
Threads,	Futures	
and	some	nas0er	things	too	

slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	
permission	granted	to	reuse	these	slides	for	non-commercial	educa0onal	purposes	

	

COS	326	
David	Walker	

Princeton	University	
	

Last	Time:		Informal	Error	Rate	Chart	

regularity	
with	which	
you	shoot		
yourself	
in	the	foot	

Last	Time:		Informal	Error	Rate	Chart	

regularity	
with	which	
you	shoot		
yourself	
in	the	foot	

null	pointers,	
paucity	of	types,	
inheritance		

manual	
memory	
management	

kitchen	
sink	+		
manual	
memory	

heaven	
on	earth	

unstructured	
parallel	
or	concurrent	
programming	

Threads:	A	Warning	
•  Concurrent	Threads	with	Locks:		the	classic	shoot-yourself-in-

the-foot	concurrent	programming	model	
–  all	the	classic	error	modes	

•  Why	Threads?	
–  almost	all	programming	languages	will	have	a	threads	library	

•  OCaml	in	par0cular!	
–  you	need	to	know	where	the	piTalls	are	
–  the	assembly	language	of	concurrent	programming	paradigms	

•  we’ll	use	threads	to	build	several	higher-level	programming	
models	

Threads	

5	

•  Threads:		an	abstrac0on	of	a	processor.	
–  programmer	(or	compiler)	decides	that	some	work	can	be	done	
in	parallel	with	some	other	work,	e.g.:	

–  we	fork	a	thread	to	run	the	computa0on	in	parallel,	e.g.:	

let _ = compute_big_thing() in
let y = compute_other_big_thing() in
...

let t = Thread.create compute_big_thing () in
let y = compute_other_big_thing () in
 ...

Intui0on	in	Pictures	

6	

let t = Thread.create f () in
let y = g () in
 ...

Thread.create

execute g ()

...

processor	1	

(* doing nothing *)

execute f ()

...

processor	2	

0me	1	
	
0me	2	
	
0me	3	

Of	Course…	

7	

Suppose	you	have	2	available	cores	and	you	fork	4	threads.		In	a	
typical	mul0-threaded	system,		
	

–  the	opera0ng	system	provides	the	illusion	that	there	are	an	
infinite	number	of	processors.	
•  not	really:		each	thread	consumes	space,	so	if	you	fork	too	many	
threads	the	process	will	die.	

–  it	;me-mul;plexes	the	threads	across	the	available	processors.	
•  about	every	10	msec,	it	stops	the	current	thread	on	a	processor,	
and	switches	to	another	thread.	

•  so	a	thread	is	really	a	virtual	processor.	

OCaml,	Concurrency	and	Parallelism	
Unfortunately,	even	if	your	computer	has	2,	4,	6,	8	cores,	OCaml	
cannot	exploit	them.		It	mul0plexes	all	threads	over	a	single	core	

	
Hence,	OCaml	provides	concurrency,	but	not	parallelism.	Why?	
Because	OCaml	(like	Python)	has	no	parallel	“run0me	system”	or	
garbage	collector.		Other	func0onal	languages	(Haskell,	F#,	...)	do.			
	
Fortunately,	when	thinking	about	program	correctness,	it	doesn’t	
macer	that	OCaml	is	not	parallel	--	I	will	oden	pretend	that	it	is.			
	
You	can	hide	I/O	latency,	do	mul0process	programming	or	distribute	
tasks	amongst	mul0ple	computers	in	OCaml.	

core	

thread	 …	thread	 thread	

Coordina0on	

9	

How	do	we	get	back	the	result	that	t	is	compu0ng?	
	
	

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in
let y = g () in
 ...

First	Acempt	

10	

let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

 match !r with
 | Some v -> (* compute with v and y *)

 | None -> failwith "impossible"

What’s	wrong	with	this?	

Second	Acempt	

11	

let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

let rec wait() =

 match !r with
 | Some v -> v

 | None -> wait()

in
let v = wait() in
 (* compute with v and y *)

Two	Problems	

12	

First,	we	are	busy-wai;ng.			
•  consuming	CPU	without	doing	something	useful.	
•  CPU	could	either	be	running	a	useful	thread/program	or	power	down.			

	
	

let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

let rec wait() =

 match !r with
 | Some v -> v

 | None -> wait()

in
let v = wait() in
 (* compute with v and y *)

Two	Problems	

13	

Second,	an	opera0on	like	r	:=	Some	v	may	not	be	atomic.	
•  r	:=	Some	v		requires	us	to	copy	the	bytes	of	Some	v	into	the	ref	r	
•  we	might	see	part	of	the	bytes	(corresponding	to	Some)	before	we’ve	

wricen	in	the	other	parts	(e.g.,	v).	
•  So	the	waiter	might	see	the	wrong	value.	
	
