Distributed Systems

COS 418: Distributed Systems
Lecture 1

Mike Freedman

Backrub (Google) 1997

“The Cloud” is not amorphous

A

\l

A\

fleiw

e

]
| [

“100,000s of physical servers
10s MW energy consumption

-

wu .s £ Facebook Prineville: ™%
1 1$250M physical infro; $1B/IT infra

g

“Pods provide 7.68Tbps to backplane”

The goal of “distributed systems”

+ Service with higher-level abstractions/interface

— e.g., file system, database, key-value store,
programming model, RESTful web service, ...

» Hide complexity

— Scalable (scale-out)

— Reliable (fault-tolerant)

— Well-defined semantics (consistent)
— Security

* Do “heavy lifting” so app developer doesn’t need to

Research results matter: NoSQL Research results matter: Paxos

Dynamo: A 1’s Highly A Key-value Store
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
David Ko Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Werner Vogels

Distribuf

Viewsiamped eptcaton: A New rnaryCopy atbod 1o
Amazon.com | JPport Hghly.Avaliabi Distributed Systems
The Part-Ti| oo

One of the lessons our organization has leamed from operating
P ABSTRACT Amazon's platform is that the reliability and scalability of 2
wswace Relsbility at massive scale is one of the biggest chllenges we (GO PO M O SIS S RS o

fce 3t Amazon.com, on o the aget ecommere oprsionsn s, 5 P4 oo b s spplicaion e i el oy s

priviey: the world; cven he sightest outage has significant financial oriented architecture consisting of hundreds of service. In this
o e Comsequences and mpacts customer st The AMIZONCOM covirnment thee is 8 paicular need fo stoage technologis
ey D e e e e toote o that are always available. For example, customers should be able Thi i . i L ;
wetwork. The — o o 10 view and add items 1o their shopping cart even if disks are ten The Chubby lock service for loosely-coupled distributed systems ot rudes comeaedty
Tt e world. AL i sl sl nd g compones Gl s bevork s e faping, o s cenie s being Lorg resage: owe 1a

continuously and the way pers

Y s. Google Inc.
of these failures drives the relisbility and scalbility of the dike Burrows, Google Inc
systems.

from its data store, and that its data neods to be available

St

o e,
Tencion changen . e e i . across multiple data centers. heon o, hat
SEET DApTetniemeneni I) Doy nmrt ricdf om of i e
ctwork. We beli " vaue s mponents is. ‘mode of operation; the alwaysa tons are eventually
P s et rovide an e i e of s ncowork componen Abstract cxample, the Google Fik System [7] uses s Chubby lock

small but significant number of server and network components

o achieve this level of avaiabilty, Dynamo sacrifices consisency e oo o 10 appoint a GFS master server, and Bigtable [3] uses
w s lovl of vaiabl st - are failing at any given time. As such Amazon's software We describe our expericnces with the Chubby lock ser- PO . ¥ of computaion in whch
1 towoduction o ad pphcsson s o o mgs 275 need 10 be consuced in @ manc e s e vice, which & ntmiod 1o rovide oo giaed ok O I8 sovnl waye: 0 ehoct mases, o allow e bpokdupelongyd
venioning and spplication-assistd confictresolution namamer Yo PO 10 1 STRTLACE, b 8ttt B (U s gna master to discover the servers 10 permit io coreans witin 1 boin
pw— that provides a novel inerface for developers o use. Toing s the pomal ing as well a reliable (though low-volume) storage for (Wt B MO TR SERER L EEER, S R o objcts;

o X . . a loosely-coupled distributed system. Chubby provides
oo Categories and Subject Descriptors nely-coupled distributed system

To meet the reliability and scaling needs, Amazon has developed an interfoce moch like a disribed file systcon with g, DiBable use Chubby as a well-known and availabl loca- arother mod

