# COS 402 - Machine <br> Learning and <br> Artificial Intelligence <br> Fall 2016 

Lecture 16: Hidden Markov Models Sanjeev Arora<br>Elad Hazan

## Course progress

- Learning from examples
- Definition + fundamental theorem of statistical learning, motivated efficient algorithms/optimization
- Convexity, greedy optimization - gradient descent
- Neural networks
- Knowledge Representation
- NLP
- Logic
- Bayes nets
- Optimization: MCMC
- HMM (today) (a special case of Bayes nets)
- Next: reinforcement learning

Admin

- (written) ex4 - announced today
- Due after Thanksgiving (Thu)


## Markov Chain



## Ergodic theorem

Every irreducible and a-periodic Markov chain has a unique stationary distribution, and every random walk starting from any node converges to it!

## Non-stationary Markov chains



[^0]Notice: self-loop $\rightarrow$ not periodic anymore

## Non-stationary Markov chains

## 0.5



This lecture: temporal models Hidden Markov Models

Hidden variables



## Applications

- Time-dependent variables / problems (e.g. treating patients with changing biometrics over time)
- Natural sequential data (speech, text, etc.).
- Example - text tagging:
the dog saw a cat
D N V D N

Hidden Markov Models: definitions

- $\mathrm{X}_{\mathrm{t}}=$ state at time t
- $\mathrm{E}_{\mathrm{t}}=$ evidence at time t
- $\mathrm{P}\left(\mathrm{X}_{0}\right)=$ initial state
- $P\left(X_{t} \mid X_{t-1}\right)$ - transition model = Markov chain
- $P\left(E_{t} \mid X_{t}\right)$ - sensor/observation model, random
- Assumptions:
- Future is independent of past given present ( $1^{\text {st }}$ order)

$$
P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)
$$

- Current evidence only depends on current state

$$
P\left(E_{t} \mid X_{0: t}, E_{1: t-1}\right)=P\left(E_{t} \mid X_{t}\right)
$$

Hidden Markov Models $-2^{\text {nd }}$ order dependencies natural extension


$$
P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-1}, X_{t-2}\right)
$$

Hidden Markov Models - translation


## HMMs - questions we want to solve

1. Filtering: what's the current state?

$$
P\left(X_{t} \mid E_{t}\right)=?
$$

2. Prediction: where will I be in k steps?
$P\left(X_{t+k} \mid E_{1: t}\right)=$ ?
3. Smoothing: where was I in the past?
$P\left(X_{k} \mid E_{1: t}\right)=$ ?
4. Most likely sequence to the data $\arg \max _{\mathrm{X}_{0: \mathrm{t}}} P\left(X_{0: t} \mid E_{1: t}\right)=$ ?

Example - word tagging by trigram HMM
the dog saw a cat
D N V D N


- Let $\mathrm{K}=\left\{\mathrm{V}, \mathrm{N}, \mathrm{D}, \mathrm{Adv}, . . .{ }^{*}, \mathrm{STOP}\right\}$ be a set of labels. These are going to be our states
- $\mathrm{V}=$ dictionary words, these are the observations
- Model = HMM with 3 arcs back. Trigram assumption:

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{0: \mathrm{t}-1}\right)=\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}, \mathrm{X}_{\mathrm{t}-2}\right), \quad P\left(E_{t} \mid X_{0: \mathrm{t}}, E_{1: t-1}\right)=P\left(E_{t} \mid X_{t}\right)
$$

Example - word tagging by trigram HMM
the dog saw a cat
D N V D N

- We will see,

$$
\begin{gathered}
\mathrm{P}(\text { the dog laughs, D N V STOP })= \\
\mathrm{P}(D \mid *, *) \times P(N \mid *, D) \times P(V \mid D N) \times P(S T O P \mid N, V) \times \\
\times P(\text { the } \mid D) \times P(\operatorname{dog} \mid N) \times P(\text { laughs } \mid V)
\end{gathered}
$$

## Example - word tagging

 by trigram HMM

- Assume we know transition probabilities $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}, \mathrm{X}_{\mathrm{t}-2}\right)$
- Assume we know observation frequencies $\mathrm{P}\left(\mathrm{E}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}}\right)$
- (how can we estimate these from labelled data?)


## Decoding HMMs

Input: sentence $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{t}}$
Output: tagging according to labels in $K(N, V, \ldots)$, i.e. the states $X_{1}, \ldots, X_{t}$
i.e. $\quad \arg \max _{\mathbf{x}_{0: t}} P\left(X_{0: t}=x_{0: t} \mid E_{1: t}=e_{1: t}\right)$
$=\arg \max _{\mathrm{x}_{0: t}} P\left(X_{0: t}=x_{0: t}, E_{1: t}=e_{1: t}\right) \times \frac{1}{P\left(E_{1: t}=e_{1: t}\right)}$
By the trigram Markov assumption, we have:

$$
P\left(x_{0: t}, e_{1: t}\right)=\prod_{i=1} P\left(x_{i} \mid x_{i-1}, x_{i-2}\right) \prod_{i=1} P\left(e_{i} \mid x_{i}\right)
$$

Why?

