
Managing	Mul)ple	
Mutable	Data	Structures	

slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	
permission	granted	to	reuse	these	slides	for	non-commercial	educa)onal	purposes	

	

COS	326	
David	Walker	

Princeton	University	
	

Last	Time	
We	explored	two	programming	disciplines	that	help	us	manage	
parallelism	and	concurrency:	

–  Futures:	
•  future	:	('a	->	'b)	->	'a	->	'b	future	
•  force	:	'a	future	->	'a	
•  create	a	future	to	run	a	func)on	in	the	background	
•  useful	in	divide-and-conquer	parallel	programming	

–  Mutexes:	
•  with_lock	:	mutex	->	(unit	->	'b)	->	'b	
•  associate	each	mutable	data	structure	with	a	lock	m	
•  protect	all	accesses	to	a	mutable	data	structure	with	with_lock	m	

This	Time:		Some)mes	a	computa)on	depends	upon	several	
mutable	data	structures.	

–  eg:	to	transfer	a	balance	from	one	bank	account	to	another	
–  our	exis)ng	techniques	break	down	

Another	Example	

3	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t

 };;

let empty () = {contents=[]; lock=Mutex.create()};;

let push (s:‘a stack) (x:‘a) : unit =
 with_lock s.lock (fun _ ->
 s.contents <- x::s.contents)

;;

let pop (s:‘a stack) : ‘a option =
 with_lock s.lock (fun _ ->
 match s.contents with
 | [] -> None
 | h::t -> (s.contents <- t ; Some h))

;;

Another	Example	

4	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =
 with_lock s1.lock (fun _ ->
 match pop s1 with

 | None -> ()
 | Some x -> push s2 x)

Another	Example	

5	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =
 with_lock s1.lock (fun _ ->
 match pop s1 with

 | None -> ()
 | Some x -> push s2 x)

Unfortunately,	we	
already	hold	
s1.lock		

when	we	invoke		
pop s1

which	tries	to	acquire	
the	lock.		

Another	Example	

6	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =
 with_lock s1.lock (fun _ ->
 match pop s1 with

 | None -> ()
 | Some x -> push s2 x)

Unfortunately,	we	
already	hold	
s1.lock		

when	we	invoke		
pop s1

which	tries	to	acquire	
the	lock.		

So	we	end	up	dead-
locked.			

Another	Example	

7	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =
 with_lock s1.lock (fun _ ->
 match pop s1 with

 | None -> ()
 | Some x -> push s2 x)

Avoid	deadlock	by	
dele)ng	the	line	that	

aquires	s1.lock	
ini)ally	

A	trickier	problem	

8	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =

 match pop s1, pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> push s1 x ; None
 | None, Some y -> push s2 y ; None

Either:	
	
(1)  pop	one	from	each	if	both	

nonempty,	or	

(2)  have	no	effect	at	all	

A	trickier	problem	

9	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =

 match pop s1, pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> push s1 x ; None
 | None, Some y -> push s2 y ; None

But	some	other	
thread	could	sneak	in	

here	and	try	to	
perform	an	opera)on	

on	our	contents	
before	we’ve	

managed	to	push	the	
value	back	on.	

Yet	another	broken	solu)on	

10	

let no_lock_pop (s1:‘a stack) : ‘a option =
 match s1.contents with
 | [] -> None
 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =
 contents <- x::contents

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =
 with_lock s1.lock (fun _ ->
 with_lock s2.lock (fun _ ->
 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x ; None
 | None, Some y -> no_lock_push s2 y ; None))

Yet	another	broken	solu)on	

11	

let no_lock_pop (s1:‘a stack) : ‘a option =
 match s1.contents with
 | [] -> None
 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =
 contents <- x::contents

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =
 with_lock s1.lock (fun _ ->
 with_lock s2.lock (fun _ ->
 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x ; None
 | None, Some y -> no_lock_push s2 y ; None))

Problems?	

Yet	another	broken	solu)on	

12	

let no_lock_pop (s1:‘a stack) : ‘a option =
 match s1.contents with
 | [] -> None
 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =
 contents <- x::contents

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =
 with_lock s1.lock (fun _ ->
 with_lock s2.lock (fun _ ->
 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x ; None
 | None, Some y -> no_lock_push s2 y ; None))

What	happens	if	we	call	
pop_two	x	x?			

