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Last	Time:	Parallel	Programming	Disciplines	
•  Programming	with	shared	mutable	data	
•  Very	hard!		Had	to	remember	to:	

–  acquire	and	release	locks	in	the	right	places	
–  acquire	locks	in	the	right	order	
–  once	you	are	done	wri*ng	your	program,	how	do	you	test	it?	
–  how	do	you	verify	you	haven't	made	a	mistake?	

•  With	pure	func*onal	code	and	parallel	futures,	many	error	
modes	disappear	

•  Are	there	more	great	abstrac*ons	like	futures?	
–  you	betcha!	



What	if	you	had	a	really	big	job	to	do?	
•  Eg:	Create	an	index	of	every	web	page	on	the	planet.	

–  Google	does	that	regularly!	
–  There	are	billions	of	them!	

•  Eg:	search	facebook	for	a	friend	or	twi8er	for	a	tweet	
•  To	get	big	jobs	done,	we	typically	need	to	harness	1000s	of	

computers	at	a	*me,	but:	
–  how	do	we	distribute	work	across	all	those	computers?	
–  you	definitely	can't	use	shared	memory	parallelism	because	the	
computers	don't	share	memory!	

–  when	you	use	1	computer,	you	just	hope	it	doesn't	fail.		If	it	
does,	you	go	to	the	store,	buy	a	new	one	and	restart	the	job.	

–  when	you	use	1000s	of	computers	at	a	*me,	failures	become	
the	norm.		what	to	do	when	1	of	1000	computers	fail.		Start	
over?	



Big	Jobs	--->	Be8er	Abstrac*ons	

Need	high-level	interfaces	to	shield	applica*on	programmers	
from	the	complex	details.		Complex	implementa*ons	solve	the	
problems	of	distribu*on,	fault	tolerance	and	performance.	
	
Common	abstrac*on:		Parallel	collec*ons	
	
Example	collec*ons:		sets,	tables,	dic*onaries,	sequences	
Example	bulk	opera*ons:		create,	map,	reduce,	join,	filter	

	
	
	
	
	
	
	



PARALLEL	SEQUENCES	



Parallel	Sequences	
•  Parallel	sequences	

	
•  Opera*ons:	

–  crea*on	(called	tabulate)	
–  indexing	an	element	in	constant	span	
–  map	
–  scan	--	like	a	fold:	<u,	u	+	e1,	u	+	e1	+	e2,	...>		log	n	span!	

•  Languages:	
–  Nesl	[Blelloch]	
–  Data-parallel	Haskell	

<	e1	,	e2	,	e3	,	...	,	en	>	



Parallel	Sequences:	Selected	Opera*ons	

tabulate : (int -> 'a) -> int -> 'a seq 
 
tabulate f n  == <f 0, f 1, ..., f (n-1)> 
work = O(n)   span = O(1) 
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tabulate f n  == <f 0, f 1, ..., f (n-1)> 
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Parallel	Sequences:	Selected	Opera*ons	

tabulate : (int -> 'a) -> int -> 'a seq 
 
tabulate f n  == <f 0, f 1, ..., f (n-1)> 
work = O(n)   span = O(1) 

nth : 'a seq -> int -> 'a 
 
nth <e0, e1, ..., e(n-1)> i == ei 
work = O(1)  span = O(1) 

length : 'a seq -> int 
 
length <e0, e1, ..., e(n-1)> == n 
work = O(1)  span = O(1) 



Problems	
(1)	Write	a	func*on	that	creates	the	sequence	<0,	...,	n-1>	
with	Span	=	O(1)	and	Work	=	O(n).	
	
(2)	Write	a	func*on	such	that	given	a	sequence	<v0,	...,	vn-1>,			
maps	f	over	each	element	of	the	sequence	with	Span	=	O(1)	and		
Work	=	O(n),	returning	the	new	sequence	(if	f	is	constant	work)	
	
(3)	Write	a	func*on	such	that	given	a	sequence	<v1,	...,	vn-1>,	
reverses	the	sequence.	with	Span	=	O(1)	and	Work	=	O(n)	
	
Try	it!	      Work  Span 

tabulate f n   n     1    
nth i s        1     1 
length s       1     1 

Opera*ons:	



Solu*ons	

(* create n == <0, 1, ..., n-1> *) 
let create n = 
   

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)  
let map f s = 
   

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)  
let reverse s = 
   
   



Solu*ons	

(* create n == <0, 1, ..., n-1> *) 
let create n = 
  tabulate (fun i -> i) n    

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)  
let map f s = 
   

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)  
let reverse s = 
 
 



Solu*ons	

(* create n == <0, 1, ..., n-1> *) 
let create n = 
  tabulate (fun i -> i) n    

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)  
let map f s = 
  tabulate (fun i -> nth s i) (length s) 

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)  
let reverse s = 
 
 



Solu*ons	

(* create n == <0, 1, ..., n-1> *) 
let create n = 
  tabulate (fun i -> i) n    

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)  
let map f s = 
  tabulate (fun i -> nth s i) (length s) 

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)  
let reverse s = 
  let n = length s in 
  tabulate (fun i -> nth s (n-i-1)) n 



One	more	problem	
•  Consider	the	problem	of	determining	whether	a	sequence	of	

parentheses	is	balanced	or	not.		For	example:	
–  balanced:	()()(())	
–  not	balanced:	(	or	)	or	()))		

•  Try	formula*ng	a	divide-and-conquer	parallel	algorithm	to	
solve	this	problem	efficiently:	

	
•  You	will	need	another	func*on	on	sequences:	

type paren = L | R     (* L(eft) or R(ight) paren *) 
 
let balanced (ps : paren list) : bool = ...   