	
	

let r = ref None
let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

let rec wait() =

 match !r with
 | Some v -> v

 | None -> wait()

in
let v = wait() in
 (* compute with v and y *)

Atomicity	

14	

Consider	the	following:	
	

	
and	suppose	two	threads	are	incremen0ng	the	same	ref	r:	
	
Thread	1 	 	Thread	2	
inc(r); inc(r);
!r !r

	
If	r	ini0ally	holds	0,	then	what	will	Thread	1	see	when	it	reads	r?			

let inc(r:int ref) = r := (!r) + 1

Atomicity	

15	

The	problem	is	that	we	can’t	see	exactly	what	instruc0ons	the	
compiler	might	produce	to	execute	the	code.	
	
It	might	look	like	this:	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;
store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

	

Atomicity	

16	

But	a	clever	compiler	might	op0mize	this	to:	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r
EAX := load(r) EAX := load(r)

	

Atomicity	

17	

Furthermore,	we	don’t	know	when	the	OS	might	interrupt	one	
thread	and	run	the	other.		
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;
store EAX into r store EAX into r

EAX := load(r) EAX := load(r)
	
(The	situa0on	is	similar,	but	not	quite	the	same	on	mul0-
processor	systems.)	

The	Happens	Before	Rela0on	
We	don’t	know	exactly	when	each	instruc0on	will	execute,	but	
there	are	some	constraints:		the	Happens	Before	rela0on	
	
Rule	1:		Given	two	expressions	(or	instruc0ons)	in	sequence,	e1;	
e2	we	know	that	e1	happens	before	e2.	
	
Rule	2:		Given	a	program:	
let	t	=	Thread.create	f	x	in	
....	
Thread.join	t;	
e	
	
we	know	that	(f	x)	happens	before	e.	

Atomicity	

19	

One	possible	interleaving	of	the	instruc0ons:	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r
EAX := load(r) EAX := load(r)

What	answer	do	we	get	if	r	points	to	0	to	start?	

Atomicity	

20	

Another	possible	interleaving:	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r
EAX := load(r) EAX := load(r)

What	answer	do	we	get	this	0me?	

Atomicity	

21	

Another	possible	interleaving:	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;
store EAX into r store EAX into r
EAX := load(r) EAX := load(r)

What	answer	do	we	get	this	0me?	
	
Moral:		The	system	is	responsible	for	scheduling	execu0on	of	
instruc0ons.	
	
Moral:		This	can	lead	to	an	enormous	degree	of	nondeterminism.	

Atomicity	

22	

In	fact,	today’s	mul0core	processors	don’t	treat	memory	in	a	
sequen;ally	consistent	fashion.	
	
Thread	1 	 														Thread	2	
EAX := load(r); EAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;
store EAX into r store EAX into r
EAX := load(r) EAX := load(r)

That	means	that	we	can’t	even	assume	that	what	we	will	see	
corresponds	to	some	interleaving	of	the	threads’	instruc;ons!	
	
Beyond	the	scope	of	this	class!		But	the	take-away	is	this:	It’s	not	a	good	idea	
to	use	ordinary	loads/stores	to	synchronize	threads;	you	should	use	explicit	synchroniza0on	
primi0ves	so	the	hardware	and	op0mizing	compiler	don’t	op0mize	them	away.	

Atomicity	

23	

In	fact,	today’s	mul0core	processors	don’t	treat	memory	in	a	
sequen;ally	consistent	fashion.	That	means	that	we	can’t	even	
assume	that	what	we	will	see	corresponds	to	some	interleaving	
of	the	threads’	instruc;ons!	
	
	
	
	
	
	
	
Beyond	the	scope	of	this	class!		But	the	take-away	is	this:	It’s	not	a	good	idea	
to	use	ordinary	loads/stores	to	synchronize	threads;	you	should	use	explicit	synchroniza0on	
primi0ves	so	the	hardware	and	op0mizing	compiler	don’t	op0mize	them	away.	

Core	1	
	
	

L2	cache	

Core	2	
	
	

L1	cache	 L1	cache	

ALU	 ALU	

Core	3	
	
	

Core	4	
	
	

L1	cache	 L1	cache	

ALU	 ALU	
When	Core1	stores	to	
“memory”,	it	lazily	

propagates	to	Core2’s	L1	
cache.		The	load	at	Core2	
might	not	see	it,	unless	
there	is	an	explicit	
synchroniza0on.	

Summary:	Interleaving	&	Race	Condi0ons	

24	

Calculate	possible	outcomes	for	a	program	by	considering	all	of	the	possible	
interleavings	of	the	atomic	ac0ons	performed	by	each	thread.	

–  Subject	to	the	happens-before	rela0on.	
•  can’t	have	a	child	thread’s	ac0ons	happening	before	a	parent	forks	it.	
•  can’t	have	later	instruc0ons	execute	earlier	in	the	same	thread.	