Yet	another	broken	solu)on	

13	

let no_lock_pop (s1:‘a stack) : ‘a option =
 match s1.contents with
 | [] -> None
 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =
 contents <- x::contents

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =
 with_lock s1.lock (fun _ ->
 with_lock s2.lock (fun _ ->
 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x ; None
 | None, Some y -> no_lock_push s2 y ; None))

What	happens	if	two	
threads	are	trying	to	call	
pop_two	at	the	same	

)me?	

In	par)cular,	consider:	
	
Thread.create (fun _ -> pop_two x y)
Thread.create (fun _ -> pop_two y x)

Yet	another	broken	solu)on	

14	

let no_lock_pop (s1:‘a stack) : ‘a option =
 match s1.contents with
 | [] -> None
 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =
 contents <- x::contents

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =
 with_lock s1.lock (fun _ ->
 with_lock s2.lock (fun _ ->
 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x ; None
 | None, Some y -> no_lock_push s2 y ; None))

More	general	problem:	
	
Thread.create (fun _ -> pop_two x y)
Thread.create (fun _ -> pop_two y x)

One	possible	interleaving:	
T1	acquires	x’s	lock.	
T2	acquires	y’s	lock.	

T1	tries	to	acquire	y’s	lock	
and	blocks.	

T2	tries	to	acquire	x’s	lock	
and	blocks.	

A	fix	

15	

type ‘a stack = { mutable contents : ‘a list; lock : Mutex.t; id : int }

let new_id : unit -> int =

 let c = ref 0 in (fun _ -> c := (!c) + 1 ; !c)

let empty () = {contents=[]; lock=Mutex.create(); id=new_id()};;

let no_lock_pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =

 match no_lock_pop s1, no_lock_pop s2 with

 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x; None

 | None, Some y -> no_lock_push s2 y; None

let pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =
 if s1.id < s2.id then

 with_lock s1.lock (fun _ ->

 with_lock s2.lock (fun _ ->

 no_lock_pop_two s1 s2))

 else if s1.id > s2.id then
 with_lock s2.lock (fun _ ->

 with_lock s1.lock (fun _ ->

 no_lock_pop_two s1 s2))

 else with_lock s1.lock (fun _ -> no_lock_pop_two s1 s2)

sigh	...	

16	

type ‘a stack = { mutable contents : ‘a list; lock : Mutex.t; id : int }

let new_id : unit -> int =

 let c = ref 0 in let l = Mutex.create() in
 (fun _ -> with_lock l (fun _ -> (c := (!c) + 1 ; !c)))

let empty () = {contents=[]; lock=Mutex.create(); id=new_id()};;

let no_lock_pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =

 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x; None

 | None, Some y -> no_lock_push s2 y; None

let pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =

 …

;;

Refined	Design	Pacern	

17	

•  Associate	a	lock	with	each	shared,	mutable	object.	
•  Choose	some	ordering	on	shared	mutable	objects.	

–  doesn’t	macer	what	the	order	is,	as	long	as	it	is	total.	
–  in	C/C++,	ofen	use	the	address	of	the	object	as	a	unique	
number.	

–  Our	solu)on:		add	a	unique	ID	number	to	each	object	
•  To	perform	ac@ons	on	a	set	of	objects	S	atomically:	

–  acquire	the	locks	for	the	objects	in	S	in	order.	
–  perform	the	ac)ons.	
–  release	the	locks.	
	

Refined	Design	Pacern	

18	

•  Associate	a	lock	with	each	shared,	mutable	object.	
•  Choose	some	ordering	on	shared	mutable	objects.	

–  doesn’t	macer	what	the	order	is,	as	long	as	it	is	total.	
–  in	C/C++,	ofen	use	the	address	of	the	object	as	a	unique	
number.	

–  Our	solu)on:		add	a	unique	ID	number	to	each	object	
•  To	perform	ac@ons	on	a	set	of	objects	S	atomically:	

–  acquire	the	locks	for	the	objects	in	S	in	order.	
–  perform	the	ac)ons.	
–  release	the	locks.	

BUT:		IN	A	BIG	PROGRAM,	IT	IS	REALLY	HARD	TO	GET	THIS	RIGHT	
A	HUGE	COMPONENT	OF	PL	RESEARCH	INVOLVES	TRYING	TO	
FIND	THE	MISTAKES	PEOPLE	MAKE	WHEN	DOING	THIS.		AVOID	
WHENEVER	POSSIBLE!		USE	FUNCTIONAL	ABSTRACTIONS!	

Important!	
	

Acquire	all	the	locks	you	will	need		
BEFORE	

performing	any	irreversible	ac)ons!	