(* split s n divides s in to (s1, s2) such that s1 is 
   the first n elements of s and s2 is the rest  
   Work = O(n) Span = O(1) *) 
split : 'a sequence -> int -> 'a sequence * 'a sequence 



	A	Parallel	Sequence	API	

type 'a seq 
 
tabulate : (int -> 'a) -> int -> 'a seq 
 
length : 'a seq -> int 
 
nth : 'a seq -> int -> 'a 
 
append : 'a seq -> 'a seq -> 'a seq 
 
split : 'a seq -> int -> 'a seq * 'a seq 

O(N)	

Work	 Span	

O(1)	

O(1)	

O(N+M)	

O(N)	

O(1)	

O(1)	

O(1)	

O(1)	

O(1)	

For	efficient	implementa*ons,	see	Blelloch's	NESL	project:	
h8p://www.cs.cmu.edu/~scandal/nesl.html	



Fold	and	Reduce	
We	have	seen	many	sequen*al	algorithms	can	be	programmed	
succinctly	using	fold	or	reduce.		Eg:	sum	all	elements:	

	

	

7	 4	 3	 9	 8	

0	sum:	



Fold	and	Reduce	
We	have	seen	many	sequen*al	algorithms	can	be	programmed	
succinctly	using	fold	or	reduce.		Eg:	sum	all	elements:	

	

	

7	 4	 3	 9	 8	

0	 7	sum:	



Fold	and	Reduce	
We	have	seen	many	sequen*al	algorithms	can	be	programmed	
succinctly	using	fold	or	reduce.		Eg:	sum	all	elements:	

	

	

7	 4	 3	 9	 8	

0	 7	 23	14	11	sum:	 31	



Fold	and	Reduce	
We	have	seen	many	sequen*al	algorithms	can	be	programmed	
succinctly	using	fold	or	reduce.		Eg:	sum	all	elements:	

	

	

let sum_all (l:int list) = reduce (+) 0 l  

7	 4	 3	 9	 8	

0	 7	 23	14	11	sum:	 31	



Fold	and	Reduce	
We	have	seen	many	sequen*al	algorithms	can	be	programmed	
succinctly	using	fold	or	reduce.		Eg:	sum	all	elements:	

	

	
Key	to	paralleliza*on:		No*ce	that	because	sum	is	an	associa&ve	
operator,	we	do	not	have	to	add	the	elements	strictly	ler-to-right:	

let sum_all (l:int list) = reduce (+) 0 l  

7	 4	 3	 9	 8	

0	 7	 23	14	11	sum:	 31	

(((((init	+	v1)	+	v2)	+	v3)	+	v4)	+	v5)		==		((init	+	v1)	+	v2)	+	((v3	+	v4)	+	v6)	

add	on	processor	1	 add	on	processor	2	



Side	Note	

(((((init	+	v1)	+	v2)	+	v3)	+	v4)	+	v5)		==		((init	+	v1)	+	v2)	+	((v3	+	v4)	+	v6)	

add	on	processor	1	 add	on	processor	2	

The	key	is	associa&vity:	

Commuta&vity	allows	us	to	reorder	the	elements:	

v1	+	v2	==		v2	+	v1	

But	we	don't	have	to	reorder	elements	to	obtain	a	significant	speedup;	
we	just	have	to	reorder	the	execu*on	of	the	opera*ons.	



Parallel	Sum	

7	 4	 3	 9	 8	 2	 1	2	



Parallel	Sum	

7	 4	 3	 9	 8	 2	 1	2	

9	 8	 2	 1	7	 4	 3	2	



Parallel	Sum	

7	 4	 3	 9	 8	 2	 1	2	

9	 8	 2	 1	7	 4	 3	2	

2	 1	9	 8	4	 3	7	2	



Parallel	Sum	

7	 4	 3	 9	 8	 2	 1	2	

9	 8	 2	 1	7	 4	 3	2	

2	 1	9	 8	4	 3	7	2	

2	 7	 4	 3	 9	 8	 2	 1	



Parallel	Sum	

3	17	7	9	

2	 7	 4	 3	 9	 8	 2	 1	

+	 +	 +	+	



Parallel	Sum	

2	 7	 4	 3	 9	 8	 2	 1	

+	+	

+	

+	 +	 +	+	

3	17	7	9	

16	 20	

36	



Splitng	Sequences	

type 'a treeview =  
  Empty  
| One of 'a  
| Pair of 'a seq * 'a seq 
 
let show_tree (s:'a seq) : 'a treeview = 
  match length s with 
    0 -> Empty 
  | 1 -> One (nth s 0) 
  | n -> Pair (split s (n/2)) 
 



Parallel	Sum	

let rec psum (s : int seq) : int = 
  match treeview s with 
    Empty -> 0 
  | One v -> v 
  | Pair (s1, s2) ->  
      let (n1, n2) = both psum s1  
                          psum s2 in 
      n1 + n2 



Parallel	Reduce	

7	 4	 3	 9	 8	 2	 1	2	

9	 8	 2	 1	7	 4	 3	2	

2	 1	9	 8	4	 3	7	2	

2	 7	 4	 3	 9	 8	 2	 1	

op		

op		

op		 op		 op		 op		

op		

If	op	is	associa*ve	and	the	base	case	has	the	proper*es:	
				op	base	X	==	X																		op	X	base	==	X	

then	the	parallel	reduce	is	equivalent	to	the	sequen*al	ler-to-right	fold.	



