
Lecture	16:	Hidden	Markov	Models
Sanjeev	Arora	 Elad	Hazan

COS	402	– Machine	
Learning	and	

Artificial	Intelligence
Fall	2016

Course	progress

• Learning	from	examples
• Definition	+	fundamental	theorem	of	statistical	learning,	motivated	efficient	
algorithms/optimization

• Convexity,	greedy	optimization	– gradient	descent
• Neural	networks

• Knowledge	Representation
• NLP
• Logic
• Bayes	nets	
• Optimization:	MCMC
• HMM	(today)	(a	special	case	of	Bayes	nets)

• Next:	reinforcement	learning

Admin

• (written)	ex4	– announced	today
• Due	after	Thanksgiving	(Thu)	

Markov	Chain

26

Markov chain with three states (s = 3)

Markov Chains Example

Transition graphTransition matrix

Directed	graph,
and	a	transitition
matrix	giving,	for	
each	i,	j				the	
probability	of	
stepping	to	j	when	at	i.

Ergodic	theorem

Every	irreducible	and	a-periodic	Markov	chain	has	a	unique	stationary	
distribution,	and	every	random	walk	starting	from	any	node	converges	to	it!	

Non-stationary	Markov	chains

1 2

1

1

“periodic”

Notice:	self-loop	à not	
periodic	anymore

Non-stationary	Markov	chains

1
2

1

0.5

2

0.5

1

“reducible”

Irreducible	à for	any	pair	of	vertices,	
Tij >	0	after	finitely	many	iterations.	

This	lecture:	temporal	models
Hidden	Markov	Models

X1

E1

X2

E2

X3

E3

X3 X5

Hidden	variables

Evidence	variables	
(observed)

X0

Applications

• Time-dependent	variables	/	problems	(e.g.	treating	patients	with	
changing	biometrics	over	time)

• Natural	sequential	data	(speech,	text,	etc.).	

• Example	- text	tagging:

the	dog	saw	a	cat
D					N					V				D					N

Hidden	Markov	Models:	definitions

X1

E1

X2

E2

X3

E3

X3 X5X0• Xt =	state	at	time	t
• Et =	evidence	at	time	t	
• P(X0)	=	initial	state
• 𝑃(𝑋$|𝑋$&') – transition	model	=	Markov	chain
• 𝑃(𝐸$|𝑋$) – sensor/observation	model,	random
• Assumptions:
• Future	is	independent	of	past	given	present	(1st order)
𝑃 𝑋$ 𝑋*:$&' = 𝑃(𝑋$|𝑋$&')

• Current	evidence	only	depends	on	current	state
𝑃 𝐸$ 𝑋*:$, 𝐸':$&' = 𝑃(𝐸$|𝑋$)

Hidden	Markov	Models	– 2nd order	dependencies
natural	extension

X1

E1

X2

E2

X3

E3

X3 X5X0

𝑃 𝑋$ 𝑋*:$&' = 𝑃(𝑋$|𝑋$&',𝑋$&.)

Hidden	Markov	Models	– translation

X1

E1

X2

E2

X3

E3

X3 X5X0

English

A1 A2 A3 A4 A5 Hebrew

HMMs	– questions	we	want	to	solve

1. Filtering:	what’s	the	current	state?
𝑃 𝑋$ 𝐸$ =?

2. Prediction:	where	will	I	be	in	k	steps?	
𝑃 𝑋$01 𝐸':$ =?

3. Smoothing:	where	was	I	in	the	past?
𝑃 𝑋1 𝐸':$ =?

4. Most	likely	sequence	to	the	data
argmax

78:9
𝑃 𝑋*:$ 𝐸':$ =?

Example	– word	tagging
by	trigram	HMM

the	dog	saw	a	cat
D					N					V				D					N

• Let	K	=	{V,N,D,Adv,…,*,STOP}	be	a	set	of	labels.		These	are	going	to	be	
our	states
• V	=	dictionary	words,	these	are	the	observations
• Model	=	HMM	with	3	arcs	back.	Trigram	assumption:		

P X< X*:<&'	 = P X< X<&',X<&. ,									𝑃 𝐸$ 𝑋*:$, 𝐸':$&' = 𝑃(𝐸$|𝑋$)

X1

E1

X2

E2

X3

E3

X3 X5X0

Example	– word	tagging
by	trigram	HMM

the	dog	saw	a	cat
D					N					V				D					N

• We	will	see,	
P the	dog	laughs, D	N	V	STOP =
P(𝐷 ∗,∗ ×	𝑃 𝑁 ∗,𝐷 ×𝑃 	𝑉 𝐷	𝑁 ×𝑃 𝑆𝑇𝑂𝑃 𝑁,𝑉 ×

×𝑃 𝑡ℎ𝑒	 𝐷)	×𝑃 𝑑𝑜𝑔	 𝑁)	×𝑃 𝑙𝑎𝑢𝑔ℎ𝑠 𝑉)	

X1

E1

X2

E2

X3

E3

X3 X5X0

Example	– word	tagging
by	trigram	HMM

• Assume	we	know	transition	probabilities 	P X< X<&', X<&.
• Assume	we	know	observation	frequencies	P E< X<
• (how	can	we	estimate	these	from	labelled	data?)	