–  Here,	atomic	means	indivisible	ac0ons.	
•  For	example,	on	most	machines	reading	or	wri0ng	a	32-bit	word	is	atomic.	
•  But,	wri0ng	a	mul0-word	object	is	usually	not	atomic.	
•  Most	opera0ons	like	“b	:=	b	-	w”	are	implemented	in	terms	of	a	series	of	
simpler	opera0ons	such	as		
–  r1	=	read(b);	r2	=	read(w);	r3	=	r1	–	r2;	write(b,	r3)	

	
Reasoning	about	all	interleavings	is	hard.	just	about	impossible	for	people	

–  Number	of	interleavings	grows	exponen0ally	with	number	of	statements.	
–  It’s	hard	for	us	to	tell	what	is	and	isn’t	atomic	in	a	high-level	language.	
–  YOU	ARE	DOOMED	TO	FAIL	IF	YOU	HAVE	TO	WORRY	ABOUT	THIS	STUFF!	

Summary:	Interleaving	&	Race	Condi0ons	

25	

Calculate	possible	outcomes	for	a	program	by	considering	all	of	the	possible	
interleavings	of	the	atomic	ac0ons	performed	by	each	thread.	

–  Subject	to	the	happens-before	rela0on.	
•  can’t	have	a	child	thread’s	ac0ons	happening	before	a	parent	forks	it.	
•  can’t	have	later	instruc0ons	execute	earlier	in	the	same	thread.	

–  Here,	atomic	means	indivisible	ac0ons.	
•  For	example,	on	most	machines	reading	or	wri0ng	a	32-bit	word	is	atomic.	
•  But,	wri0ng	a	mul0-word	object	is	usually	not	atomic.	
•  Most	opera0ons	like	“b	:=	b	-	w”	are	implemented	in	terms	of	a	series	of	
simpler	opera0ons	such	as		
–  r1	=	read(b);	r2	=	read(w);	r3	=	r1	–	r2;	write(b,	r3)	

	
Reasoning	about	all	interleavings	is	hard.	just	about	impossible	for	people	

–  Number	of	interleavings	grows	exponen0ally	with	number	of	statements.	
–  It’s	hard	for	us	to	tell	what	is	and	isn’t	atomic	in	a	high-level	language.	
–  YOU	ARE	DOOMED	TO	FAIL	IF	YOU	HAVE	TO	WORRY	ABOUT	THIS	STUFF!	

WARNING	
If	you	see	people	talk	about	interleavings,	BEWARE!	

It	probably	means	they’re	assuming		
“sequen0al	consistency,”	

which	is	an	oversimplified,	naïve	model	of	what	the	
parallel	computer	really	does.	

It’s	actually	more	complicated	than	that.	

A	conven0onal	solu0on	for	shared-memory	parallelism	

	

Thread	1 	 	 	Thread	2	
lock(mutex); lock(mutex);

inc(r); inc(r);

!r !r
unlock(mutex); unlock(mutex);

	
Guarantees	mutual	exclusion	of	these	cri0cal	sec0ons.	
This	solu0on	works	(even	for	real	machines	that	are	not	
sequen0ally	consistent),			but…	
Complex	to	program,	subject	to	deadlock,	prone	to	bugs,										
not	fault-tolerant,	hard	to	reason	about.

let inc(r:int ref) = r := (!r) + 1

A	conven0onal	solu0on	for	shared-memory	parallelism	

	

Thread	1 	 	 	Thread	2	
lock(mutex); lock(mutex);

inc(r); inc(r);

!r !r
unlock(mutex); unlock(mutex);

	
Guarantees	mutual	exclusion	of	these	cri0cal	sec0ons.	
This	solu0on	works	(even	for	real	machines	that	are	not	
sequen0ally	consistent),			but…	
Complex	to	program,	subject	to	deadlock,	prone	to	bugs,										
not	fault-tolerant,	hard	to	reason	about.

let inc(r:int ref) = r := (!r) + 1

Synchroniza3on	

Another	approach	to	the	coordina0on	Problem	

28	

How	do	we	get	back	the	result	that	t	is	compu;ng?	
	
	

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in
let y = g () in
 ...

One	Solu0on	(using	join)	

29	

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

 Thread.join t ;

 match !r with
 | Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

One	Solu0on	(using	join)	

30	

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

 Thread.join t ;

 match !r with
 | Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

Thread.join t	causes	
the	current	thread	to	wait	

un0l	the	thread	t	
terminates.	

One	Solu0on	(using	join)	

31	

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

 Thread.join t ;

 match !r with
 | Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

 So	ader	the	join,	we	know	
that	any	of	the	opera0ons	

of	t	have	completed.	

Synchroniza3on	

In	Pictures	

32	

Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	know	that	for	each	
thread	the	previous	
instruc0ons	must	happen	
before	the	later	instruc0ons.	
	
So	for	instance,	inst1,1	must	
happen	before	inst1,2.	

In	Pictures	

33	

Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	also	know	that	the		
fork	must	happen	before	
the	first	instruc0on	of	the		
second	thread.	

