Parallel Collections

COS 326
 David Walker

Princeton University

Credits:

Dan Grossman, UW

http://homes.cs.washington.edu/~djg/teachingMaterials/spac Blelloch, Harper, Licata (CMU, Wesleyan)
slides copyright 2013-2015 David Walker and Andrew W. Appel permission granted to reuse these slides for non-commercial educational purposes

Last Time: Parallel Programming Disciplines

- Programming with shared mutable data
- Very hard! Had to remember to:
- acquire and release locks in the right places
- acquire locks in the right order
- once you are done writing your program, how do you test it?
- how do you verify you haven't made a mistake?
- With pure functional code and parallel futures, many error modes disappear
- Are there more great abstractions like futures?
- you betcha!

What if you had a really big job to do?

- Eg: Create an index of every web page on the planet.
- Google does that regularly!
- There are billions of them!
- Eg: search facebook for a friend or twitter for a tweet
- To get big jobs done, we typically need to harness 1000s of computers at a time, but:
- how do we distribute work across all those computers?
- you definitely can't use shared memory parallelism because the computers don't share memory!
- when you use 1 computer, you just hope it doesn't fail. If it does, you go to the store, buy a new one and restart the job.
- when you use 1000s of computers at a time, failures become the norm. what to do when 1 of 1000 computers fail. Start over?

Big Jobs ---> Better Abstractions

Need high-level interfaces to shield application programmers from the complex details. Complex implementations solve the problems of distribution, fault tolerance and performance.

Common abstraction: Parallel collections

Example collections: sets, tables, dictionaries, sequences Example bulk operations: create, map, reduce, join, filter

PARALLEL SEQUENCES

Parallel Sequences

- Parallel sequences

$$
<\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3, \ldots, \mathrm{en}>
$$

- Operations:
- creation (called tabulate)
- indexing an element in constant span
- map
- scan -- like a fold: <u, u + e1, u +e1 +e2, ...> log n span!
- Languages:
- Nesl [Blelloch]
- Data-parallel Haskell

Parallel Sequences: Selected Operations

```
tabulate : (int -> 'a) -> int -> 'a seq
tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)
```


Parallel Sequences: Selected Operations

```
tabulate : (int -> 'a) -> int -> 'a seq
tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)
```

nth : 'a seq -> int -> 'a
nth <e0, e1, ..., e(n-1)> i == ei
work $=O(1) \quad$ span $=O(1)$

Parallel Sequences: Selected Operations

```
tabulate : (int -> 'a) -> int -> 'a seq
tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)
```

```
nth : 'a seq -> int -> 'a
nth <e0, e1, ..., e(n-1)> i == ei
work = O(1) span = O(1)
```

length : 'a seq -> int
length $<e 0, e 1, \ldots, e(n-1)>==n$
work $=O(1) \quad \operatorname{span}=O(1)$

Problems

(1) Write a function that creates the sequence $<0, \ldots, n-1>$ with Span $=O(1)$ and Work $=O(n)$.
(2) Write a function such that given a sequence <v0, ..., vn-1>, maps fover each element of the sequence with Span $=0(1)$ and Work $=O(n)$, returning the new sequence (if f is constant work)
(3) Write a function such that given a sequence <v1, ..., vn-1>, reverses the sequence. with $\operatorname{Span}=O(1)$ and Work $=O(n)$

Operations:
Try it!

		Work	Span
tabulate f n	n	1	
nth i s		1	1
length s		1	1

Solutions

(* create $n=<0,1, \ldots, n-1\rangle *$)
let create $\mathrm{n}=$
(* map $f<v 0, \ldots, v n-1\rangle==\langle f v 0, \ldots, f v n-1\rangle *$)
let $\operatorname{map} \mathrm{f} \mathrm{s}=$
(* reverse <vo, ..., vn-1> == <vn-1, ..., vo> *)
let reverse $s=$