SUMMARY	

Programming	with	muta)on,	threads	and	locks	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

thread	1	 thread	2	

Reasoning	about	shared	variables	
and	semaphores	is	hard	in	general,	

but		futures	are	a	discipline	
for	genng	it	right.	

	
Much	of	programming-language	design	
is	the	art	of	finding	good	disciplines	

in	which	it’s	harder*	to	write	bad	programs.	
	

Even	aside	from	PL	design,	the	same	is	true	of	
sofware	engineering	with	Abstract	Data	Types:	

engineer	disciplines	in	your	interfaces,	
harder	for	the	user	to	get	it	wrong.	

*but	somebody	will	always	find	a	way…	

Reasoning	about	the	correctness	of	pure	parallel	programs	that	
include	futures	is	easy	--	no	harder	than	ordinary,	sequen)al	
programs.		(Reasoning	about	their	performance	may	be	harder.)	
	

Programming	with	muta)on,	threads	and	locks	
Reasoning	about	the	correctness	of	pure	parallel	programs	that	
include	futures	is	easy	--	no	harder	than	ordinary,	sequen)al	
programs.		(Reasoning	about	their	performance	may	be	harder.)	
	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

Reasoning	about	concurrent	programs	with	
effects	requires	considering	all	interleavings*	of	
instruc@ons	of	concurrently	execu@ng	threads.	

–  ofen	too	many	interleavings	for	normal	
humans	to	keep	track	of	

–  nonmodular:	you	ofen	have	to	look	at	the	
details	of	each	thread	to	figure	out	what	is	
going	on	

–  locks	cut	down	interleavings	
–  but	knowing	you	have	done	it	right	s)ll	
requires	deep	analysis	

*and	worse…	

thread	1	 thread	2	

Scheduling	
Parallel	Computa)ons	

Visualizing	Computa)onal	Costs	

let	x	=	1	+	2	in	
3	+	x	

Visualizing	Computa)onal	Costs	

let	x	=	1	+	2	in	
3	+	x	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

Visualizing	Computa)onal	Costs	

let	x	=	1	+	2	in	
3	+	x	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

dependence:	
x	=	1	+	2	happens	before	3	+	x	

Visualizing	Computa)onal	Costs	

let	x	=	1	+	2	in	
3	+	x	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

Execu0on	of	dependency	diagrams:		A	processor	can	only	begin	execu)ng	the		
computa)on	associated	with	a	block	when	the	computa)ons	of	all	of	its		
predecessor	blocks	have	been	completed.	

Visualizing	Computa)onal	Costs	

step	1:	
execute	first	block	 x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

Cost	so	far:	0	

Visualizing	Computa)onal	Costs	

step	1:	
execute	first	block	 x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

Cost	so	far:	1	

Visualizing	Computa)onal	Costs	

step	2:	
execute	second	block	
because	all	of	its		
predecessors	have	
been	completed	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

Cost	so	far:	1	

Visualizing	Computa)onal	Costs	

step	2:	
execute	second	block	
because	all	of	its		
predecessors	have	
been	completed	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

Cost	so	far:	1	+	1	

Visualizing	Computa)onal	Costs	

let	x	=	1	+	2	in	
3	+	x	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

			total	cost		
=	1	+	1	
=	2	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	

parallel	pair:	
compute	both	lef	and	right-hand	sides	independently	
return	pair	of	values	
(easy	to	implement	using	futures)	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

A	

B	 C	

D	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	1	processor.		How	much)me	does	this	computa)on	take?	

A	

B	 C	

D	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	1	processor.		How	much)me	does	this	computa)on	take?	
Scheduld	A-B-C-D:		1	+	1	+	7	+	1	

A	

B	 C	

D	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	1	processor.		How	much)me	does	this	computa)on	take?	
Schedule	A-C-B-D:		1	+	1	+	7	+	1	

A	

B	 C	

D	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	2	processors.		How	much)me	does	this	computa)on	take?	

A	

B	 C	

D	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	2	processors.		How	much)me	does	this	computa)on	take?	
Cost	so	far:	1	

A	

B	 C	

D	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	2	processors.		How	much)me	does	this	computa)on	take?	
Cost	so	far:	1	+	max(1,7)	

A	

B	 C	

D	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	2	processors.		How	much)me	does	this	computa)on	take?	
Cost	so	far:	1	+	max(1,7)	+	1	
	

A	

B	 C	

D	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	2	processors.		How	much)me	does	this	computa)on	take?	
Total	cost:	1	+	max(1,7)	+	1.		We	say	the	schedule	we	used	was:		A-CB-D	

A	

B	 C	

D	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	3	processors.		How	much)me	does	this	computa)on	take?	