In	Pictures	

34	

Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	also	know	that	the		
fork	must	happen	before	
the	first	instruc0on	of	the		
second	thread.	

And	thanks	to	the	join,		
we	know	that	all	of	the	
instruc0ons	of	the	second	
thread	must	be	completed	
before	the	join	finishes.	

In	Pictures	

35	

Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

However,	in	general,	we	
do	not	know	whether	
inst1,i	executes	before	or		
ader	inst2,j.	
	
In	general,	synchroniza;on	
instruc;ons	like	fork	and	
join	reduce	the	number	of	
possible	interleavings.	
	
Synchroniza;on	cuts	down		
nondeterminism.	
	
In	the	absence	of		
synchroniza0on	we	don’t	
know	anything…	

Fork-join	synchroniza0on	

36	

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in
let y = g() in

 Thread.join t ;

 match !r with
 | Some v -> (* compute with v and y *)

 | None -> failwith “impossible”

 So	ader	the	join,	we	know	
that	any	of	the	opera0ons	

of	t	have	completed.	

Synchroniza3on	

FUTURES:		A	PARALLEL	
PROGRAMMING	ABSTRACTION	

Futures	

38	

The	fork-join	pacern	we	just	saw	is	so	common,	we’ll	create	an	abstrac0on	for	it:	
	

module type FUTURE =
sig
 type ‘a future

 (* future f x forks a thread to run f(x)
 and stores the result in a future when complete *)
 val future : (‘a->‘b) -> ‘a -> ‘b future

 (* force f causes us to wait until the
 thread computing the future value is done
 and then returns its value. *)
 val force : ‘a future -> ‘a
end

Does	that	interface	looks	familiar	?	

Future	Implementa0on	

40	

module Future : FUTURE =
struct
 type ‘a future = {tid : Thread.t ;
 value : ’a option ref }

end

Future	Implementa0on	

41	

module Future : FUTURE =
struct
 type ‘a future = {tid : Thread.t ;
 value : ‘a option ref }

 let future(f:‘a->‘b)(x:‘a) : ‘b future =
 let r = ref None in
 let t = Thread.create (fun () -> r := Some(f x)) ()
 in
 {tid=t ; value=r}

end

Future	Implementa0on	

42	

module Future : FUTURE =
struct
 type ‘a future = {tid : Thread.t ;
 value : ‘a option ref }

 let future(f:‘a->‘b)(x:‘a) : ‘b future =
 let r = ref None in
 let t = Thread.create (fun () -> r := Some(f x)) ()
 in
 {tid=t ; value=r}

 let force (f:‘a future) : ‘a =
 Thread.join f.tid ;
 match !(f.value) with
 | Some v -> v
 | None -> failwith “impossible!”

end

Now	using	Futures	

43	

let x = future f () in
let y = g () in
let v = force x in

(* compute with v and y *)

Back	to	the	Futures	

44	

let x = future f () in
let y = g () in
let v = force x in

y + v

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

with	futures	library:	 without	futures	library:	

val f : unit -> int

val g : unit -> int

module type FUTURE =
sig
 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future
 val force :’a future -> ‘a
end

Back	to	the	Futures	

45	

what	happens	if	
we	delete	these	
lines?	

let x = future f () in
let y = g () in
let v = force x in

y + v

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with	futures	library:	 without	futures	library:	

module type FUTURE =
sig
 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future
 val force :’a future -> ‘a
end

Back	to	the	Futures	

46	

let x = future f () in
let y = g () in
let v = force x in

y + x

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with	futures	library:	 without	futures	library:	

module type FUTURE =
sig
 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future
 val force :’a future -> ‘a
end

what	happens	if	
we	use	x	and	
forget	to	force?	

Back	to	the	Futures	

47	

let x = future f () in
let y = g () in
let v = force x in

y + x

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

let y = g() in

Thread.join t ;

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with	futures	library:	 without	futures	library:	

module type FUTURE =
sig
 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future
 val force :’a future -> ‘a
end

Moral:		Futures	+	typing	ensure	
en0re	categories	of	errors	can’t		
happen	--	you	protect	yourself	
from	your	own	stupidity	

Back	to	the	Futures	

48	

let x = future f () in

let v = force x in
let y = g () in
y + x

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

Thread.join t ;

let y = g() in

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with	futures	library:	 without	futures	library:	

module type FUTURE =
sig
 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future
 val force :’a future -> ‘a
end

what	happens	if	you	
relocate	force,	join?	