Parallel	Reduce	

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) = 
  match treeview s with 
    Empty -> base 
  | One v -> f base v 
  | Pair (s1, s2) ->  
      let (n1, n2) = both reduce s1  
                          reduce s2 in 
      f n1 n2 



Parallel	Reduce	

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) = 
  match treeview s with 
    Empty -> base 
  | One v -> f base v 
  | Pair (s1, s2) ->  
      let (n1, n2) = both reduce s1  
                          reduce s2 in 
      f n1 n2 

let sum s = reduce (+) 0 s 



A	li8le	more	general	
let rec mapreduce (inject: 'a -> 'b) 
                 (combine:'b -> 'b -> 'b)  
                 (base:'b)  
                 (s:'a seq) = 
  match treeview s with 
    Empty -> base 
  | One v -> inject v 
  | Pair (s1, s2) ->  
      let (r1, r2) = both mapreduce s1  
                          mapreduce s2 in 
      combine r1 r2 



A	li8le	more	general	

let count s = mapreduce (fun x -> 1) (+) 0 s 

let rec mapreduce (inject: 'a -> 'b) 
                 (combine:'b -> 'b -> 'b)  
                 (base:'b)  
                 (s:'a seq) = 
  match treeview s with 
    Empty -> base 
  | One v -> inject v 
  | Pair (s1, s2) ->  
      let (r1, r2) = both mapreduce s1  
                          mapreduce s2 in 
      combine r1 r2 



A	li8le	more	general	

let average s =  
  let (count, total) =  
    mapreduce (fun x -> (1,x)) 
             (fun (c1,t1) (c2,t2) -> (c1+c2, t1 + t2)) 
             (0,0) s in 
  if count = 0 then 0 else total / count        

let count s = mapreduce (fun x -> 1) (+) 0 s 

let rec mapreduce (inject: 'a -> 'b) 
                 (combine:'b -> 'b -> 'b)  
                 (base:'b)  
                 (s:'a seq) = 
  match treeview s with 
    Empty -> base 
  | One v -> inject v 
  | Pair (s1, s2) ->  
      let (r1, r2) = both mapreduce s1  
                          mapreduce s2 in 
      combine r1 r2 



Parallel	Reduce	with	Sequen*al	Cut-off	
When	data	is	small,	the	overhead	of	paralleliza*on	isn't	worth	it.	
You	should	revert	to	the	sequen*al	version.	

type 'a treeview =  
  Small of 'a seq | Big of 'a treeview * 'a treeview 
 
let show_tree (s:'a seq) : 'a treeview = 
  if length s < sequential_cutoff then 
    Small s 
  else 
    Big (split s (n/2)) 
 

let rec reduce f base s = 
  match treeview s with 
    Small s -> sequential_reduce f base s 
  | Big (s1, s2) -> 
      let (n1, n2) = both reduce s1  
                          reduce s2 in 
      f n1 n2 



BALANCED	PARENTHESES	



The	Balanced	Parentheses	Problem	
Consider	the	problem	of	determining	whether	a	sequence	of	
parentheses	is	balanced	or	not.		For	example:	

–  balanced:	()()(())	
–  not	balanced:	(		
–  not	balanced:	)	
–  not	balanced:	()))		

	
We	will	try	formula*ng	a	divide-and-conquer	parallel	algorithm	
to	solve	this	problem	efficiently:	

type paren = L | R     (* L(eft) or R(ight) paren *) 
 
let balanced (ps : paren seq) : bool = ...   



First,	a	sequen*al	approach	

(	 (	 )	 )	 )	 (	 )	 (	

fold	from	ler	to	right,	keep	track	of		
#	of	unmatched	right	parens	

0	



First,	a	sequen*al	approach	

(	 (	 )	 )	 )	 (	 )	 (	

fold	from	ler	to	right,	keep	track	of		
#	of	unmatched	right	parens	

0	 1	



First,	a	sequen*al	approach	

(	 (	 )	 )	 )	 (	 )	 (	

fold	from	ler	to	right,	keep	track	of		
#	of	unmatched	right	parens	

0	 1	 2	



First,	a	sequen*al	approach	

(	 (	 )	 )	 )	 (	 )	 (	

fold	from	ler	to	right,	keep	track	of		
#	of	unmatched	right	parens	

0	 1	 2	 1	



First,	a	sequen*al	approach	

(	 (	 )	 )	 )	 (	 )	 (	

fold	from	ler	to	right,	keep	track	of		
#	of	unmatched	right	parens	

0	 1	 2	 1	 0	



First,	a	sequen*al	approach	

(	 (	 )	 )	 )	 (	 )	 (	

fold	from	ler	to	right,	keep	track	of		
#	of	unmatched	right	parens	

0	 1	 2	 1	 0	 -1!!	

too	many	right	parens	
indicates	no	match	



First,	a	sequen*al	approach	

(	 (	 )	

if	you	reach	the	end	of	
the	end	of	the	sequence,	
you	should	have	no	
unmatched	ler	parens	

0	 1	 2	 1	



Easily	Coded	Using	a	Fold	

let rec fold f b s = 
  let rec aux n accum = 
    if n >= length s then  
      accum 
    else  
      aux (n+1) (f (nth s n) accum) 
  in 
  aux 0 b  

v1	 v2	

b	 f	b	v1		 f	(f	b	v1)	v2	fold:	



Easily	Coded	Using	a	Fold	

(* check to see if we have too many unmatched R parens 
 
   so_far : number of unmatched parens so far  
            or None if we have seen too many R parens 
  
 *) 
 
let check (p:paren) (so_far:int option) : int option = 
  match (p, so_far) with 
    (_, None) -> None 
  | (L, Some c) -> Some (c+1) 
  | (R, Some 0) -> None        (* violation detected *) 
  | (R, Some c) -> Some (c-1) 



Easily	Coded	Using	a	Fold	

let fold f base s = ... 
 