X1

E1

X2

E2

X3

E3

X3 X5X0

Decoding	HMMs

Input:	sentence	E1,E2,…,Et
Output:	tagging	according	to	labels	in	K	(N,V,…),	i.e.	the	states	X1,…,Xt

i.e.							argmax
_8:9

		𝑃 𝑋*:$ = 𝑥*:$ 𝐸':$ = 𝑒':$

= argmax
_8:9

		𝑃 𝑋*:$ = 𝑥*:$, 𝐸':$ = 𝑒':$ 	×	
'

a(bc:defc:d)

By	the	trigram	Markov	assumption,	we	have:

𝑃(𝑥*:$, 𝑒':$) = g 𝑃 𝑥h 𝑥h&',𝑥h&.
he'	$i	$

g 𝑃(𝑒h |𝑥h)
he'	$i	$

Why?

Decoding	HMMs

𝑃 𝑥*:$, 𝑒':$ =

= 𝑃 𝑥':$ ×𝑃 𝑒*:$|𝑥':$ (complete	probability)
= ∏ 𝑃 𝑥h|𝑥':h&'he'	$i	$ ×∏ 𝑃 𝑒h|𝑥':h&', 𝑒':$he'	$i	$ (chain	rule)
= ∏ 𝑃 𝑥h|𝑥h&',𝑥h&.he'	$i	$ × ∏ 𝑃 𝑒h|𝑥':h&', 𝑒':$he'	$i	$ (2nd	order	MC)
= ∏ 𝑃 𝑥h|𝑥h&',𝑥h&.he'	$i	$ × ∏ 𝑃 𝑒h|𝑥hhe'	$i	$ (cond.	independence)

Decoding	HMMs	– Viterbi	algorithm

Let

𝑓(𝑋*:1) = g 𝑃 𝑋h 𝑋h&',𝑋h&.
he'	$i	1

g 𝑃(𝑒h|𝑋h)
he'	$i	1

And	define
𝜋1 𝑢, 𝑣 = max

n8:opq
	𝑓(𝑋*:1&.,𝑢, 𝑣)

Recall:	we	want	to	compute:

argmax
r8:9

𝑃 𝑥*:$,𝑒':$ = argmax𝑓(𝑥*:$)

Decoding	HMMs	– Viterbi	algorithm

Let

𝑓(𝑋*:1) = g 𝑃 𝑋h 𝑋h&',𝑋h&.
he'	$i	1

g 𝑃(𝑒h|𝑋h)
he'	$i	1

And	define
𝜋1 𝑢, 𝑣 = max

n8:opq
	𝑓(𝑋*:1&.,𝑢, 𝑣)

Main	lemma:
𝜋1 𝑢, 𝑣 = max

s
	{	𝜋1&' 𝑤,𝑢 ×	𝑃 𝑣 𝑤,𝑢 ×𝑃(𝑒1|𝑣) }

Now	the	algorithm	is	straightforward:	compute	this	recursively!		(a.k.a.	dynamic	programming)

Viterbi:	explicit	pseudo	code

Input:	observations	e1,…,et
Output:	most	likely	variable	assignments	x0,…,xt
Initialize:	set	x0,x-1 to	be	“*”
For	k=1,2,…,t	do:
• For	u,v in	K	do:	

1. 𝜋1 𝑢, 𝑣 = max
s
	{	𝜋1&' 𝑤,𝑢 ×	𝑃 𝑣 𝑤, 𝑢 ×𝑃(𝑒1|𝑣) }

2. Save	the	𝜋1 𝑢, 𝑣 	 value	and	the	assignments	which	meets	it

• end
Return				max

x,y
	{	𝜋$ 𝑢, 𝑣 ×	𝑃 𝑆𝑇𝑂𝑃	 𝑢, 𝑣 }			and	assignments	which	meets	it

Computational	complexity?	