Back	to	the	Futures	

49	

let x = future f () in

let v = force x in
let y = g () in
y + x

let r = ref None

let t = Thread.create

 (fun _ -> r := Some(f ()))

 ()

in

Thread.join t ;

let y = g() in

match !r with

 Some v -> y + v

 | None -> failwith “impossible”

val f : unit -> int

val g : unit -> int

with	futures	library:	 without	futures	library:	

module type FUTURE =
sig
 type ‘a future

 val future : (’a->’b) -> ’a -> ‘b future
 val force :’a future -> ‘a
end

Moral:		Futures	are	
not	a	universal	savior	

An	Example:		Mergesort	on	Arrays	

50	

let mergesort (cmp:'a->'a->int)
 (arr : 'a array) : 'a array =
 let rec msort (start:int) (len:int) : 'a array =
 match len with
 | 0 -> Array.of_list []

 | 1 -> Array.make 1 arr.(start)

 | _ -> let half = len / 2 in
 let a1 = msort start half in
 let a2 = msort (start + half)
 (len - half) in
 merge a1 a2

 and merge (a1:'a array) (a2:'a array) : 'a array =

 ...

An	Example:		Mergesort	on	Arrays	

51	

let mergesort (cmp:'a->'a->int) (arr : 'a array) : 'a array =
 let rec msort (start:int) (len:int) : 'a array =
 match len with

 | 0 -> Array.of_list []

 | 1 -> Array.make 1 arr.(start)

 | _ -> let half = len / 2 in
 let a1 = msort start half in
 let a2 = msort (start + half) (len - half) in
 merge a1 a2

 and merge (a1:'a array) (a2:'a array) : 'a array =
 let a = Array.make (Array.length a1 + Array.length a2) a1.(0) in
 let rec loop i j k =
 match i < Array.length a1, j < Array.length a2 with
 | true, true -> if cmp a1.(i) a2.(j) <= 0 then
 (a.(k) <- a1.(i) ; loop (i+1) j (k+1))

 else (a.(k) <- a2.(j) ; loop i (j+1) (k+1))
 | true, false -> a.(k) <- a1.(i) ; loop (i+1) j (k+1)

 | false, true -> a.(k) <- a2.(j) ; loop i (j+1) (k+1)

 | false, false -> ()

 in
 loop 0 0 0 ; a

 in

 msort 0 (Array.length arr)

An	Example:		Mergesort	on	Arrays	

52	

let mergesort (cmp:'a->'a->int)
 (arr : 'a array) : 'a array =
 let rec msort (start:int) (len:int) : 'a array =
 match len with
 | 0 -> Array.of_list []

 | 1 -> Array.make 1 arr.(start)

 | _ -> let half = len / 2 in
 let a1 = msort start half in
 let a2 = msort (start + half)
 (len - half) in
 merge a1 a2

 and merge (a1:'a array) (a2:'a array) : 'a array =

 ...

Opportunity	for	
paralleliza0on	

Making	Mergesort	Parallel	

53	

let mergesort (cmp:'a->'a->int)
 (arr : 'a array) : 'a array =
 let rec msort (start:int) (len:int) : 'a array =
 match len with
 | 0 -> Array.of_list []

 | 1 -> Array.make 1 arr.(start)

 | _ -> let half = len / 2 in
 let a1_f =
 Future.future (msort start) half in
 let a2 =
 msort (start + half)(len - half) in
 merge (Future.force a1_f) a2

 and merge (a1:'a array) (a2:'a array) : 'a array =

Divide-and-Conquer	

54	

This	is	an	instance	of	a	basic	divide-and-conquer	pacern	in	
parallel	programming	

–  take	the	problem	to	be	solved	and	divide	it	in	half	
–  fork	a	thread	to	solve	the	first	half	
–  simultaneously	solve	the	second	half	
–  synchronize	with	the	thread	we	forked	to	get	its	results	
–  combine	the	two	solu0on	halves	into	a	solu0on	for	the	whole	
problem.	

Warning:		the	fact	that	we	only	had	to	rewrite	2	lines	of	code	for	
mergesort	made	the	paralleliza0on	transforma0on	look	
decep0vely	easy	

–  we	also	had	to	verify	that	any	two	threads	did	not	touch	
overlapping	por0ons	of	the	array	--	if	they	did	we	would	have	to	
again	worry	about	scheduling	nondeterminism	

Caveats	

55	

There	is	some	overhead	for	crea0ng	a	thread.	
–  On	uniprocessor,	parallel	code	slower	than	sequen0al	code.	

	

Even	on	a	mul0processor,	we	do	not	always	want	to	fork.	
–  when	the	subarray	is	small,	faster	to	sort	it	sequen0ally	than	to	fork	

•  similar	to	using	inser0on	sort	when	arrays	are	small	vs.	quicksort	
–  this	is	known	as	a	granularity	problem	

•  more	parallelism	than	we	can	effec0vely	take	advantage	of.	

Caveats	

56	

In	a	good	implementa0on	of	futures,	a	compiler	and	run-0me	system	
might	look	to	see	whether	the	cost	of	doing	the	fork	is	jus0fied	by	
the	amount	of	work	that	will	be	done.		Today,	it’s	up	to	you	to	figure	
this	out…		L	

–  typically,	use	parallel	divide-and-conquer	un0l:	
(a)	we	have	generated	at	least	as	many	threads	as	there	are	processors	

–  oden	more	threads	than	processors	because	different	jobs	take	
different	amounts	of	0me	to	complete	and	we	would	like	to	keep	
all	processors		busy	

(b)	the	sub-arrays	have	gocen	small	enough	that	it’s	not	worth	forking.	
	

