7202	ALCOHOLD TO THE		7226		8	I	2	
53	.7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	8	I	2	
54	-7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	8	I	2	
55	-7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	8	I	2	
56	.7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	8	E	2	
57	.7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	8	I	2	
58	-7634		7649			7672		7686	7694	7701	8	I	2	
59	.7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	7	I	I	

Floating Point Warning

Decimal number system can represent only some rational numbers with finite digit count

• Example: 1/3

Binary number system can represent only some rational numbers with finite digit count

• Example: 1/5

Beware of roundoff error

- Error resulting from inexact representation
- Can accumulate

Decimal	<u>Rational</u>
Approx	<u>Value</u>
.3	3/10
.33	33/100
.333	333/1000

Binary	<u>Rational</u>
Approx	<u>Value</u>
0.0	0/2
0.01	1/4
0.010	2/8
0.0011	3/16
0.00110	6/32
0.001101	13/64
0.0011010	26/128
0.00110011	51/256
• • •	

Summary

The binary, hexadecimal, and octal number systems

Finite representation of unsigned integers

Finite representation of signed integers

Finite representation of rational numbers

Essential for proper understanding of

- C primitive data types
- Assembly language
- Machine language