let check so_far s = ... 
 
let balanced (s: paren seq) : bool = 
  match fold check (Some 0) s with 
     Some 0 -> true 
   | (None | Some n) -> false 



Parallel	Version	
•  key	insights	

–  if	you	find	()	in	a	sequence,	you	can	delete	it	without	changing	
the	balance	
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•  )))	...	j	...	)))		(((	...	k	...	(((	
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Parallel	Version	
•  key	insights	

–  if	you	find	()	in	a	sequence,	you	can	delete	it	without	changing	
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Parallel	Version	
•  key	insights	

–  if	you	find	()	in	a	sequence,	you	can	delete	it	without	changing	
the	balance	

–  if	you	have	deleted	all	of	the	pairs	(),	you	are	ler	with:	
•  )))	...	j	...	)))		(((	...	k	...	(((	

•  for	divide-and-conquer,	splitng	a	sequence	of	parens	is	easy	
•  combining	two	sequences	where	we	have	deleted	all	():	

–  )))	...	j	...	)))		(((	...	k	...	(((			)))	...	x	...	)))	(((	...	y	...	(((	

–  if	x	>	k	then	)))	...	j	...	)))		)))	...	x	–	k	...	)))		(((	...	y	...	(((	



Parallel	Version	
•  key	insights	

–  if	you	find	()	in	a	sequence,	you	can	delete	it	without	changing	
the	balance	

–  if	you	have	deleted	all	of	the	pairs	(),	you	are	ler	with:	
•  )))	...	j	...	)))		(((	...	k	...	(((	

•  for	divide-and-conquer,	splitng	a	sequence	of	parens	is	easy	
•  combining	two	sequences	where	we	have	deleted	all	():	

–  )))	...	j	...	)))		(((	...	k	...	(((			)))	...	x	...	)))	(((	...	y	...	(((	

–  if	x	>	k	then	)))	...	j	...	)))		)))	...	x	–	k	...	)))		(((	...	y	...	(((	

–  if	x	<	k	then	)))	...	j	...	)))		(((	...	k	–	x	...	(((		(((	...	y	...	(((	



Parallel	Matcher	

(* delete all () and return the (j, k) corresponding to:  
    
    ))) ... j ... ))) ((( ... k ... (((             
 
 *) 
 
let rec matcher s = 
    match show_tree s with 
      Empty -> (0, 0) 
    | One L -> (0, 1)       
    | One R -> (1, 0)       
    | Pair (left, right) ->  
       let (j, k), (x, y) = both matcher left 
                matcher right    in 
       if x > k then 
         (j + (x – k), y)  
       else 
         (j, (k – x) + y) 

)))	...	j	...	)))		(((	...	k	...	(((				
										)))	...	x	...	)))	(((	...	y	...	(((	



Parallel	Matcher	

(* delete all () and return the (j, k) corresponding to:  
    
    ))) ... j ... ))) ((( ... k ... (((             
 
 *) 
 
let rec matcher s = 
    match show_tree s with 
      Empty -> (0, 0) 
    | One L -> (0, 1)       
    | One R -> (1, 0)       
    | Pair (left, right) ->  
       let (j, k), (x, y) = both matcher left 
                matcher right    in 
       if x > k then 
         (j + (x – k), y)  
       else 
         (j, (k – x) + y) 

Work:	O(N)	
Span:	O(log	N)	



Parallel	Balance	

(*  *) 
let matcher s = ... 
 
(* true if s is a sequence of balanced parens *) 
let balanced s = 
    match matcher s with 
    | (0, 0) -> true 
    | (i,j) -> false 

Work:	O(N)	
Span:	O(log	N)	



Using	a	Parallel	Fold	

let inject paren =  
  match paren with 
    L -> (0, 1) 
  | R -> (1, 0) 
 
let combine (j,k) (x,y) = 
      if x > k then (j + (x – k), y)  
      else          (j, (k – x) + y) 
 
let balanced s = 
    match mapreduce inject combine (0,0) s with 
    | (0, 0) -> true 
    | (i,j) -> false 

let rec mapreduce(inject: 'a -> 'b) 
                 (combine:'b -> 'b -> 'b)  
                 (base:'b)  
                 (s:'a seq) = ... 



Using	a	Parallel	Fold	

let inject paren =  
  match paren with 
    L -> (0, 1) 
  | R -> (1, 0) 
 
let combine (j,k) (x,y) = 
      if x > k then (j + (x – k), y)  
      else          (j, (k – x) + y) 
 
let balanced s = 
    match mapreduce inject combine (0,0) s with 
    | (0, 0) -> true 
    | (i,j) -> false 

let rec mapreduce(inject: 'a -> 'b) 
                 (combine:'b -> 'b -> 'b)  
                 (base:'b)  
                 (s:'a seq) = ... 

For	correctness,	
check	the	associa*vity	

of	combine	

also	check:	
combine	base	(i,j)	==	(i,	j)		



Hey,	wait	a	minute…	
•  key	insights	

–  if	you	find	()	in	a	sequence,	you	can	delete	it	without	changing	
the	balance	

–  if	you	have	deleted	all	of	the	pairs	(),	you	are	ler	with:	
•  )))	...	j	...	)))		(((	...	k	...	(((	

•  for	divide-and-conquer,	splitng	a	sequence	of	parens	is	easy	
•  combining	two	sequences	where	we	have	deleted	all	():	

–  )))	...	j	...	)))		(((	...	k	...	(((			)))	...	x	...	)))	(((	...	y	...	(((	

–  if	x	>	k	then	)))	...	j	...	)))		)))	...	x	–	k	...	)))		(((	...	y	...	(((	

–  if	x	<	k	then	)))	...	j	...	)))		(((	...	k	–	x	...	(((		(((	...	y	...	(((	

Dang!		All	that	stuff	about	dele*ng	
parens	seems	complicated.	

