Distributed Systems

COS 418: Distributed Systems
Lecture 1

Mike Freedman

Backrub (Google) 1997

“The Cloud” is not amorphous
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The goal of “distributed systems”

+ Service with higher-level abstractions/interface

— e.g., file system, database, key-value store,
programming model, RESTful web service, ...

» Hide complexity

— Scalable (scale-out)

— Reliable (fault-tolerant)

— Well-defined semantics (consistent)
— Security

* Do “heavy lifting” so app developer doesn’t need to
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Research results matter: MapReduce
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Programs written in ths functional style are automati-
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modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
‘gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
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with parallel and distributed systems to cas-

ily lize the resourcesof 8 large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-

large and the computations have 10 be distributed
hundeeds o thowseds of machines I crder o insh
a reasonable amount of time. The issues of how o par-
lllize the computation, iskibuse e daa, and handle
failures conspire 10 obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As & eaction o this compleiy. we dm;nem anew

ioms wo wero trying 8 perfor but hidkcs the cocesy do-
il of parlclizaton, ful lerance, dats disebution
and load balancing in a library. Our sbstraction is in
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying 3 map op-
eration o each logical “record” in our input in order 1o
compute a set of intermediate keyvalue pairs, and the
applying a reduce operation o all the values that sharcd
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-

el ) " }

@Flink

distributed stream
computing platform

5 STORM

15




Learning the material: People

* Lecture
— Professors Mike Freedman, Kyle Jamieson
— Slides available on course website
— Office hours immediately after lecture

* Precept:
— TAs Themis Melissaris, Daniel Suo

* Main Q&A forum: www.piazza.com
— Graded on class participation: so ask & answer!
— No anonymous posts or questions
— Can send private messages to instructors
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Learning the Material: Books

» Lecture notes!

* No required textbooks.
— Programming reference:

» The Go Programming Language, Alan Donovan and
Brian Kernighan (www.gopl.io, $17 Amazon!)

— Topic reference:

* Distributed Systems: Principles and Paradigms. Andrew
S. Tanenbaum and Maaten Van Steen

 Guide to Reliable Distributed Systems. Kenneth Birman
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Grading

+ Five assignments (5% for first, then 10% each)
— 90% 24 hours late, 80% 2 days late, 50% >5 days late
— THREE free late days (we’'ll figure which one is best)

— Only failing grades I've given are for students who don't
(try to) do assignments

* Two exams (50% total)
— Midterm exam before spring break (25%)
— Final exam during exam period (25%)

+ Class participation (5%)
— In lecture, precept, and Piazza

Policies: Write Your Own Code

Programming is an individual creative process. At first,
discussions with friends is fine. When writing code,
however, the program must be your own work.

Do not copy another person’s programs, comments, README
description, or any part of submitted assignment. This
includes character-by-character transliteration but also
derivative works. Cannot use ancther’s code, etc. even
while “citing” them.

Wiriting code for use by another or using another’s code is
academic fraud in context of coursework.

Do not publish your code e.g., on github, during/after course!
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Assignment 1

* Learn how to program in Go
— Implement “sequential” Map/Reduce
— Instructions on assignment web page

— Due September 28 (two weeks)
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meClickers®: Quick Surveys

Case Study: MapReduce

(Data-parallel programming at scale)

* Why are you here?
A. Needed to satisfy course requirements
B. Want to learn Go or distributed programming
C. Interested in concepts behind distributed systems

D. Thought this course was “Bridges”
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Application: Word Count

SELECT count(word) FROM data
GROUP BY word

cat data.txt
| tr-s'[[:punct][:space:]] "\n'
| sort | uniq-c
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Using partial aggregation

1. Compute word counts from individual files
2. Then merge intermediate output

3. Compute word count on merged outputs
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Using partial aggregation

1. In parallel, send to worker:
— Compute word counts from individual files

— Collect result, wait until all finished
2. Then merge intermediate output

3. Compute word count on merged intermediates
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MapReduce: Programming Interface

map (key, value) -> list(<k’, v’'>)

— Apply function to (key, value) pair and produces
set of intermediate pairs

reduce (key, list<value>) -> <k’, v’'>
— Applies aggregation function to values

— Outputs result
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MapReduce: Programming Interface

map (key, value):
for each word w in value:

EmitIntermediate (w, "1");

reduce (key, list(values):
int result = 0;
for each v in values:
result += Parselnt(v);

Emit (AsString (result)); .




MapReduce: Optimizations

combine (list<key, value>) -> list<k,v>
— Perform partial aggregation on mapper node:
<the, 1>, <the, 1>, <the, 1> > <the, 3>
—reduce() should be commutative and associative

partition(key, int) -> int
— Need to aggregate intermediate vals with same key
— Given n partitions, map key to partition 0 <i<n
— Typically via hash(key) mod n
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Putting it together...

(how, 1), (much, 1), how

How much wood (wood, 1), (would, 1),
would a woodchuck
chuck if a woodchuck

much
wood

would
could chuck wood?

(chuck, 1), (wood, 1)
woodchuck

map partition reduce

(a, 1), (woodchuck, 1),

A woodchuck would (would, 1), (chuck, 1),

chuck a lot of wood
if a woodchuck

could chuck wood.

1), (chuck, 1), (wood, 1)
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Synchronization Barrier

(how, 1), (much, 1),
How much wood (wood, 1), (would, 1),
would a woodchuck (a, 1), (woodchuck, 1),
chuck if a woodchuck
could chuck wood?

(a, 1), (woodchuck, 1),
A woodchuck would (would, 1), (chuck, 1),
chuck a lot of wood (a, 1), (lot, 1), (of, 1),
if a woodchuck (wood, 1), (if, 1), (a, 1),
could chuck wood. (woodchuck, 1), (could,
1), (chuck, 1), (wood, 1)
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Fault Tolerance in MapReduce

+ Map worker writes intermediate output to
local disk, separated by partitioning. Once
I I completed, tells master node.

Reduce worker told of location of map task
outputs, pulls their partition’s data from each
I I mapper, execute function across data

Note:
— “All-to-all” shuffle b/w mappers and reducers

— Witten to disk (“materialized”) b/w each stage
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Fault Tolerance in MapReduce

+ Master node monitors state of system
— If master failures, job aborts and client notified

» Map worker failure
— Both in-progress/completed tasks marked as idle

— Reduce workers notified when map task is re-executed
on another map worker

* Reducer worker failure
— In-progress tasks are reset to idle (and re-executed)
— Completed tasks had been written to global file system
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Straggler Mitigation in MapReduce
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+ Tail latency means some workers finish late

» For slow map tasks, execute in parallel on second map

worker as “backup”, race to complete task
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You’ll build (simplified) MapReduce!

+ Assignment 1: Sequential Map/Reduce
— Learn to program in Go!
— Due September 28 (two weeks)

» Assignment 2: Distributed Map/Reduce
— Learn Go’s concurrency, network I/O, and RPCs
— Due October 19

This Friday
“Grouped” Precept, Room CS 105

“Program your next service in Go

Sameer Ajmani

Manages Go lang team @ Google
(Earlier: PhD w/ Barbara Liskov @ MIT)