Hidden	Markov	Models	– another	view

X1

E1

X2

E2

X3

E3

X3 X5

Hidden	variables:
2	states

Evidence	variables	
(observed,	 2	
options)

X0

Hidden	Markov	Models	– another	view

X=0

X=1

Markov	chain	with:
1. Transition	probabilities	 that	govern	state	

change
2. Distribution	 over	signals/observations	 from	

each	state

Transition	matrix:

Observation	matrices:

P00 =	0.2
E	=	“a”

P10 =	0.3
E	=	“b”

P11 =	0.7
E	=	“a”

P01 =	0.8
E	=	“c” 0.2 0.8

0.3 0.7

0.2 0

0 0.7

0 0

0 0.3

0.8 0

0 0

P(“a”|xt) P(“b”|xt) P(“c”|xt)

“forward	algorithm” X=
0

X=
1

P00 =	0.2
E	=	“a”

P10 =	0.3
E	=	“b”

P11 =	0.7
E	=	“a”

P01 =	0.8
E	=	“c”To	compute	𝑃 𝑋$0'|𝑒':$0' ,	recursive	formula	

(similar	to	what	we	did)	

𝑃 𝑋$0'|𝑒':$0' = 𝛼	𝑃 𝑒$0'|𝑋$0' {𝑃 𝑋$0' 𝑥$
rd

𝑃(𝑥$|𝑒':$)

“forward	algorithm” X=
0

X=
1

P00 =	0.2
E	=	“a”

P10 =	0.3
E	=	“b”

P11 =	0.7
E	=	“a”

P01 =	0.8
E	=	“c”To	compute	𝑃 𝑋$0'|𝑒':$0' ,	recursive	formula	

(similar	to	what	we	did)	

𝑃 𝑋$0'|𝑒':$0' = 𝛼	𝑃 𝑒$0'|𝑋$0' {𝑃 𝑋$0' 𝑥$
rd

𝑃(𝑥$|𝑒':$)

Derivation
𝑃 𝑋$0'|𝑒':$0' = 𝑃 𝑋$0'|𝑒':$, 𝑒$0'
= '

a fd|c|fc:d
	𝑃 𝑒$0'|𝑋$0', 𝑒':$ 𝑃 𝑋$0' 𝑒':$ (Bayes)

= 𝛼		𝑃 𝑒$0'|𝑋$0' 𝑃 𝑋$0' 𝑒':$ (Markov	assumption)	

= 𝛼		𝑃 𝑒$0'|𝑋$0' {𝑃 𝑋$0' 𝑥$
rd

𝑃(𝑥$|𝑒':$)

“forward	algorithm” X=
0

X=
1

P00 =	0.2
E	=	“a”

P10 =	0.3
E	=	“b”

P11 =	0.7
E	=	“a”

P01 =	0.8
E	=	“c”

0.2 0.8

0.3 0.7

0.2 0

0 0.7

0 0

0 0.3

0.8 0

0 0

P(“a”|xt) P(“b”|xt)

P(“c”|xt)

To	compute	𝑃 𝑋$0'|𝑒':$0' ,	recursive	formula	
(similar	to	what	we	did)	

𝑃 𝑋$0'|𝑒':$0' = 𝛼	𝑃 𝑒$0'|𝑋$0' {𝑃 𝑋$0' 𝑥$
rd

𝑃(𝑥$|𝑒':$)

Or	in	matrix	form,	if	𝑓$ is	the	vector	of	f< x = 	𝑃 𝑋$ = 𝑥, 𝑒':$:	

𝑓$0' = 𝛼	𝑂$0'𝑇~𝑓$

𝑂𝑡 - observation	matrix	corresponding	to	Et.	
𝛼 - normalizing	constant	to	1	(equal	to	 '

a(fc:d)
).

“backward	algorithm” X=
0

X=
1

P00 =	0.2
E	=	“a”

P10 =	0.3
E	=	“b”

P11 =	0.7
E	=	“a”

P01 =	0.8
E	=	“c”

0.2 0.8

0.3 0.7

0.2 0

0 0.7

0 0

0 0.3

0.8 0

0 0

P(“a”|xt) P(“b”|xt)

P(“c”|xt)

Let	b$ is	the	vector	of	𝑏�:< x = 	𝑃 𝑒1:$, 𝑋1&' :	

𝑏10':$ = 𝑇	𝑂10'𝑏10.:$

𝑂𝑡 - observation	matrix	corresponding	to	Et.	

Summary

• HMMs	- useful	to	model	time-dependent	variables	/	problems	(e.g.	
treating	patients	with	changing	biometrics	over	time)

• Example	- text	tagging

• Viterbi	algorithm	(dynamic	programming)	to	find	the	most	likely	
assignment	to	the	hidden	variables.	
(assuming	the	transition	probabilities	are	known)

• Independence	assumptions	allow	“forward”	+	“backward”	computations	of	
conditional	probabilities