Solutions

(* create $n=<0,1, \ldots, n-1\rangle *$)
let create $\mathrm{n}=$ tabulate (fun i $->$ i) n
(* map $f<v 0, \ldots, v n-1\rangle==\langle f v 0, \ldots, f v n-1\rangle *$)
let $\operatorname{map} \mathrm{f}=$
(* reverse <vo, ..., vn-1> == <vn-1, ..., vo> *)
let reverse $s=$

Solutions

(* create $n=<0,1, \ldots, n-1\rangle *$)
let create $\mathrm{n}=$
tabulate (fun i -> i) n
(* map $f<v 0, \ldots, \operatorname{vn}-1\rangle==\langle f v 0, \ldots, f v n-1\rangle *$)
let map f s =
tabulate (fun i $->$ nth s i) (length s)
(* reverse <vo, ..., vn-1> == <vn-1, ..., vo> *)
let reverse $s=$

Solutions

(* create $n=<0,1, \ldots, n-1\rangle *$)
let create $\mathrm{n}=$
tabulate (fun i -> i) n
(* map $f<v 0, \ldots, v n-1>==\langle f v 0, \ldots, f v n-1>*$)
let map f $\mathrm{s}=$ tabulate (fun i $->$ nth s i) (length s)
(* reverse <vo, ..., vn-1> == <vn-1, ..., vo> *)
let reverse $s=$
let $\mathrm{n}=$ length s in
tabulate (fun $i \rightarrow n$ nh $s(n-i-1)) n$

One more problem

- Consider the problem of determining whether a sequence of parentheses is balanced or not. For example:
- balanced: ()()(())
- not balanced: (or) or ()))
- Try formulating a divide-and-conquer parallel algorithm to solve this problem efficiently:

```
type paren = L | R (* L(eft) or R(ight) paren *)
let balanced (ps : paren list) : bool = ...
```

- You will need another function on sequences:

```
(* split s n divides s in to (s1, s2) such that s1 is
    the first n elements of s and s2 is the rest
    Work = O(n) Span = O(1) *)
split : 'a sequence -> int -> 'a sequence * 'a sequence
```


A Parallel Sequence API

```
type 'a seq
tabulate : (int -> 'a) -> int -> 'a seq
length : 'a seq -> int
nth : 'a seq -> int -> 'a
```

append : 'a seq -> 'a seq -> 'a seq

```
append : 'a seq -> 'a seq -> 'a seq
split : 'a seq -> int -> 'a seq * 'a seq O(N)
```

split : 'a seq -> int -> 'a seq * 'a seq O(N)

```
```

O(N+M)

For efficient implementations, see Blelloch's NESL project: http://www.cs.cmu.edu/~scandal/nesl.html

Fold and Reduce

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:
sum:

Fold and Reduce

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

Fold and Reduce

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

Fold and Reduce

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

let sum_all (l:int list) = reduce (+) 0 l

Fold and Reduce

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:


```
let sum_all (l:int list) = reduce (+) 0 l
```

Key to parallelization: Notice that because sum is an associative operator, we do not have to add the elements strictly left-to-right:

$$
((((\text { init }+v 1)+v 2)+v 3)+v 4)+v 5)==((\text { init }+v 1)+v 2)+((v 3+v 4)+v 6)
$$

Side Note

The key is associativity:
$(((($ init $+v 1)+v 2)+v 3)+v 4)+v 5)=(($ init $+v 1)+v 2)+((v 3+v 4)+v 6)$
add on processor 1 add on processor 2

Commutativity allows us to reorder the elements:

$$
\mathrm{v} 1+\mathrm{v} 2==\mathrm{v} 2+\mathrm{v} 1
$$

But we don't have to reorder elements to obtain a significant speedup; we just have to reorder the execution of the operations.

Parallel Sum

2	7	4	3	9	8	2	1

Parallel Sum

Splitting Sequences

```
type 'a treeview =
    Empty
    | One of 'a
    | Pair of 'a seq * 'a seq
let show tree (s:'a seq) : 'a treeview =
    match length s with
        0 -> Empty
    | 1 -> One (nth s 0)
    | n -> Pair (split s (n/2))
```


Parallel Sum

```
let rec psum (s : int seq) : int =
    match treeview s with
        Empty -> 0
    | One v -> v
    | Pair (s1, s2) ->
        let (n1, n2) = both psum s1
        psum s2 in
        n1 + n2
```


Parallel Reduce

If op is associative and the base case has the properties:

$$
\text { op base } X==X \quad \text { op } X \text { base }==X
$$

then the parallel reduce is equivalent to the sequential left-to-right fold.