## Decoding HMMs

$$
\begin{aligned}
& P\left(x_{0: t}, e_{1: t}\right)= \\
& =P\left(x_{1: t}\right) \times P\left(e_{0: t} \mid x_{1: t}\right) \quad \text { (complete probability) } \\
& =\prod_{i=1 \text { to } t} P\left(x_{i} \mid x_{1: i-1}\right) \times \prod_{i=1 \text { to } t} P\left(e_{i} \mid x_{1: i-1}, e_{1: t}\right) \quad \text { (chain rule) } \\
& =\prod_{i=1 \text { to }{ }_{t} P\left(x_{i} \mid x_{i-1}, x_{i-2}\right) \times \prod_{i=1 \text { to } t} P\left(e_{i} \mid x_{1: i-1}, e_{1: t}\right) \quad \text { (2nd order MC) }}^{=\prod_{i=1 \text { to } t} P\left(x_{i} \mid x_{i-1}, x_{i-2}\right) \times \prod_{i=1 \text { to } t} P\left(e_{i} \mid x_{i}\right) \quad \text { (cond.independence) }}
\end{aligned}
$$

## Decoding HMMs - Viterbi algorithm

Let

$$
f\left(X_{0: k}\right)=\prod_{i=1 \text { to } k} P\left(X_{i} \mid X_{i-1}, X_{i-2}\right) \prod_{i=1 \text { tok }} P\left(e_{i} \mid X_{i}\right)
$$

And define

$$
\pi_{k}(u, v)=\max _{X_{0: k-2}} f\left(X_{0: k-2}, u, v\right)
$$

Recall: we want to compute:
$\arg \max _{x_{0: t}} P\left(x_{0: t}, e_{1: t}\right)=\arg \max f\left(x_{0: t}\right)$

## Decoding HMMs - Viterbi algorithm

Let

$$
f\left(X_{0: k}\right)=\prod_{i=1 \text { to } k} P\left(X_{i} \mid X_{i-1}, X_{i-2}\right) \prod_{i=1 \text { tok }} P\left(e_{i} \mid X_{i}\right)
$$

And define

$$
\pi_{k}(u, v)=\max _{X_{0: k-2}} f\left(X_{0: k-2}, u, v\right)
$$

Main lemma:

$$
\pi_{k}(u, v)=\max _{w}\left\{\pi_{k-1}(w, u) \times P(v \mid w, u) \times P\left(e_{k} \mid v\right)\right\}
$$

Now the algorithm is straightforward: compute this recursively! (a.k.a. dynamic programming)

## Viterbi: explicit pseudo code

Input: observations $\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{t}}$
Output: most likely variable assignments $\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{t}}$
Initialize: set $\mathrm{x}_{0}, \mathrm{x}_{-1}$ to be "*"
For $k=1,2, \ldots, t$ do:

- For $u, v i n K$ do:

1. $\pi_{k}(u, v)=\max _{w}\left\{\pi_{k-1}(w, u) \times P(v \mid w, u) \times P\left(e_{k} \mid v\right)\right\}$
2. Save the $\pi_{k}(u, v)$ value and the assignments which meets it

- end

Return $\max _{u, v}\left\{\pi_{t}(u, v) \times P(S T O P \mid u, v)\right\}$ and assignments which meets it

Computational complexity?

Hidden Markov Models - another view


## Hidden Markov Models - another view



Markov chain with:

1. Transition probabilities that govern state change
2. Distribution over signals/observations from each state

Transition matrix:

| 0.2 | 0.8 |
| :--- | :--- |
| 0.3 | 0.7 |

Observation matrices:

| $P\left({ }^{\prime \prime} a^{\prime \prime} \mid x_{t}\right)$ | $P\left({ }^{\prime \prime} b^{\prime \prime} \mid x_{t}\right)$ | $P\left({ }^{\prime \prime} c^{\prime \prime} \mid x_{t}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0.2 | 0 | 0 | 0 | 0.8 |
| 0 | 0.7 | 0 | 0.3 | 0 |

## "forward algorithm"

To compute $P\left(X_{t+1} \mid e_{1: t+1}\right)$, recursive formula (similar to what we did)

$$
P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
$$



## "forward algorithm"

To compute $P\left(X_{t+1} \mid e_{1: t+1}\right)$, recursive formula (similar to what we did)

$$
P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
$$

Derivation

$$
\begin{aligned}
& P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right) \\
& =\frac{1}{P\left(e_{t+1} \mid e_{1: t}\right)} P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right) \quad \text { (Bayes) } \\
& =\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \quad \text { (Markovassumption) } \\
& =\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$



## "forward algorithm"

To compute $P\left(X_{t+1} \mid e_{1: t+1}\right)$, recursive formula (similar to what we did)
$P\left(X_{t+1} \mid e_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$
Or in matrix form, if $f_{t}$ is the vector of $\mathrm{f}_{\mathrm{t}}(\mathrm{x})=P\left(X_{t}=x, e_{1: t}\right)$ :


| 0.2 | 0.8 |
| :--- | :--- |
| 0.3 | 0.7 |

$f_{t+1}=\alpha O_{t+1} T^{\top} f_{t}$
$O_{t}$ - observation matrix corresponding to $\mathrm{E}_{\mathrm{t}}$. $\alpha$-normalizing constant to 1 (equal to $\frac{1}{P\left(e_{1: t}\right)}$ ).


## "backward algorithm"

Let $\mathrm{b}_{t}$ is the vector of $b_{\mathrm{k}: \mathrm{t}}(\mathrm{x})=P\left(e_{k: t}, X_{k-1}\right)$ :
$b_{k+1: t}=T O_{k+1} b_{k+2: t}$
$O_{t}$ - observation matrix corresponding to $\mathrm{E}_{\mathrm{t}}$.


## Summary

- HMMs - useful to model time-dependent variables / problems (e.g. treating patients with changing biometrics over time)
- Example - text tagging
- Viterbi algorithm (dynamic programming) to find the most likely assignment to the hidden variables. (assuming the transition probabilities are known)
- Independence assumptions allow "forward" + "backward" computations of conditional probabilities


[^0]:    "periodic"