I	liked	the	other	way	be8er,	scanning	
from	ler	to	right,	incremen*ng/

decremen*ng	the	count.	
	
	(	 (	 )	 )	 )	 (	 )	 (	

0	 1	 2	 1	 0	 -1!!	



A	nicer	solu*on	
let rec mapreduce(inject: 'a -> 'b) 
                 (combine:'b -> 'b -> 'b)  
                 (base:'b)  
                 (s:'a seq) = ... 

 
 
 
 
let check (p:paren) (so_far:int option) : int option = 
  match (p, so_far) with 
    (_, None) -> None 
  | (L, Some c) -> Some (c+1) 
  | (R, Some 0) -> None 
  | (R, Some c) -> Some (c-1) 

(	 (	 )	 )	 )	 (	 )	 (	

0	 1	 2	 1	 0	 -1!!	



A	nicer	solu*on	
let rec mapreduce(inject: 'a -> 'b) 
                 (combine:'b -> 'b -> 'b)  
                 (base:'b)  
                 (s:'a seq) = ... 

type t = int option -> int option 
 
let inject: paren -> t =  (* you 'ill in the blanks!*)
  
let combine: t -> t -> t = (* you 'ill in the blanks!*) 
 
let base: t =        (* you 'ill in the blanks!*) 
 
let finish: t -> bool =    (* you 'ill in the blanks!*) 
 
let balanced (s: paren seq) = 
    finish (mapreduce inject combine base) 



A	nicer	solu*on	
let rec mapreduce(inject: 'a -> 'b) 
                 (combine:'b -> 'b -> 'b)  
                 (base:'b)  
                 (s:'a seq) = ... 

type t = int option -> int option 
 
let inject: paren -> t =  check
  
let combine: t -> t -> t = fun f g x → f (g x)      (* compose *) 
 
let base: t =        fun x → x 
 
let finish: t -> bool =    
       fun f →  match (f (Some 0)) with Some 0 → true | _ → false  
 
let balanced (s: paren seq) = 
    finish (mapreduce inject combine base) 



A	nicer	solu*on	
let rec mapreduce(inject: 'a -> 'b) 
                 (combine:'b -> 'b -> 'b)  
                 (base:'b)  
                 (s:'a seq) = ... 

type t = int option -> int option 
 
let inject: paren -> t =  check
  
let combine: t -> t -> t = fun f g x → f (g x)      (* compose *) 
 
let base: t =        fun x → x 
 
let finish: t -> bool =    
       fun f →  match (f (Some 0)) with Some 0 → true | _ → false  
 
let balanced (s: paren seq) = 
    finish (mapreduce inject combine base) 

check	the	associa*vity	
of	combine	–		
super	easy!	

also	check:	
combine	base	x	==	x	

super	easy!	



The	“nicer	solu*on”	is	beau*ful	but	useless	

type t = int option -> int option 
 
let inject: paren -> t =  check
  
let combine: t -> t -> t = fun f g x → f (g x)      (* compose *) 
 
let base: t =        fun x → x 
 
let finish: t -> bool =    
       fun f →  match (f (Some 0)) with Some 0 → true | _ → false  
 
let balanced (s: paren seq) = 
    finish (mapreduce inject combine base) 

mapreduce	computes,	efficiently,	in	
parallel,	a	big	func*on	composi*on;	
then	the	“finish”	func*on	runs	that	
func*on,	which	is	when	all	the	

computaAon	takes	place,	SEQUENTIALLY!	

Double	Dang!	



Exercise	
Let	s	be	a	sequence	of	“digits”	:	
		
	
Compute	the	decimal	value	of	s:	
	
inject:		int	->	int		=			fun	d	->	d		
combine	(v:	int)	(d:	int)	=	v*10+d	
base	=	0	
	
combine	(combine	(combine	(combine	0	3)	1)	4)	1			==		3141	
	
Now,		compute	really	fast	in	parallel:	
mapreduce	inject	combine	base	s			==		31415926,			right?	
	
					

3	 1	 4	 1	 5	 9	 2	 6	s	=		



Exercise	
Let	s	be	a	sequence	of	“digits”	:	
		
	
Compute	the	decimal	value	of	s:	
	
inject:		int	->	int		=			fun	d	->	d		
combine	(v:	int)	(d:	int)	=	v*10+d	
base	=	0	
	
combine	(combine	(combine	(combine	0	3)	1)	4)	1			==		3141	
	
Now,		compute	really	fast	in	parallel:	
mapreduce	inject	combine	base	s			==		31415926,			right?	
	
					

3	 1	 4	 1	 5	 9	 2	 6	s	=		

Where’s	the	
bug	in	this	
program?	



Another	Exercise	
	

∑ 𝑓(𝑖)                    𝑓: int→'loat
	
	
	
inject:		int	->	float		=			f		
combine	(x:	float)	(y:	float)	=	x	+.	y	
base	=	0.	
	
Now,		compute	really	fast	in	parallel:	
mapreduce	inject	combine	base	s	
	
					

𝑖=0	

𝑛-1	

Is	there		
a	bug	in	this	
program?	



Floa*ng-point	addi*on	is	not	associa*ve!	
Consider	6-digit	man*ssas:	
	
.100000		x100										.400000		x10-6	
.0000004x100									.400000		x10-6	
.000000		x100									.800000		x10-6	
	
((.100000	+	.0000004)	+	.0000004)	+	.0000004	=	.100000	
	
.100000	+	(.0000004	+	(.0000004	+	.0000004))	=	.100001	
	
For	some	summa*ons,	this	ma8ers	a	lot!	
In	other	cases,	it	doesn’t	ma8er.	
So	we	can’t	tell	whether	there’s	a	bug	in	the	program.	
	