A	

B	 C	

D	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	3	processors.		How	much)me	does	this	computa)on	take?	
Schedule	A-BC-D:	1	+	max(1,7)	+	1	=	9	

A	

B	 C	

D	

Visualizing	Computa)onal	Costs	

(1	+	2	||	f	3)	 1	+	2	 f	3	

(,)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	infinite	processors.		How	much)me	does	this	computa)on	take?	
Schedule	A-BC-D:	1	+	max(1,7)	+	1	=	9	

A	

B	 C	

D	

Work	and	Span	
•  Understanding	the	complexity	of	a	parallel	program	is	a	licle	

more	complex	than	a	sequen)al	program	
–  the	number	of	processors	has	a	significant	effect	

•  One	way	to	approximate	the	cost	is	to	consider	a	parallel	
algorithm	independently	of	the	machine	it	runs	on	is	to	
consider	two	metrics:		
–  Work:		The	cost	of	execu)ng	a	program	with	just	1	processor.	
–  Span:		The	cost	of	execu)ng	a	program	with	an	infinite	number	
of	processors	

•  Always	good	to	minimize	work	
–  Every	instruc)on	executed	consumes	energy	
–  Minimize	span	as	a	second	considera)on	
–  Communica)on	costs	are	also	crucial	(we	are	ignoring	them)	

Parallelism	
The	parallelism	of	an	algorithm	is	an	es)mate	of	the	maximum	
number	of	processors	an	algorithm	can	profit	from.	
•  parallelism	=	work	/	span	

If	work	=	span	then	parallelism	=	1.			
•  We	can	only	use	1	processor	
•  It's	a	sequen)al	algorithm	
	
If	span	=	½	work	then	parallelism	=	2	
•  We	can	use	up	to	2	processors	

If	work	=	100,	span	=	1	
•  All	opera)ons	are	independent	&	can	be	executed	in	parallel	
•  We	can	use	up	to	100	processors	

Series-Parallel	Graphs	

Series-parallel	graphs	arise	from	execu)on	of	func)onal	programs	with		
parallel	pairs.		Also	known	as	well-structured,	nested	parallelism.		

one	opera)on	 two	opera)ons	
in	sequence	

e1;	e2	

two	opera)ons	
in	parallel	
(e1	||	e2)	

Series-Parallel	Graphs		Compose	

In	general,	a	series-parallel	graph	has	a	source	and	a	sink	and	is:	
•  a	single	node,	or	
•  two	series-parallel	graphs	in	sequence,	or	
•  two	series-parallel	graphs	in	parallel	

one	opera)on	 two	graphs	
in	sequence	

two	graphs	
in	parallel	

Not	a	Series-Parallel	Graph	

However:	
The	results	about	greedy	
schedulers	(next	few	
slides)	do	apply	to	DAG	
schedules	as	well	as	

series-parallel	schedules!	

Work	and	Span	of	Acyclic	Graphs	
Let's	assume	each	node	costs	1.	

Work:	sum	the	nodes.	

Span:	longest	path	from		
source	to	sink.	
	

Work	and	Span	of	Acyclic	Graphs	
Let's	assume	each	node	costs	1.	

Work:	sum	the	nodes.	

Span:	longest	path	from		
source	to	sink.	
	

work	=	10	
span	=	5	

Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa)on?	

Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa)on?	

Op)on	1:	
A	
B	G	
C	D	

Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa)on?	

Op)on	1:	
A	
B	G	
C	D	
E	H	

Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa)on?	

Op)on	1:	
A	
B	G	
C	D	
E	H	
I	

Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa)on?	

Op)on	1:	
A	
B	G	
C	D	
E	H	
I	
J	

Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa)on?	

Op)on	1:	
A	
B	G	
C	D	
E	H	
I	
J	
F	

Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa)on?	

Op)on	1:	
A	
B	G	
C	D	
E	H		 	H	I	
I 		
J 		
F	
	

Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa)on?	

Op)on	1:	
A	
B	G	
C	D	
E	H		 	H	I	
I 	E	J	
J 		
F	

Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa)on?	

Op)on	1:	
A	
B	G	
C	D	
E	H		 	H	I	
I 	E	J	
J 	F	
F	

Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa)on?	