Parallel Reduce

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) = match treeview s with

Empty -> base
| One v -> f base v
| Pair (si, sh) ->
let $(\mathrm{n} 1, \mathrm{n} 2)=$ both reduce s 1 reduce se in
f nl n2

Parallel Reduce

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) = match treeview s with

Empty -> base
| One v -> f base v
| Pair (si, sh) ->
let $(\mathrm{n} 1, \mathrm{n} 2)=$ both reduce s 1 reduce s2 in
f nl n2
let sum $s=$ reduce $(+) 0$ s

A little more general

```
let rec mapreduce (inject: 'a -> 'b)
    (combine:'b -> 'b -> 'b)
    (base:'b)
    (s:'a seq) =
```

match treeview s with
Empty -> base
| One v -> inject v
| Pair (s1, s2) ->
let $(r 1, r 2)=$ both mapreduce s1
mapreduce s2 in
combine r1 r2

A little more general

let rec mapreduce (inject: 'a $->$ 'b)
(combine:'b -> 'b -> 'b)
(base:'b)
(s:'a seq) =
match treeview s with
Empty -> base
| One v -> inject v
| Pair (s1, s2) ->
$\begin{aligned} \text { let }(r 1, r 2)=\text { both } & \text { mapreduce } s 1 \\ & \text { mapreduce } s 2 \text { in }\end{aligned}$
combine r1 r2
let count $s=$ mapreduce (fun $x->1)(+) 0 \mathrm{~s}$

A little more general

let rec mapreduce (inject: 'a $->$ 'b)
(combine:'b -> 'b -> 'b)
(base:'b)
(s:'a seq) =
match treeview s with
Empty -> base
| One v -> inject v
| Pair (si, sh) ->
let $(r 1, r 2)=$ both mapreduce si
mapreduce $s 2$ in
combine ri ra
let count $s=$ mapreduce (fun $x->1)(+) 0 \mathrm{~s}$
let average $s=$
let (count, total) =
mapreduce (fun $x->(1, x)$)
(fun (c1,t1) (c2,t2) -> (c1+c2, ti + th))
$(0,0) \mathrm{s}$ in
if count $=0$ then 0 else total / count

Parallel Reduce with Sequential Cut-off

When data is small, the overhead of parallelization isn't worth it. You should revert to the sequential version.

```
type 'a treeview =
    Small of 'a seq | Big of 'a treeview * 'a treeview
let show_tree (s:'a seq) : 'a treeview =
    if length s < sequential_cutoff then
        Small s
    else
        Big (split s (n/2))
```

let rec reduce f base $s=$
match treeview s with
Small s -> sequential_reduce f base s
| Big (si, si) ->
let (ni, n2) = both reduce si
reduce s2 in
f ni ne

BALANCED PARENTHESES

The Balanced Parentheses Problem

Consider the problem of determining whether a sequence of parentheses is balanced or not. For example:

- balanced: ()()())
- not balanced: (
- not balanced:)
- not balanced: ()))

We will try formulating a divide-and-conquer parallel algorithm to solve this problem efficiently:

```
type paren = L | R (* L(eft) or R(ight) paren *)
let balanced (ps : paren seq) : bool = ...
```


First, a sequential approach

fold from left to right, keep track of \# of unmatched right parens

First, a sequential approach

fold from left to right, keep track of \# of unmatched right parens

1	1	1	1	1	1	1	1

$0 \quad 1$

First, a sequential approach

fold from left to right, keep track of \# of unmatched right parens

First, a sequential approach

fold from left to right, keep track of \# of unmatched right parens

First, a sequential approach

fold from left to right, keep track of \# of unmatched right parens

First, a sequential approach

fold from left to right, keep track of \# of unmatched right parens

too many right parens indicates no match

First, a sequential approach

if you reach the end of the end of the sequence, you should have no unmatched left parens