PARALLEL	SCAN	AND	PREFIX	SUM	



The	prefix-sum	problem	

input 6	 4	 16	 10	 16	 14	 2	 8	

	76	

Sum	of	Sequence:	

input 

output 

6	 4	 16	 10	 16	 14	 2	 8	

		6	 	10	 	26	 	36	 	52	 	66	 	68	 	76	

output 

Prefix-Sum	of	Sequence:	



The	prefix-sum	problem	

val	prefix_sum	:	int	seq	->	int	seq	

input 

output 

6	 4	 16	 10	 16	 14	 2	 8	

		6	 	10	 	26	 	36	 	52	 	66	 	68	 	76	

The	simple	sequen*al	algorithm:		accumulate	the	sum	from	ler	to	right		
–  Sequen*al	algorithm:		Work:	O(n),	Span:	O(n)	
–  Goal:		a	parallel	algorithm	with	Work:	O(n),	Span:	O(log	n)	



Parallel	prefix-sum	

The	trick:		Use	two	passes	
–  Each	pass	has	O(n)	work	and	O(log	n)	span	
–  So	in	total	there	is	O(n)	work	and	O(log	n)	span	

First	pass	builds	a	tree	of	sums	bo>om-up	
–  the	“up”	pass	

Second	pass	traverses	the	tree	top-down	to	compute	prefixes	
–  the	“down”	pass	computes	the	"from-ler-of-me"	sum	

Historical	note:	
–  Original	algorithm	due	to	R.	Ladner	and	M.	Fischer,	1977	

74	



Example	

input 

output 

6	 4	 16	 10	 16	 14	 2	 8	

                 

range 			0,8	
sum	
fromler	

range 		0,4	
sum	
fromler	

range 		4,8	
sum	
fromler	

range 		6,8	
sum	
fromler	

range 		4,6	
sum	
fromler	

range 		2,4	
sum	
fromler	

range 		0,2	
sum	
fromler	

r			0,1	
s			
f	

r			1,2	
s			
f	

r			2,3	
s			
f	

r			3,4	
s			
f	

r			4,5	
s			
f	

r			5,6	
s			
f	

r			6,7	
s			
f	

r			7,8	
s			
f	

6	 4	 16	 10	 16	 14	 2	 8	

10	 26	 30	 10	

36	 40	

76	



input 

output 

6	 4	 16	 10	 16	 14	 2	 8	

6	 	10	 	26	 	36	 	52	 	66	 	68	 	76	

range 			0,8	
sum	
fromler	

range 		0,4	
sum	
fromler	

range 		4,8	
sum	
fromler	

range 		6,8	
sum	
fromler	

range 		4,6	
sum	
fromler	

range 		2,4	
sum	
fromler	

range 		0,2	
sum	
fromler	

r			0,1	
s			
f	

r			1,2	
s			
f	

r			2,3	
s			
f	

r			3,4	
s			
f	

r			4,5	
s			
f	

r			5,6	
s			
f	

r			6,7	
s			
f	

r			7,8	
s			
f	

6	 4	 16	 10	 16	 14	 2	 8	

10	 26	 30	 10	

36	 40	

76	
0	

0	

0	

0	

36	

10	 36	 66	6	 26	 52	 68	

10	 66	

36	

Example	



The	algorithm,	pass	1	
1.  Up:	Build	a	binary	tree	where		
–  Root	has	sum	of	the	range	[x,y) 
–  If	a	node	has	sum	of	[lo,hi)	and	hi>lo,		

•  Ler	child	has	sum	of	[lo,middle) 
•  Right	child	has	sum	of	[middle,hi)		
•  A	leaf	has	sum	of	[i,i+1),		i.e.,	nth input i 

This	is	an	easy	parallel	divide-and-conquer	algorithm:	“combine”	
results	by	actually	building	a	binary	tree	with	all	the	range-sums	
–  Tree	built	bo8om-up	in	parallel	

Analysis:	O(n)	work,	O(log	n)	span	



The	algorithm,	pass	2	
2.  Down:	Pass	down	a	value	fromLeft 
–  Root	given	a	fromLeft	of	0 
–  Node	takes	its	fromLeft	value	and	

•  Passes	its	ler	child	the	same	fromLeft 
•  Passes	its	right	child	its	fromLeft	plus	its	ler	child’s	sum		

–  as	stored	in	part	1	
–  At	the	leaf	for	sequence	posi*on	i,		

•  nth output i == fromLeft + nth input i 

This	is	an	easy	parallel	divide-and-conquer	algorithm:	traverse	the	
tree	built	in	step	1	and	produce	no	result		
–  Leaves	create	output	
–  Invariant:	fromLeft	is	sum	of	elements	ler	of	the	node’s	range	

Analysis:	O(n)	work,	O(log	n)	span	



Sequen*al	cut-off	
For	performance,	we	need	a	sequen*al	cut-off:	

•  Up:		
–  just	a	sum,	have	leaf	node	hold	the	sum	of	a	range	

•  Down:		
–  do	a	sequen*al	scan	



Parallel	prefix,	generalized	
Just	as	map	and	reduce	are	the	simplest	examples	of	a	common	

pa8ern,	prefix-sum	illustrates	a	pa8ern	that	arises	in	many,	many	
problems	

	
•  Minimum,	maximum	of	all	elements	to	the	le@	of	i 

•  Is	there	an	element	to	the	le@	of	i	sa*sfying	some	property?	