Op)on	1:	
A	
B	G	
C	D	
E	H		 	H	I	
I 	E	J	
J 	F	
F	

Conclusion:	
How	you	schedule	
jobs	can	have	an	
impact	on	performance	

Greedy	Schedulers	
•  Greedy	schedulers	will	schedule	some	task	to	a	processor	as	

soon	as	that	processor	is	free.	
–  Doesn't	sound	so	smart!	

•  Proper)es	(for	p	processors):	
–  T(p)	<	work/p	+	span	

•  won't	be	worse	than	dividing	up	the	data	perfectly	between	
processors,	except	for	the	last	licle	bit,	which	causes	you	to	add	
the	span	on	top	of	the	perfect	division	

–  T(p)	>=	max(work/p,	span)	
•  can't	do	becer	than	perfect	division	between	processors	(work/p)	
•  can't	be	faster	than	span	

Greedy	Schedulers	
Proper)es	(for	p	processors):	

max(work/p,	span)			<=		T(p)			<			work/p	+	span	
	

Consequences:	
–  as	span	gets	small	rela)ve	to	work/p	

•  work/p	+	span		==>	work/p	
•  max(work/p,	span)	==>	work/p	
•  so	T(p)	==>	work/p		--	greedy	schedulers	converge	to	the	op)mum!	

–  if	span	approaches	the	work	
•  work/p	+	span	==>	span	
•  max(work/p,	span)	==>	span	
•  so	T(p)	==>	span	–	greedy	schedulers	converge	to	the	op)mum!	

COMPLEXITY	OF	
PARALLEL	PROGRAMS	

Divide-and-Conquer	Parallel	Algorithms	
•  Split	your	input	in	2	or	more	subproblems	
•  Solve	the	subproblems	recursively	in	parallel	
•  Combine	the	results	to	solve	the	overall	problem	

split	

recur	in	parallel	

merge	

Mergesort	(on	lists)	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2
;;

(mergesort	sorted1,	
	mergesort	sorted2)	

for	sequen)al	mergesort,	replace	with:	

Mergesort	(on	lists)	

let rec split l =
 match l with
 [] -> ([] , [])
 | [x] -> ([x] , [])
 | x :: y :: xs ->
 let (pile1, pile2) = split xs in
 (x :: pile1, y :: pile2)

let rec merge l1 l2 =
 match (l1, l2) with
 ([] , l2) -> l2
 | (l1 , []) -> l1
 | (x :: xs, y :: ys) ->
 if x < y then
 x :: merge xs l2
 else
 y :: merge l1 ys

Complexity	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2

Assume	input	list	of	size	n:	
work_mergesort(n)	=	work_split(n)		
																																				+	2*work_mergesort(n/2)		
																																				+	work_merge(n)	

Complexity	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2

Assume	input	list	of	size	n:	
work_mergesort(n)	=	work_split(n)		
																																				+	2*work_mergesort(n/2)		
																																				+	work_merge(n)	

=	k1*n	
+	2*work_mergesort(n/2)	
+	k2*n	

read	this	as		
"approximately	equal	to"	

Complexity	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2

Assume	input	list	of	size	n:	
work_mergesort(n)	=	work_split(n)		
																																				+	2*work_mergesort(n/2)		
																																				+	work_merge(n)	

=	k*n	
+	2*work_mergesort(n/2)	

Complexity	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2

Assume	input	list	of	size	n:	
work_mergesort(n)	=	work_split(n)		
																																				+	2*work_mergesort(n/2)		
																																				+	work_merge(n)	

=	k*n	
+	2*work_mergesort(n/2)	
	
=	O(n	log	n)	

Complexity	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2

Assume	input	list	of	size	n:	
span_mergesort(n)	=	span_split(n)		
																																				+	max(span_mergesort(n/2),	span_mergesort(n/2))		
																																				+	span_merge(n)	

Complexity	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2

Assume	input	list	of	size	n:	
span_mergesort(n)	=	k*n		
																																				+	span_mergesort(n/2)	

Complexity	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2

Assume	input	list	of	size	n:	
span_mergesort(n)	=	k*n		
																																				+	k*(n/2	+	n/4	+	n/8	+	...)	

Complexity	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2

Assume	input	list	of	size	n:	
span_mergesort(n)	=	2*k*n	
																																			=	O(n)		

Complexity	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2

Summary	for	input	list	of	size	n:	
work_mergesort(n)	=	k*n*log	n	
span_mergesort(n)	=	k*n	
	

parallelism?	