: D42 (Operating Systems]: Storage Management D45 s e tion 0 stor a small amount of meta-data; i effctthey
A sy lock, but the design emphasis i on avaiabilty o o rancte
Pl Reliabiliy; D42 Siomge Semvion (o avalble ousde of Arhson and Knowr a6 isry bk i the desig, copbass s o0 SIaBY wse Chty a the 1ot of e dsnbued data s o b7 mouns of remole
Performance; Amazon 53, s oy e et known. This e tures. Some services use locks o partition work (at a
fnstances of the service have bocn wd for over year,
General T design snd implcmeaaion of Dyoai, smoder ighy avalble instances o heservice have boch e for VS 4 X8 . i) beweensevrs server
eneral Terms 2nd calable isributed dsta. store bl for Amazon’s lafor, thseveral of them cach bandling # few ens Of hou- g o (g g deployed, most distributed sys- foux mowoa. iaan:
Algorithms, Management, Measurement, Performance, Design, Dynamo is used to manage the state of services that have very 13 sands of clicnts concurreatly. The peper describes the o) Gooeie used ad hoc methods for primary elec- hat supports our model of
Relbiiy bigh elsiliy reiremens and necd tight conro over the iniial design and expectod use, compares it with actual

Research results matter: MapReduce

MapReduce: Simplified Data Proc

ing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
Jff®googi.com, sanjay @ googhe.com

Google, Inc.

Course Organization

Abstract given day, ctc. Most such computations are conceptu
sl sighorvand, Howeve, e npu de s sl

educe is a programming model and an associ
sodinplenntaion o roceming wd uoesingege
data sets. me.x y a map function that process

e, s redace fomction thad ages ll inermise
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in ths functional style are automati-
cally parallclized and exccuted on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
‘gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any

with parallel and distributed systems to cas-

ily lize the resourcesof 8 large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-

large and the computations have 10 be distributed
hundeeds o thowseds of machines I crder o insh
a reasonable amount of time. The issues of how o par-
lllize the computation, iskibuse e daa, and handle
failures conspire 10 obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As & eaction o this compleiy. we dm;nem anew

ioms wo wero trying 8 perfor but hidkcs the cocesy do-
il of parlclizaton, ful lerance, dats disebution
and load balancing in a library. Our sbstraction is in
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying 3 map op-
eration o each logical “record” in our input in order 1o
compute a set of intermediate keyvalue pairs, and the
applying a reduce operation o all the values that sharcd
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-

el) " }

@Flink

distributed stream
computing platform

5 STORM

15

Learning the material: People

* Lecture
— Professors Mike Freedman, Kyle Jamieson
— Slides available on course website
— Office hours immediately after lecture

* Precept:
— TAs Themis Melissaris, Daniel Suo

* Main Q&A forum: www.piazza.com
— Graded on class participation: so ask & answer!
— No anonymous posts or questions
— Can send private messages to instructors

17

Learning the Material: Books

» Lecture notes!

* No required textbooks.
— Programming reference:

» The Go Programming Language, Alan Donovan and
Brian Kernighan (www.gopl.io, $17 Amazon!)

— Topic reference:

* Distributed Systems: Principles and Paradigms. Andrew
S. Tanenbaum and Maaten Van Steen

 Guide to Reliable Distributed Systems. Kenneth Birman

18

Grading

+ Five assignments (5% for first, then 10% each)
— 90% 24 hours late, 80% 2 days late, 50% >5 days late
— THREE free late days (we’'ll figure which one is best)

— Only failing grades I've given are for students who don't
(try to) do assignments

* Two exams (50% total)
— Midterm exam before spring break (25%)
— Final exam during exam period (25%)

+ Class participation (5%)
— In lecture, precept, and Piazza

Policies: Write Your Own Code

Programming is an individual creative process. At first,
discussions with friends is fine. When writing code,
however, the program must be your own work.

Do not copy another person’s programs, comments, README
description, or any part of submitted assignment. This
includes character-by-character transliteration but also
derivative works. Cannot use ancther’s code, etc. even
while “citing” them.

Wiriting code for use by another or using another’s code is
academic fraud in context of coursework.

Do not publish your code e.g., on github, during/after course!