•  Count	of	elements	to	the	le@	of	i sa*sfying	some	property	
–  This	last	one	is	perfect	for	an	efficient	parallel	filter	…	
–  Perfect	for	building	on	top	of	the	“parallel	prefix	trick”	

	



Parallel	Scan	

							pre_scan	(o)	base	<x1,		...,	xn>	
==		
						<base,	base	o	x1,	...,	base	o	x1	o	...	o	xn-1>	

							scan	(o)	<x1,		...,	xn>	
==		
						<x1,		x1	o	x2,		...,		x1	o	...	o	xn>	

sequence	with	o	applied	to	all	items		
to	the	ler	of	index	in	input	

like	a	fold,	except	return	
the	folded	prefix	at	each	step	



Parallel	Filter	
	
Given	a	sequence	input,	produce	a	sequence	output	containing	only	

elements	v	such	that	(f v)	is	true 
 
Example:		let	f	x	=	x	>	10	
	
											filter f <17, 4, 6, 8, 11, 5, 13, 19, 0, 24> 
 == <17, 11, 13, 19, 24> 
 
Parallelizable?	

–  Finding	elements	for	the	output	is	easy	
–  But	geCng	them	in	the	right	place	seems	hard	



Parallel	prefix	to	the	rescue	

Use	parallel	map	to	compute	a	bit-vector	for	true	elements:	
 

 input  <17, 4, 6, 8, 11, 5, 13, 19, 0, 24> 
 bits   <1,  0, 0, 0,  1, 0,  1,  1, 0,  1> 

	

Use	parallel-prefix	sum	on	the	bit-vector:	
	
  bitsum <1,  1, 1, 1,  2, 2,  3,  4, 4,  5> 

 

For	each	i,	if	bits[i]	==	1	then	write	input[i]	to	output[bitsum[i]]	to	produce	
the	final	result:	
	
  output <17, 11, 13, 19, 24> 

		
	

 



QUICKSORT	



Quicksort	review	

Recall	quicksort	was	sequen*al,	in-place,	expected	*me	O(n	log	n)	
	 	 	 	 	 	 					Best	/	expected	case	work	

1.  Pick	a	pivot	element 	 	 	 					O(1)	
2.  Par**on	all	the	data	into: 	 	 					O(n)	

A.  The	elements	less	than	the	pivot	
B.  The	pivot	
C.  The	elements	greater	than	the	pivot	

3.  Recursively	sort	A	and	C																								 					 	2T(n/2)	

	
How	should	we	parallelize	this?	
	



Quicksort	

	 	 	 	 	 				Best	/	expected	case	work	
1.  Pick	a	pivot	element 	 	 	 					O(1)	
2.  Par**on	all	the	data	into: 	 	 					O(n)	

A.  The	elements	less	than	the	pivot	
B.  The	pivot	
C.  The	elements	greater	than	the	pivot	

3.  Recursively	sort	A	and	C																								 					 	2T(n/2)	

	
	
Easy:	Do	the	two	recursive	calls	in	parallel	

•  Work:	unchanged.	Total:	O(n	log	n)	
•  Span:	now	T(n)	=	O(n)	+	1T(n/2)	=	O(n)	

	



Doing	be8er	

As	with	mergesort,	we	get	a	O(log	n)	speed-up	with	an	infinite	
number	of	processors.		That	is	a	bit	underwhelming	

–  Sort	109	elements	30	*mes	faster	

(Some)	Google	searches	suggest	quicksort	cannot	do	be8er	
because	the	par**on	cannot	be	parallelized	

–  The	Internet	has	been	known	to	be	wrong	J	
–  But	we	need	auxiliary	storage	(no	longer	in	place)	
–  In	prac*ce,	constant	factors	may	make	it	not	worth	it	

Already	have	everything	we	need	to	parallelize	the	par**on…	



Parallel	par**on	(not	in	place)	

This	is	just	two	filters!	
–  We	know	a	parallel	filter	is	O(n)	work,	O(log	n)	span	
–  Parallel	filter	elements	less	than	pivot	into	ler	side	of	aux	array		
–  Parallel	filter	elements	greater	than	pivot	into	right	size	of	aux	array	
–  Put	pivot	between	them	and	recursively	sort	

With	O(log	n)	span	for	par**on,	the	total	best-case	and	expected-
case	span	for	quicksort	is 		

T(n)	=	O(log n)	+	1T(n/2)	=	O(log2 n)	

	Par**on	all	the	data	into: 	 	 						
A.  The	elements	less	than	the	pivot	
B.  The	pivot	
C.  The	elements	greater	than	the	pivot	



Example	

Step	1:	pick	pivot	as	median	of	three	

8 1 4 9 0 3 5 2 7 6 

Steps	2a	and	2c	(combinable):	filter	less	than,	then	filter	
greater	than	into	a	second	array	

		

1 4 0 3 5 2  

1 4 0 3 5 2 6 8 9 7 

Step	3:	Two	recursive	sorts	in	parallel	
–  Can	copy	back	into	original	array	(like	in	mergesort)	



More	Algorithms	
•  To	add	mul*precision	numbers.		
•  To	evaluate	polynomials	
•  To	solve	recurrences.		
•  To	implement	radix	sort	
•  To	delete	marked	elements	from	an	array	
•  To	dynamically	allocate	processors		
•  To	perform	lexical	analysis.	For	example,	to	parse	a	program	

into	tokens.	
•  To	search	for	regular	expressions.	For	example,	to	implement	

the	UNIX	grep	program.	
•  To	implement	some	tree	opera*ons.	For	example,	to	find	the	

depth	of	every	vertex	in	a	tree	
•  To	label	components	in	two	dimensional	images.	
												See	Guy	Blelloch	“Prefix	Sums	and	Their	Applica&ons”	



Summary	
•  Parallel	prefix	sums	and	scans	have	many	applica*ons	

–  A	good	algorithm	to	have	in	your	toolkit!	