We’re	not	going	to	worry	about	these	performance-tuning	details	
but	rather	focus	on	the	dis0nc0ons	between	parallel	and	sequen;al	
algorithms.	

Another	Example	

57	

type 'a tree = Leaf | Node of 'a node
and 'a node = {left : 'a tree ;
 value : 'a ;

 right : 'a tree }

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b)
 (t:'a tree) : 'b =

 match t with
 | Leaf -> u

 | Node n ->

 f n.value (fold f u n.left) (fold f u n.right)

let sum (t:int tree) = fold (+) 0 t

Another	Example	

58	

type 'a tree = Leaf | Node of 'a node
and 'a node = {left : 'a tree ;
 value : 'a ;

 right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)
 (t:'a tree) : 'b =

 match t with
 | Leaf -> u

 | Node n ->
 let l_f = Future.future (pfold f u) n.left in
 let r = pfold f u n.right in
 f n.value (Future.force l_f) r

let sum (t:int tree) = pfold (+) 0 t

Note	

59	

•  If	the	tree	is	unbalanced,	then	we’re	not	going	to	get	the	
same	speedup	as	if	it’s	balanced.	

•  Consider	the	degenerate	case	of	a	list.	
–  The	forked	child	will	terminate	without	doing	any	useful	work.	
–  So	the	parent	is	going	to	have	to	do	all	that	work.	
–  Pure	overhead…		L	

•  In	general,	lists	are	a	horrible	data	structure	for	parallelism.	
–  we	can’t	cut	the	list	in	half	in	constant	;me	
–  for	arrays	and	trees,	we	can	do	that	(assuming	the	tree	is	
balanced.)	

Side	Effects?	

60	

type 'a tree = Leaf | Node of 'a node
and 'a node = { left : 'a tree ;
 value : 'a ;
 right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)
 (t:'a tree) : 'b =
 match t with
 | Leaf -> u
 | Node n ->
 let l_f = Future.future (pfold f u) n.left in
 let r = pfold f u n.right in
 f n.value (Future.force l_f) r

let print (t:int tree) =
 pfold (fun n _ _ -> Printf.print “%d\n” n) ()

Huge	Point	

61	

If	code	is	purely	func;onal,	then	it	never	maLers	in	what	order	it	is	run.	
If	f	()	and	g	()	are	pure	then	all	of	the	following	are	equivalent:	

	
As	soon	as	we	introduce	side-effects,	the	order	starts	to	macer.			

–  This	is	why,	IMHO,	impera;ve	languages	where	even	the	simplest	of	
program	phrases	involves	a	side	effect,	are	doomed.	

–  Of	course,	we’ve	been	saying	this	for	30	years!	
–  See	J.	Backus’s	Turing	Award	lecture,	“Can	Programming	be	Liberated	from	

the	von	Neumann	Style?		A	Func;onal	Style	and	Its	Algebra	of	Programs.”	
					hcp://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf	

let x = f() in
let y = g() in
e

let y = g () in
let x = f () in
e

let y_g = future g () in
let x = f () in
let y = force y_g in
e

let x_f = future f () in
let y = g () in
let x = force x_f in
e

Programming	with	locks	
(trigger	warning:	this	gets	precy	nasty)	

Perils	of	Parallelism	

MANAGING	MUTABLE	DATA	

Consider	a	Bank	Account	ADT	

65	

type account = { name : string; mutable bal : int }

let create (n:string) (b:int) : account =
 { name = n; bal = b }

let deposit (a:account) (amount:int) : unit =
 if a.bal + amount < max_balance then
 a.bal <- a.bal + amount

let withdraw (a:account) (amount:int) : int =
 if a.bal >= amount then (

 a.bal <- a.bal – amount;
 amount
) else 0

	

Simula0ng	a	Bank	

66	

val bank : account array

let rec atm (loc:string) =
 let id = getAccountNumber() in
 let w = getWithdrawAmount() in
 let d = withdraw (bank.(id)) w in
 dispenseDollars d ;
 atm loc

let world () =
 Thread.create atm “Princeton, Nassau” ;
 Thread.create atm “NYC, Penn Station” ;
 Thread.create atm “Boston, Lexington Square”

The	ATM	problem	

67	

•  Suppose	two	ATMs,	running	in	separate	threads,	try	to	
perform	a	withdrawal	from	the	same	bank	account	around	
the	same	0me.	