20

Assignment 1

* Learn how to program in Go
— Implement “sequential” Map/Reduce
— Instructions on assignment web page

— Due September 28 (two weeks)

21

meClickers®: Quick Surveys

Case Study: MapReduce

(Data-parallel programming at scale)

* Why are you here?
A. Needed to satisfy course requirements
B. Want to learn Go or distributed programming
C. Interested in concepts behind distributed systems

D. Thought this course was “Bridges”

22

Application: Word Count

SELECT count(word) FROM data
GROUP BY word

cat data.txt
| tr-s'[[:punct][:space:]] "\n'
| sort | uniq-c

24

Using partial aggregation

1. Compute word counts from individual files
2. Then merge intermediate output

3. Compute word count on merged outputs

25

Using partial aggregation

1. In parallel, send to worker:
— Compute word counts from individual files

— Collect result, wait until all finished
2. Then merge intermediate output

3. Compute word count on merged intermediates

26

MapReduce: Programming Interface

map (key, value) -> list(<k’, v’'>)

— Apply function to (key, value) pair and produces
set of intermediate pairs

reduce (key, list<value>) -> <k’, v’'>
— Applies aggregation function to values

— Outputs result

27

MapReduce: Programming Interface

map (key, value):
for each word w in value:

EmitIntermediate (w, "1");

reduce (key, list(values):
int result = 0;
for each v in values:
result += Parselnt(v);

Emit (AsString (result)); .

MapReduce: Optimizations

combine (list<key, value>) -> list<k,v>
— Perform partial aggregation on mapper node:
<the, 1>, <the, 1>, <the, 1> > <the, 3>
—reduce() should be commutative and associative

partition(key, int) -> int
— Need to aggregate intermediate vals with same key
— Given n partitions, map key to partition 0 <i<n
— Typically via hash(key) mod n

29

Putting it together...

(how, 1), (much, 1), how

How much wood (wood, 1), (would, 1),
would a woodchuck
chuck if a woodchuck

much
wood

would
could chuck wood?

(chuck, 1), (wood, 1)
woodchuck

map partition reduce

(a, 1), (woodchuck, 1),

A woodchuck would (would, 1), (chuck, 1),

chuck a lot of wood
if a woodchuck

could chuck wood.

1), (chuck, 1), (wood, 1)

30

Synchronization Barrier

(how, 1), (much, 1),
How much wood (wood, 1), (would, 1),
would a woodchuck (a, 1), (woodchuck, 1),
chuck if a woodchuck
could chuck wood?

(a, 1), (woodchuck, 1),
A woodchuck would (would, 1), (chuck, 1),
chuck a lot of wood (a, 1), (lot, 1), (of, 1),
if a woodchuck (wood, 1), (if, 1), (a, 1),
could chuck wood. (woodchuck, 1), (could,
1), (chuck, 1), (wood, 1)

3

Fault Tolerance in MapReduce

+ Map worker writes intermediate output to
local disk, separated by partitioning. Once
I I completed, tells master node.

Reduce worker told of location of map task
outputs, pulls their partition’s data from each
I I mapper, execute function across data

Note:
— “All-to-all” shuffle b/w mappers and reducers

— Witten to disk (“materialized”) b/w each stage

32

Fault Tolerance in MapReduce

+ Master node monitors state of system
— If master failures, job aborts and client notified

» Map worker failure
— Both in-progress/completed tasks marked as idle

— Reduce workers notified when map task is re-executed
on another map worker

* Reducer worker failure
— In-progress tasks are reset to idle (and re-executed)
— Completed tasks had been written to global file system

33

Straggler Mitigation in MapReduce

©
17} 1
5 | Map.Read
w-g' gg Map.Move -
%< Ik Map - - - -
e 8 oa Reduce
IS 0.6
25 05
c
=g 0.4
£y 03
#g 02 |
E o041 ! R .
2 0 — |
- 0 0.1 02 03 04 05

Time (Normalized by Job Lifetime)

+ Tail latency means some workers finish late

» For slow map tasks, execute in parallel on second map

worker as “backup”, race to complete task
34

You’ll build (simplified) MapReduce!

+ Assignment 1: Sequential Map/Reduce
— Learn to program in Go!
— Due September 28 (two weeks)

» Assignment 2: Distributed Map/Reduce
— Learn Go’s concurrency, network I/O, and RPCs
— Due October 19

This Friday
“Grouped” Precept, Room CS 105

“Program your next service in Go

Sameer Ajmani

Manages Go lang team @ Google
(Earlier: PhD w/ Barbara Liskov @ MIT)