Easily Coded Using a Fold


```
let rec fold f b s =
    let rec aux n accum =
        if n >= length s then
            accum
        else
            aux (n+1) (f (nth s n) accum)
    in
    aux 0 b
```


Easily Coded Using a Fold

(* check to see if we have too many unmatched R parens
so_far : number of unmatched parens so far or None if we have seen too many R parens
*)
let check (p:paren) (so_far:int option) : int option = match (p, so_far) with
(_, None) -> None
(L, Some c) -> Some (c+1)
(R, Some 0) -> None (* violation detected *)
(R , Some c) -> Some ($\mathrm{c}-1$)

Easily Coded Using a Fold

let fold f base s = ...
let check so_far s = ...
let balanced (s: paren seq) : bool = match fold check (Some O) s with Some 0 -> true
| (None | Some n) -> false

Parallel Version

- key insights
- if you find () in a sequence, you can delete it without changing the balance

Parallel Version

- key insights
- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:
-))) ... j ...))) (((... k ... (((

Parallel Version

- key insights
- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:
-))) ... j ...))) (((... k ... (((
- for divide-and-conquer, splitting a sequence of parens is easy

Parallel Version

- key insights
- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:
-))) ... j ...))) (((... k ... ((
- for divide-and-conquer, splitting a sequence of parens is easy
- combining two sequences where we have deleted all ():
-))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

Parallel Version

- key insights
- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:
-))) ... j ...))) (((... k ... (((
- for divide-and-conquer, splitting a sequence of parens is easy
- combining two sequences where we have deleted all ():
-))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((
- if $x>k$ then))) ... j ...)))))) ... $x-k$...))) (((... y ... (((

Parallel Version

- key insights
- if you find () in a sequence, you can delete it without changing the balance
- if you have deleted all of the pairs (), you are left with:
-))) ... j ...))) (((... k ... ((
- for divide-and-conquer, splitting a sequence of parens is easy
- combining two sequences where we have deleted all ():
-))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((
- if $x>k$ then))) ... j ...)))))) ... $x-k$...))) (((... y ... (((
- if $x<k$ then))) ... j ...))) (((... k-x ... (((((... y ... ((

Parallel Matcher

(* delete all () and return the (j, k) corresponding to:
))) ... j ...))) (((. . . k ... (((
*)
let rec matcher $s=$ match show tree s with Empty -> (0, 0)
| One L -> (0, 1)
| One R -> (1, 0)
| Pair (left, right) ->
let $(j, k),(x, y)=$ both matcher left matcher right in
if $x>k$ then
$(j+(x-k), y)$
else
(j, (kex) $+y$)

Parallel Matcher

(* delete all () and return the (j, k) corresponding to:
))) ... j ...))) (((... k ... (((
*)
let rec matcher $s=$ match show_tree s with Empty -> (0, 0)
| One L -> (0, 1)
| One R -> (1, 0)
| Pair (left, right) ->
let $(j, k),(x, y)=b o t h$ matcher left matcher right
if $x>k$ then
$(j+(x-k), y)$
else
(j, (kex) $+y$)

Parallel Balance

(* *)
let matcher $s=$...
(* true if s is a sequence of balanced parens *)
let balanced $s=$
match matcher s with
$\mid(0,0)->$ true
(i,j) $->$ false
Work: O(N)
Span: O(log N)

Using a Parallel Fold

let rec mapreduce(inject: 'a -> 'b)
let inject pare = match paren with

$$
\begin{aligned}
& \quad L \quad \rightarrow(0,1) \\
& \mid \\
& \text { R } \rightarrow(1,0)
\end{aligned}
$$

let combine (j,k) (x,y) =

$$
\begin{array}{ll}
\text { if } x>k \text { then }(j+(x-k), y) \\
\text { else } & (j,(k-x)+y)
\end{array}
$$

let balanced s = match mapreduce inject combine $(0,0)$ s with | (0,0) -> true
| (i,j) -> false