•  Key	idea:		An	algorithm	in	2	passes:	
–  Pass	1:		build	a	"reduce	tree"	from	the	bo8om	up	
–  Pass	2:		compute	the	prefix	top-down,	looking	at	the	ler-
subchild	to	help	you	compute	the	prefix	for	the	right	subchild	



PARALLEL	COLLECTIONS	IN	THE	
"REAL	WORLD"	



Big	Data	
If	Google	wants	to	index	all	the	web	pages	(or	images	or	gmails	
or	google	docs	or	...)	in	the	world,	they	have	a	lot	of	work	to	do	
•  Same	with	Facebook	for	all	the	facebook	pages/entries	
•  Same	with	Twi8er	
•  Same	with	Amazon	
•  Same	with	...	
	
Many	of	these	tasks	come	down	to	map,	filter,	fold,	reduce,	scan	





Google	Map-Reduce	

Google	MapReduce	(2004):	a	fault	tolerant,	
massively	parallel	func*onal	programming	
paradigm	

–  based	on	our	friends	"map"	and	"reduce"	
–  Hadoop	is	the	open-source	variant	
–  Database	people	complain	that	they	
have	been	doing	it	for	a	while	
•  ...	but	it	was	hard	to	define		

Fun	stats	circa	2012:	
–  Big	clusters	are	~4000	nodes	
–  Facebook	had	100	PB	in	Hadoop	
–  TritonSort	(UCSD)	sorts	900GB/minute	
on	a	52-node,	800-disk	hadoop	cluster	

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay@google.com

Google, Inc.

Abstract
MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.
Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.
Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds ofMapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose
computations that process large amounts of raw data,
such as crawled documents, web request logs, etc., to
compute various kinds of derived data, such as inverted
indices, various representations of the graph structure
of web documents, summaries of the number of pages
crawled per host, the set of most frequent queries in a

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.
As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.
The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.
Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards
our cluster-based computing environment. Section 4 de-
scribes several refinements of the programming model
that we have found useful. Section 5 has performance
measurements of our implementation for a variety of
tasks. Section 6 explores the use of MapReduce within
Google including our experiences in using it as the basis

To appear in OSDI 2004 1



Data	Model	&	Opera*ons	
•  Map-reduce	operates	over	collec*ons	of	key-value	pairs	

–  millions	of	files	(eg:	web	pages)	drawn	from	the	file	system	
•  The	map-reduce	engine	is	parameterized	by	3	func*ons:	

map     : key1 * value1        -> (key2 * value2) list 
 
combine : key2 * (value2 list) -> value2 option  
 
reduce  : key2 * (value2 list) -> key3 * (value3 list) 

op*onal	



Architecture	
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Itera*ve	Jobs	are	Common	
Iterative Jobs are common… 
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A	Modern	Sorware	Stack	A modern software stack 
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The	Control	Plane	
The control plane 
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Flow	of	Informa*on	
The flow of information 

Heartbeats 
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Jobs,	Tasks	and	A8empts	
•  A	single	job	is	split	in	to	many	tasks	
•  Each	task	may	include	many	calls	to	map	and	reduce	
•  Workers	are	long-running	processes	that	are	assigned	many	

tasks	
•  Mul*ple	workers	may	a>empt	the	same	task	

–  each	invoca*on	of	the	same	task	is	called	an	a8empt	
–  the	first	worker	to	finish	"wins"	

•  Why	have	mul*ple	machines	a8empt	the	same	task?	
–  machines	will	fail	

•  approximately	speaking:	5%	of	high-end	disks	fail/year		
•  if	you	have	1000	machines:		1	failure	per	week	
•  repeated	failures	become	the	common	case	

–  machines	can	par*ally	fail	or	be	slow	for	some	reason	
•  reducers	can't	start	un*l	all	mappers	complete	



Sort-of	Func*onal	Programming	in	Java	
Hadoop	interfaces:	

interface Reducer<K2,V2,K3,V3> { 
  public void reduce (K2 key,  

            Iterator<V2> values, 
       OutputCollector<K3,V3> output) 

  ... 
} 

interface Mapper<K1,V1,K2,V2> { 
  public void map (K1 key,  

         V1 value, 
    OutputCollector<K2,V2> output) 

  ... 
} 



Word	Count	in	Java	

class WordCountReduce { 
  public void reduce(String key, 
                     Iterator<Integer> values, 
                     OutputCollector<String,Integer> output) 
  { 
    int count = 0; 
    for (int v : values) 
      count += 1; 
    output.collect(key, count) 
  } 

class WordCountMap implements Map { 
  public void map(DocID key 
                  List<String> values, 
                  OutputCollector<String,Integer> output) 
  { 
     for (String s : values) 
       output.collect(s,1); 
  } 
} 



PLEASE	RELAX		
AND	FOR	THE	SAKE	OF	HYGIENE,	

WIPE	THE	
JAVA	CODE	OFF	YOUR	BRAIN	



Summary	
Folds	and	reduces	are	easily	coded	as	parallel	divide-and-
conquer	algorithms	with	O(N)	work	and	O(log	n)	span	
	
Scans	are	trickier	and	use	a	2-pass	algorithm	that	builds	a	tree.	
	
The	map-reduce-fold	paradigm,	inspired	by	func*onal	
programming,		is	a	big	winner	when	it	comes	to	big	data	
processing.	
	
Hadoop	is	an	industry	standard	but	higher-level	data	processing	
languages	have	been	built	on	top.	



END	