•  More	specifically:		
–  suppose	bank.(0)	is	an	account	that	starts	with	$100		
–  thread	1	tries	to	withdraw	$50	and	thread	2	tries	to	withdraw	
$75	at	roughly	the	same	0me	

Simplifying	the	situa0on…	

68	

let w = 50 in

if !b > w then
 (b <- !b - w ;

 w)

else

 0

b = ref 100

let w = 75 in

if !b > w then
 (b <- !b - w ;

 w)

else

 0

Simplifying	the	situa0on…	

69	

let w = 50 in

if !b > w then
 (b <- !b - w ;

 w)

else

 0

b = ref 100

let w = 75 in

if !b > w then
 (b <- !b - w ;

 w)

else

 0

b = ref 50

Simplifying	the	situa0on…	

70	

let w = 50 in

if !b > w then
 (b <- !b - w ;

 w)

else

 0

b = ref 100

let w = 75 in

if !b > w then
 (b <- !b - w ;

 w)

else

 0

b = ref 25

Another	schedule	...	

71	

let w = 50 in

if !b > w then

 (b <- !b - w ;

 w)

else

 0

b = ref 100

let w = 75 in

if !b > w then
 (b <- !b - w ;

 w)

else 0

b = ref -25

Good	for	you	...	(less	so	for	the	bank)	

72	

let w = 50 in

if !b > w then

 !b - w

 (b <- !b - w ;

 w)

else 0

b = ref 100

let w = 75 in

if !b > w then

 (b <- !b - w ;

 w)

else 0

b = ref 50

Good	for	you	...	(less	so	for	the	bank)	

73	

let w = 50 in

if !b > w then

 !b - w

 (b <- !b - w ;

 w)

else 0

b = ref 100

let w = 75 in

if !b > w then

 (b <- !b - w ;

 w)

else 0

b = ref 50

Yet	we	
paid	out	
$125!!!	

More	Synchroniza0on:		Locks	

74	

This	is	not	a	problem	we	can	fix	with	fork/join/futures	
–  Thread.join	waits	un0l	one	thread	terminates	
–  But	the	ATMs	shouldn’t	ever	terminate:	

–  Fundamental	problem:		atms	are	long-running	computa0ons	that	
compete	over	a	shared	resource	(the	bank)	

let rec atm (loc:string) =
 let id = getAccountNumber() in
 let w = getWithdrawAmount() in
 let d = withdraw (bank.(id)) w in
 dispenseDollars d ;
 atm loc

More	Synchroniza0on:		Locks	

75	

This	is	not	a	problem	we	can	fix	with	fork/join/futures	
–  Thread.join	waits	un0l	one	thread	terminates	
–  But	the	ATMs	shouldn’t	ever	terminate:	

–  Fundamental	problem:		atms	are	long-running	computa0ons	that	
compete	over	a	shared	resource	(the	bank)	

Solu0on:	use	a	mutex	lock	to	synchronize	threads.	
–  mutex	is	short	for	“mutual	exclusion”	
–  locks	give	control	over	resource	access	
–  controlled	access	to	a	shared	resource	is	a	concurrency	problem,	not	
a	paralleliza;on	problem	

let rec atm (loc:string) =
 let id = getAccountNumber() in
 let w = getWithdrawAmount() in
 let d = withdraw (bank.(id)) w in
 dispenseDollars d ;
 atm loc

Mutex	Locks	in	OCaml	

76	

module type Mutex =
 sig
 type t (* type of mutex locks *)

 val create : unit -> t (* create a fresh lock *)

 (* try to acquire the lock – makes
 the thread go to sleep until the lock
 is free. So at most one thread “owns” the lock. *)
 val lock : t -> unit

 (* releases the lock so other threads can
 wake up and try to acquire the lock. *)
 val unlock : t -> unit

 (* similar to lock, but never blocks. Instead, if
 the lock is already locked, it returns “false”. *)
 val try_lock : t -> bool
 end

Adding	a	Lock	

77	

type account = { name : string; mutable bal : int; lock : Mutex.t }

let create (n:string) (b:int) : account =
 { name = n; bal = b; lock = Mutex.create() }

let deposit (a:account) (amount:int) : unit =
 Mutex.lock a.lock;
 if a.bal + amount < max_balance then
 a.bal <- a.bal + amount;
 Mutex.unlock a.lock

let withdraw (a:account) (amount:int) : int =
 Mutex.lock a.lock;
 let result =
 if a.bal >= amount then (
 a.bal <- a.bal – amount;
 amount) else 0
 in
 Mutex.unlock a.lock;
 result