Using a Parallel Fold

let rec mapreduce(inject: 'a -> 'b) (combine:'b $->\quad$ 'b $b>\quad$ 'b) (base:'b)
(s:'a seq) = ...
let inject paren = match paren with

L $->(0,1)$
$\mid R->(1,0)$
For correctness, check the associativity of combine
also check:

combine base $(\mathrm{i}, \mathrm{j})==(\mathrm{i}, \mathrm{j})$

let combine $(j, k)(x, y)=$

$$
\begin{array}{ll}
\text { if } x>k \text { then } & (j+(x-k), y) \\
\text { else } & (j,(k-x)+y)
\end{array}
$$

let balanced $s=$ match mapreduce inject combine $(0,0)$ s with | (0,0) $->$ true
| (i,j) -> false

Hey, wait a minute...

- key insights
- if you find () in a sequence, you can delete it without changing the balance
- if you have d

Dang! All that stuff about deleting parens seems complicated.
I liked the other way better, scanning from left to right, incrementing/ decrementing the count.

- for divide-ar
- combining
$-1)) \ldots j \ldots))(((\ldots \quad 0 \quad 1 \quad 2 \quad 1 \quad 0 \quad-1!!$
- if $x>k$ then))) ... j ...)))))) ... $x-k$...))) (((... y ... (((
- if $x<k$ then))) ... j ...))) (((... k-x ... (((((... y ... (()

A nicer solution

let rec mapreduce (inject: 'a -> 'b) (combine:'b -> 'b -> 'b)
(base:'b)
(s:'a seq) = ...

let check (p:paren) (so_far:int option) : int option = match (p, so_far) with
(_, None) -> None
| (L, Some c) -> Some (c+1)
| (R, Some 0) -> None
| (R, Some C) -> Some (c-1)

A nicer solution

let rec mapreduce (inject: 'a -> 'b) (combine:'b -> 'b -> 'b) (base:'b) (s:'a seq) = ...
type $t=i n t$ option $->$ int option
let inject: paren $->t=$ (*you fill in the blanks!*)

let base: $t=\quad(*$ you fill in the blanks!*)
let finish: $t \rightarrow$ bool $=$ (* you fill in the blanks!*)
let balanced (s: paren seq) = finish (mapreduce inject combine base)

A nicer solution

```
let rec mapreduce(inject: 'a -> 'b)
    (combine:'b -> 'b -> 'b)
    (base:'b)
    (s:'a seq) = ...
type t = int option -> int option
let inject: paren -> t = check
let combine: t -> t -> t = funfgx }->\textrm{f}(\textrm{gx})\quad(*\mathrm{ compose*)
let base: t = fun }x->
let finish: t -> bool =
        fun f }->\mathrm{ match (f (Some 0)) with Some 0 true | _ false
let balanced (s: paren seq) =
    finish (mapreduce inject combine base)
```


A nicer solution

```
let ren maned, si, 'a -> 'b)
        check the associativity
                of combine -
                        super easy! also check: combine base \(\mathrm{x}=\mathrm{x}\) super easy!
type t = int option -> int option
let inject: paren -> t = check
let combine: t -> t -> t = funfgx f f(gx) (* compose*)
let base: t = fun }x->
let finish: t -> bool =
    fun f }->\mathrm{ match (f (Some 0)) with Some 0 }->\mathrm{ true |_ }->\mathrm{ false
let balanced (s: paren seq) =
    finish (mapreduce inject combine base)
```


The "nicer solution" is beautiful but useless

mapreduce computes, efficiently, in parallel, a big function composition; then the "finish" function runs that function, which is when all the computation takes place, SEQUENTIALLY!