Complexity	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2

Summary	for	input	list	of	size	n:	
work_mergesort(n)	=	k*n*log	n	
span_mergesort(n)	=	k*n	
	

parallelism?	
parallelism	=	work/span	
																					=	n*log	n	/	n	
																					=	log	n	

when	sor)ng	10	billion	entries,	
can	only	make	use	of	30	machines	

Complexity	

let rec mergesort (l : int list) : int list =
 match l with
 [] -> []
 | [x] -> [x]
 | _ ->
 let (pile1,pile2) = split l in
 let (sorted1,sorted2) =
 both mergesort pile1
 mergesort pile2
 in
 merge sorted1 sorted2

Summary	for	input	list	of	size	n:	
work_mergesort(n)	=	k*n*log	n	
span_mergesort(n)	=	k*n	
	

parallelism?	
parallelism	=	work/span	
																					=	n*log	n	/	n	
																					=	log	n	

when	sor)ng	10	billion	entries,	
can	only	make	use	of	30	machines	

splinng	and	merging	take	
linear)me	–	too	long	to	get		
good	speedups	

Complexity	

when	sor)ng	10	billion	entries,	
can	only	make	use	of	30	machines/cores	
	
data	centers	have	10s	of	1000s	of	machines	or	more	

Problem:		splinng	and	merging	take	linear)me	–	too	long	to	get	good	speedups	
	
Problem:		cunng	a	list	in	half	takes	at	least)me	propor)onal	to	n/2	
	
Problem:		s)tching	2	lists	together	of	size	n/2	takes	n/2)me	
	
Conclusion:		lists	are	a	bad	data	structure	to	choose	

Complexity	

Consider	balanced	trees:	

splinng	is	
precy	easy	
in	constant	
)me	

merging	is	harder,	but	can	be	done	in	poly-log)me	

Parallel	TreeSort	

type tree = Empty | Node of tree * int * tree

let node left i right = Node (left, i, right)

let one i = node Empty i Empty

•  Problem:		Given	a	balanced	tree	t,	return	a	balanced	tree	with	
the	same	elements,	in	order:		
–  elements	in	the	lef	subtree	are	less	than	the	root	
–  elements	in	the	right	subtree	are	greater	than	the	root	

Parallel	TreeSort	

let rec tsort t =
 match t with
 Empty -> Empty
 | Node (l, i, r) ->
 let (l', r') = both tsort l
 tsort r
 in
 rebalance(merge (merge l' r') (one i))

type tree = Empty | Node of tree * int * tree

let node left i right = Node (left, i, right)

let one i = node Empty i Empty

We	are	going	to	ignore	this.	

Parallel	TreeSort	

let rec tsort t =
 match t with
 Empty -> Empty
 | Node (l, i, r) ->
 let (l', r') = both tsort l
 tsort r
 in
 merge (merge l' r') (one i)

type tree = Empty | Node of tree * int * tree

let node left i right = Node (left, i, right)

let one i = node Empty i Empty

Merging	trees	
•  Subproblem:		Given	two	sorted,	balanced	trees,	l	and	r,	create	

a	new	tree	with	the	same	elements	that	is	also	balanced	and	
whose	elements	are	in	order.	

•  Uses	split_at	t	i	
–  divides	t	into	items	less	than	i	and	items	greater	than	i	

let rec merge (t1:tree) (t2:tree) : tree =
 match t1 with
 Empty -> t2
 | Node (l1, i, r1) ->
 let (l2, r2) = split_at t2 i in
 let (t1', t2') = both (merge l1) l2
 (merge r1) r2
 in
 Node (t1', i, t2')

Splinng	a	tree	
•  Sub-problem:		Divide	t	in	to	items	less	than	i	and	items	

greater	than	i	

let rec split_at t bound =
 match t with
 Empty -> (Empty, Empty)
 | Node (l, i, r) ->
 if bound < i then
 let (ll, lr) = split_at l bound in

 (ll, Node (lr, i, r))
 else
 let (rl, rr) = split_at r bound in
 (Node (l, i, rl), rr)

Splinng	a	tree	
•  Sub-problem:		Divide	t	in	to	items	less	than	i	and	items	

greater	than	i	

let rec split_at t bound =
 match t with
 Empty -> (Empty, Empty)
 | Node (l, i, r) ->
 if bound < i then
 let (ll, lr) = split_at l bound in

 (ll, Node (lr, i, r))
 else
 let (rl, rr) = split_at r bound in
 (Node (l, i, rl), rr)

span	(h)	=	k*h														 	where	h	is	the	height	of	the	tree	t	
	 	 	h	=	log(n)	if		t	is	balanced	with	n	nodes	

Span	of	Merge	

let rec merge (t1:tree) (t2:tree) : tree =
 match t1 with
 Empty -> t2
 | Node (l1, i, r1) ->
 let (l2, r2) = split_at t2 i in
 let (t1', t2') = both (merge l1) l2
 (merge r1) r2
 in
 Node (t1', i, t2')

let's	assume	t1	and	t2	are	balanced	and	have	heights	h1,	h2	and	h1	>=	h2:	
	
			span_merge(h1,h2)		
=	span_split(h2)	+	max(span_merge(h1-1),	span_merge(h2-1))	
=	k*h2	+	span_merge(h1-1)	
=	k*h2*h1	

Span	of	Parallel	TreeSort	

let rec tsort t =
 match t with
 Empty -> Empty
 | Node (l, i, r) ->
 let (l', r') = both tsort l
 tsort r
 in
 merge (merge l' r') (one i)

let's	assume:	
•  t	is	balanced	with	n	nodes	and	height	h	=	log	n	
•  tsort	returns	balanced	trees	(l',	r')	
•  merge	returns	balanced	trees	
	

Span	of	Parallel	TreeSort	

let rec tsort t =
 match t with
 Empty -> Empty
 | Node (l, i, r) ->
 let (l', r') = both tsort l
 tsort r
 in
 merge (merge l' r') (one i)

let's	assume:	
•  t	is	balanced	with	n	nodes	and	height	h	=	log	n	
•  tsort	returns	balanced	trees	(l',	r')	
•  merge	returns	balanced	trees	
	

	span_tsort(h)		
=	max(span_tsort(h-1),		
												span_tsort(h-1))			
+	span_merge(h-1,h-1)	
+	span_merge(h,1)	

Span	of	Parallel	TreeSort	

let rec tsort t =
 match t with
 Empty -> Empty
 | Node (l, i, r) ->
 let (l', r') = both tsort l
 tsort r
 in
 merge (merge l' r') (one i)

let's	assume:	
•  t	is	balanced	with	n	nodes	and	height	h	=	log	n	
•  tsort	returns	balanced	trees	(l',	r')	
•  merge	returns	balanced	trees	
	

	span_tsort(h)		
=	max(span_tsort(h-1),		
												span_tsort(h-1))			
+	span_merge(h-1,h-1)	
+	span_merge(h,1)	
=	span_tsort(h-1)	
+	k*(h-1)*(h-1)	+	k*h	

Span	of	Parallel	TreeSort	

let rec tsort t =
 match t with
 Empty -> Empty
 | Node (l, i, r) ->
 let (l', r') = both tsort l
 tsort r
 in
 merge (merge l' r') (one i)

let's	assume:	
•  t	is	balanced	with	n	nodes	and	height	h	=	log	n	
•  tsort	returns	balanced	trees	(l',	r')	
•  merge	returns	balanced	trees	
	

	span_tsort(h)		
=	max(span_tsort(h-1),		
												span_tsort(h-1))			
+	span_merge(h-1,h-1)	
+	span_merge(h,1)	
=	span_tsort(h-1)	
+	k*(h-1)*(h-1)	+	k*h	
=	k*h*h*h		

Span	of	Parallel	TreeSort	

let rec tsort t =
 match t with
 Empty -> Empty
 | Node (l, i, r) ->
 let (l', r') = both tsort l
 tsort r
 in
 merge (merge l' r') (one i)

let's	assume:	
•  t	is	balanced	with	n	nodes	and	height	h	=	log	n	
•  tsort	returns	balanced	trees	(l',	r')	
•  merge	returns	balanced	trees	
	

	span_tsort(h)		
=	max(span_tsort(h-1),		
												span_tsort(h-1))			
+	span_merge(h-1,h-1)	
+	span_merge(h,1)	
=	span_tsort(h-1)	
+	k*(h-1)*(h-1)	+	k*h	
=	k*h*h*h		

=	k*h3	
=	O(log3	n)	

Summary	of	Parallel	Sor)ng	Exercise	
Both	parallel	list	sort	and	parallel	tree	sort	follow	a	tradi)onal	parallel	
divide-and-conquer	strategy.	
	