Double Dang!

type $t=i n t$ option -> int option
let inject: paren -> $t=$ check
let combine: t -> t -> $\mathrm{t}=\mathrm{funfgx} \mathrm{f}(\mathrm{gx}) \quad$ (* compose *)
let base: $t=\quad$ fun $x \rightarrow x$
let finish: t -> bool =
fun $\mathrm{f} \rightarrow$ match (f (Some 0)) with Some $0 \rightarrow$ true $\left.\right|_{-} \rightarrow$ false
let balanced (s: paren seq) = finish (mapreduce inject combine base)

Exercise

Let s be a sequence of "digits" :

$$
s=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 \\
\hline
\end{array}
$$

Compute the decimal value of s :
inject: int -> int $=$ fun $d->d$
combine (v : int) (d : int) $=v^{*} 10+d$
base $=0$
combine (combine (combine (combine 0 3) 1) 4) 1 == 3141

Now, compute really fast in parallel: mapreduce inject combine base $s==31415926$, right?

Exercise

Let s be a sequence of "digits" :

$$
\mathrm{s}=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 \\
\hline
\end{array}
$$

Compute the decimal value of s :
inject: int -> int $=$ fun $d->d$
combine (v : int) (d : int) $=v^{*} 10+d$ base $=0$

combine (combine (combine (combine 03) 1) 4) $1=3141$

Now, compute really fast in parallel: mapreduce inject combine base $s==31415926$, right?

Another Exercise

$\sum_{i=0}^{n-1} f(i)$

$$
f: \text { int } \rightarrow \text { float }
$$

inject: int -> float $=\mathrm{f}$
combine (x : float) $(y$: float) $=x+. y$
 base $=0$.

Now, compute really fast in parallel: mapreduce inject combine base s

Floating-point addition is not associative!

Consider 6-digit mantissas:

$.100000 \times 10^{0}$	$.400000 \times 10^{-6}$
$.0000004 \times 10^{0}$	$.400000 \times 10^{-6}$
$.000000 \times 10^{0}$	$.800000 \times 10^{-6}$

$((.100000+.0000004)+.0000004)+.0000004=.100000$
$.100000+(.0000004+(.0000004+.0000004))=.100001$

For some summations, this matters a lot!
In other cases, it doesn't matter.
So we can't tell whether there's a bug in the program.

PARALLEL SCAN AND PREFIX SUM

The prefix-sum problem

Sum of Sequence:

input | 6 | 4 | 16 | 10 | 16 | 14 | 2 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

output 76

Prefix-Sum of Sequence:

input | 6 | 4 | 16 | 10 | 16 | 14 | 2 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

output | 6 | 10 | 26 | 36 | 52 | 66 | 68 | 76 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The prefix-sum problem

val prefix_sum : int seq -> int seq

input | 6 | 4 | 16 | 10 | 16 | 14 | 2 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

output | 6 | 10 | 26 | 36 | 52 | 66 | 68 | 76 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The simple sequential algorithm: accumulate the sum from left to right

- Sequential algorithm: Work: $O(n)$, Span: $O(n)$
- Goal: a parallel algorithm with Work: O(n), Span: O(log n)

Parallel prefix-sum

The trick: Use two passes

- Each pass has $O(n)$ work and $O(\log n)$ span
- So in total there is $O(n)$ work and $O(\log n)$ span

First pass builds a tree of sums bottom-up

- the "up" pass

Second pass traverses the tree top-down to compute prefixes

- the "down" pass computes the "from-left-of-me" sum

Historical note:

- Original algorithm due to R. Ladner and M. Fischer, 1977

Example

input

6	4	16	10	16	14	2	8

output \square

Example

input

6	4	16	10	16	14	2	8
6	10	26	36	52	66	68	76

The algorithm, pass 1

1. Up: Build a binary tree where

- Root has sum of the range $[\mathbf{x}, \mathbf{y})$
- If a node has sum of [lo,hi) and hi>lo,
- Left child has sum of [lo, middle)
- Right child has sum of [middle, hi)
- A leaf has sum of [i,i+1), i.e., nth input i

This is an easy parallel divide-and-conquer algorithm: "combine" results by actually building a binary tree with all the range-sums

- Tree built bottom-up in parallel

Analysis: $O(n)$ work, $O(\log n)$ span

The algorithm, pass 2

2. Down: Pass down a value fromLeft

- Root given a fromLeft of 0
- Node takes its fromLeft value and
- Passes its left child the same fromLeft
- Passes its right child its fromLeft plus its left child's sum
- as stored in part 1
- At the leaf for sequence position i,
- nth output i $==$ fromLeft + nth input i

This is an easy parallel divide-and-conquer algorithm: traverse the tree built in step 1 and produce no result

- Leaves create output
- Invariant: fromLeft is sum of elements left of the node's range

Analysis: $O(n)$ work, $O(\log n)$ span

Sequential cut-off

For performance, we need a sequential cut-off:

- Up:
- just a sum, have leaf node hold the sum of a range
- Down:
- do a sequential scan

Parallel prefix, generalized

Just as map and reduce are the simplest examples of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems

- Minimum, maximum of all elements to the left of i
- Is there an element to the left of i satisfying some property?
- Count of elements to the left of i satisfying some property
- This last one is perfect for an efficient parallel filter ...
- Perfect for building on top of the "parallel prefix trick"

Parallel Scan

scan (o) <x1, ..., xn>
=
<x1, x1 o x2, ..., x1 o ... o xn>
like a fold, except return the folded prefix at each step
pre_scan (o) base <x1, ..., xn>
=
<base, base o x1, ..., base o x1 o ... o xn-1>

sequence with o applied to all items to the left of index in input

Parallel Filter

Given a sequence input, produce a sequence output containing only elements v such that ($£ \mathrm{v}$) is true

Example: let $\mathrm{f} x=\mathrm{x}>10$

$$
\begin{aligned}
& f i l t e r f<17,4,6,8,11,5,13,19,0,24> \\
= & <17,11,13,19,24\rangle
\end{aligned}
$$

Parallelizable?

- Finding elements for the output is easy
- But getting them in the right place seems hard

Parallel prefix to the rescue

Use parallel map to compute a bit-vector for true elements:

$$
\begin{aligned}
& \text { input }<17,4,6,8,11,5,13,19,0,24\rangle \\
& \text { bits }<1,0,0,0,1,0,1,1,0,1\rangle
\end{aligned}
$$

Use parallel-prefix sum on the bit-vector:

$$
\text { bitsum }<1,1,1,1,2,2,3,4,4,5>
$$

For each i, if bits[$[i]==1$ then write input $[i]$ to output[bitsum[i]] to produce the final result:
output <17, 11, 13, 19, 24>

QUICKSORT

Quicksort review

Recall quicksort was sequential, in-place, expected time $O(n \log n)$

1. Pick a pivot element Best / expected case work
2. Partition all the data into: O(1)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C
$2 \mathrm{~T}(\mathrm{n} / 2)$

How should we parallelize this?

Quicksort

Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into:

O(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort A and C
$2 \mathrm{~T}(\mathrm{n} / 2)$

Easy: Do the two recursive calls in parallel

- Work: unchanged. Total: $O(n \log n)$
- Span: now $T(n)=O(n)+1 T(n / 2)=O(n)$

Doing better

As with mergesort, we get a $O(\log n)$ speed-up with an infinite number of processors. That is a bit underwhelming

- Sort 10^{9} elements 30 times faster
(Some) Google searches suggest quicksort cannot do better because the partition cannot be parallelized
- The Internet has been known to be wrong $)$
- But we need auxiliary storage (no longer in place)
- In practice, constant factors may make it not worth it

Already have everything we need to parallelize the partition...

Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

This is just two filters!