By	changing	data	structures	from	lists	to	trees,	we	were	able	to:	

–  split	our	data	in	half	in	constant	span	instead	of	linear	span	
–  merge	our	data	back	together	in	log3	n	span	instead	of	linear	span	

We	get	more	parallelism:	
–  with	lists:		work/span	=	log	n	

•  make	use	of	30	machines	when	sor)ng	10	billion	items	
–  with	trees:	work/span	=	n	log	n/log3	n	=	n/log2	n	

•  make	use	of	millions*	of	machines	when	sor)ng	10	billion	items	
–  caveat:		we	didn't	factor	in	data	communica)on	costs!	

*Well,	almost.		What	is	log2(10,000,000,000)				?	

Summary:	Work,	Span,	Parallelism	
Series	parallel-graphs	describe	the	kinds	of	control	structures	that	
arise	in	pure	func)onal	programs	with	structured,	parallel	fork-join	
execu)on	

–  Work:	total	number/cost	of	opera)ons	
• )me	program	execu)on	takes	with	1	processor	
•  Work(e1	||	e2)	=	Work(e1)	+	Work(e2)	+	1	

–  Span:	length	of	the	longest	dependency	chain	
• )me	program	execu)on	takes	with	infinite	processors	
•  Span	(e1	||	e2)	=	max	(Span	e1,	Span	e2)	+	1	

–  Parallelism:	Work	/	Span	
Many	parallel	algorithms	follow	a	divide-and-conquer	strategy	

–  efficient	algorithms	divide	quickly	and	merge	quickly	

Parallel	Collec)ons	

slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	
permission	granted	to	reuse	these	slides	for	non-commercial	educa)onal	purposes	

	

Parallel	Collec)ons	

One	way	to	give	programmers	access	to	parallelism	in	a	
func)onal	style	(even	in	an	impera)ve	language)	is	to	develop	a	
library	for	programming	parallel	collec)ons	
	
Example	collec)ons:		sets,	tables,	dic)onaries,	sequences	
Example	bulk	opera)ons:		create,	map,	reduce,	join,	filter	

	
	
	
	
	
	
	

Parallel	Sequences	
•  Parallel	sequences	

•  Languages:	
–  Nesl	[Blelloch]	
–  Data-parallel	Haskell	

<	e1	,	e2	,	e3	,	...	,	en	>	

Parallel	Sequences:	Selected	Opera)ons	

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n·work(f)) span = O(1·span(f))

Parallel	Sequences:	Selected	Opera)ons	

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n·work(f)) span = O(1·span(f))

nth : 'a seq -> int -> 'a

nth <e0, e1, ..., e(n-1)> i == ei
work = O(1) span = O(1)

Parallel	Sequences:	Selected	Opera)ons	

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n·work(f)) span = O(1·span(f))

nth : 'a seq -> int -> 'a

nth <e0, e1, ..., e(n-1)> i == ei
work = O(1) span = O(1)

length : 'a seq -> int

length <e0, e1, ..., e(n-1)> == n
work = O(1) span = O(1)

Problems	
Write	a	func)on	that	creates	the	sequence	<0,	...,	n-1>	
	
Write	a	func)on	such	that	given	a	sequence	<v0,	...,	vn-1>,			
maps	f	over	each	element	of	the	sequence.	
Work	=	O(n);		Span	=	O(1)				(if	f	is	a	constant-work	func)on)	
	
Write	a	func)on	such	that	given	a	sequence	<v1,	...,	vn-1>,	
reverses	the	sequence.	
Work	=	O(n);		Span	=	O(1)	
	
Try	it!	 tabulate f n

nth i s
length s

Opera)ons:	

Solu)ons	

(* create n == <0, 1, ..., n-1> *)
let create n =
 tabulate (fun i -> i) n

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)
let map f s =
 tabulate (fun i -> f (nth s i)) (length s)

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse f s =
 let n = length s in
 tabulate (fun i -> nth s (n-i-1)) n

One	more	problem	
•  Consider	the	problem	of	determining	whether	a	sequence	of	

parentheses	is	balanced	or	not.		For	example:	
–  balanced:	()()(())	
–  not	balanced:			(or)					or						()))		

•  Try	formula)ng	a	divide-and-conquer	parallel	algorithm	to	
solve	this	problem	efficiently:	

	
•  You	will	need	another	func)on	on	sequences:	

type paren = L | R (* L(eft) or R(ight) paren *)

let balanced (ps : paren list) : bool = ...

(* split s n divides s into (s1, s2) such that s1 is
 the first n elements of s and s2 is the rest
 Work = O(n) Span = O(1) *)
split : 'a sequence -> int -> 'a sequence * 'a sequence