- We know a parallel filter is $O(n)$ work, $O(\log n)$ span
- Parallel filter elements less than pivot into left side of aux array
- Parallel filter elements greater than pivot into right size of aux array
- Put pivot between them and recursively sort

With $O(\log n)$ span for partition, the total best-case and expectedcase span for quicksort is

$$
\mathrm{T}(n)=O(\log n)+1 \mathrm{~T}(n / 2)=O\left(\log ^{2} n\right)
$$

Example

Step 1: pick pivot as median of three

8	1	4	9	0	3	5	2	7	6

Steps 2a and 2c (combinable): filter less than, then filter greater than into a second array

Step 3: Two recursive sorts in parallel

- Can copy back into original array (like in mergesort)

More Algorithms

- To add multiprecision numbers.
- To evaluate polynomials
- To solve recurrences.
- To implement radix sort
- To delete marked elements from an array
- To dynamically allocate processors
- To perform lexical analysis. For example, to parse a program into tokens.
- To search for regular expressions. For example, to implement the UNIX grep program.
- To implement some tree operations. For example, to find the depth of every vertex in a tree
- To label components in two dimensional images.

See Guy Blelloch "Prefix Sums and Their Applications"

Summary

- Parallel prefix sums and scans have many applications
- A good algorithm to have in your toolkit!
- Key idea: An algorithm in 2 passes:
- Pass 1: build a "reduce tree" from the bottom up
- Pass 2: compute the prefix top-down, looking at the leftsubchild to help you compute the prefix for the right subchild

PARALLEL COLLECTIONS IN THE "REAL WORLD"

Big Data

If Google wants to index all the web pages (or images or gmails or google docs or ...) in the world, they have a lot of work to do

- Same with Facebook for all the facebook pages/entries
- Same with Twitter
- Same with Amazon
- Same with ...

Many of these tasks come down to map, filter, fold, reduce, scan

FScala

Parallel Collections with Scala

The Bloom Programming Language

LINQ

Google Map-Reduce

Google MapReduce (2004): a fault tolerant, massively parallel functional programming paradigm

- based on our friends "map" and "reduce"
- Hadoop is the open-source variant
- Database people complain that they have been doing it for a while
- ... but it was hard to define

Fun stats circa 2012:

- Big clusters are ~ 4000 nodes
- Facebook had 100 PB in Hadoop
- TritonSort (UCSD) sorts 900GB/minute on a 52-node, 800-disk hadoop cluster

Data Model \& Operations

- Map-reduce operates over collections of key-value pairs
- millions of files (eg: web pages) drawn from the file system
- The map-reduce engine is parameterized by 3 functions:

Architecture

Iterative Jobs are Common

A Modern Software Stack

Workload Manager

High-level scripting language

The Control Plane

Flow of Information

Jobs, Tasks and Attempts

- A single job is split in to many tasks
- Each task may include many calls to map and reduce
- Workers are long-running processes that are assigned many tasks
- Multiple workers may attempt the same task
- each invocation of the same task is called an attempt
- the first worker to finish "wins"
- Why have multiple machines attempt the same task?
- machines will fail
- approximately speaking: 5\% of high-end disks fail/year
- if you have 1000 machines: 1 failure per week
- repeated failures become the common case
- machines can partially fail or be slow for some reason
- reducers can't start until all mappers complete

Sort-of Functional Programming in Java

Hadoop interfaces:

```
interface Mapper<K1,V1,K2,V2> {
    public void map (K1 key,
    V1 value,
    OutputCollector<K2,V2> output)
```

interface Reducer<K2,V2,K3,V3> \{
public void reduce (K2 key,
Iterator<V2> values,
OutputCollector<K3,V3> output)
\}

Word Count in Java

```
class WordCountMap implements Map {
    public void map(DocID key
                                List<String> values,
                                OutputCollector<String,Integer> output)
    {
        for (String s : values)
        output.collect(s,1);
    }
}
```

class WordCountReduce \{
public void reduce(String key,
Iterator<Integer> values,
OutputCollector<String,Integer> output)
\{
int count $=0$;
for (int v : values)
count += 1;
output.collect(key, count)
\}

Summary

Folds and reduces are easily coded as parallel divide-andconquer algorithms with $\mathrm{O}(\mathrm{N})$ work and $\mathrm{O}(\log n)$ span

Scans are trickier and use a 2-pass algorithm that builds a tree.

The map-reduce-fold paradigm, inspired by functional programming, is a big winner when it comes to big data processing.

Hadoop is an industry standard but higher-level data processing languages have been built on top.

END