Adding	a	Lock	

78	

type account = { name : string; mutable bal : int; lock : Mutex.t }

let create (n:string) (b:int) : account =
 { name = n; bal = b; lock = Mutex.create() }

let deposit (a:account) (amount:int) : unit =
 Mutex.lock a.lock;
 if a.bal + amount < max_balance then
 a.bal <- a.bal + amount;
 Mutex.unlock a.lock

let withdraw (a:account) (amount:int) : int =
 Mutex.lock a.lock;
 let result =
 if a.bal >= amount then (
 a.bal <- a.bal – amount;
 amount) else 0
 in
 Mutex.unlock a.lock;
 result

precy	easy	to	
forget	to	

unlock	your	
lock	

Becer	

79	

type account = { name : string; mutable bal : int; lock : Mutex.t }

let create (n:string) (b:int) : account =
 { name = n; bal = b; lock = Mutex.create() }

let deposit (a:account) (amount:int) : unit =
 with_lock a.lock (fun () ->

 if a.bal + amount < max_balance then
 a.bal <- a.bal + amount))

let withdraw (a:account) (amount:int) : int =
 with_lock a.lock (fun () ->

 if a.bal >= amount then (
 a.bal <- a.bal – amount;

 amount) else 0
)

let with_lock (l:Mutex.t)
 (f:unit->’b) : ’b =
 Mutex.lock l;
 let res = f () in
 Mutex.unlock l;
 res

General	Design	Pacern	

80	

Associate	any	shared,	mutable	thing	with	a	lock.	
–  Java	takes	care	of	this	for	you	(but	only	for	one	simple	case.)	
–  In	OCaml,	C,	C++,	etc.	it’s	up	to	you	to	create	&	manage	locks.	

In	every	thread,	before	reading	or	wri;ng	the	object,	acquire	the	lock.	
–  This	prevents	other	threads	from	interleaving	their	opera0ons	on	the	

object	with	yours.			
–  Easy	error:		forget	to	acquire	or	release	the	lock.	

When	done	opera;ng	on	the	mutable	value,	release	the	lock.	
–  It’s	important	to	minimize	the	0me	spent	holding	the	lock.	
–  That’s	because	you	are	blocking	all	the	other	threads.	
–  Easy	error:		raise	an	excep;on	and	forget	to	release	a	lock…	
–  Hard	error:		lock	at	the	wrong	granularity	(too	much	or	too	liLle)	

	

Becer	S0ll	

81	

type account = { name : string; mutable bal : int; lock : Mutex.t }

let create (n:string) (b:int) : account =
 { name = n; bal = b; lock = Mutex.create() }

let deposit (a:account) (amount:int) : unit =
 with_lock a.lock (fun () ->

 if a.bal + amount < max_balance then
 a.bal <- a.bal + amount))

let withdraw (a:account) (amount:int) : int =
 with_lock a.lock (fun () ->

 if a.bal >= amount then (
 a.bal <- a.bal – amount;

 amount) else 0
)

let with_lock (l:Mutex.t)
 (f:unit->’b) : ‘a =
 Mutex.lock l;
 let res =
 try f ()
 with exn -> (Mutex.unlock l;
 raise exn)
 in
 Mutex.unlock l;
 res

Unfortunately…	

82	

This	design	pacern	of	associa0ng	a	lock	with	each	object,	and	
using	with_lock	on	each	method	works	well	when	we	need	to	
make	the	method	seem	atomic.	

–  In	fact,	Java	has	a	synchronize	construct	to	cover	this.	

But	it	does	not	work	when	we	need	to	do	some	set	of	ac0ons	on	
mul;ple	objects.	

MANAGING	MULTIPLE		
MUTABLE	DATA	STRUCTURES	

Another	Example	

84	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t

 };;

let empty () = {contents=[]; lock=Mutex.create()};;

let push (s:‘a stack) (x:‘a) : unit =
 with_lock s.lock (fun _ ->
 s.contents <- x::s.contents)

;;

let pop (s:‘a stack) : ‘a option =
 with_lock s.lock (fun _ ->
 match s.contents with
 | [] -> None
 | h::t -> (s.contents <- t ; Some h))

;;

Another	Example	

85	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =
 with_lock s1.lock (fun _ ->
 match pop s1 with

 | None -> ()
 | Some x -> push s2 x)

Another	Example	

86	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =
 with_lock s1.lock (fun _ ->
 match pop s1 with

 | None -> ()
 | Some x -> push s2 x)

Unfortunately,	we	
already	hold	
s1.lock		

when	we	invoke		
pop s1

which	tries	to	acquire	
the	lock.		

Another	Example	

87	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =
 with_lock s1.lock (fun _ ->
 match pop s1 with

 | None -> ()
 | Some x -> push s2 x)

Unfortunately,	we	
already	hold	
s1.lock		

when	we	invoke		
pop s1

which	tries	to	acquire	
the	lock.		

So	we	end	up	dead-
locked.			

Another	Example	

88	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let transfer_one (s1:‘a stack) (s2: ‘a stack) =
 with_lock s1.lock (fun _ ->
 match pop s1 with

 | None -> ()
 | Some x -> push s2 x)

Avoid	deadlock	by	
dele0ng	the	line	that	

aquires	s1.lock	
ini0ally	

A	trickier	problem	

89	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =

 match pop s1, pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> push s1 x ; None
 | None, Some y -> push s2 y ; None

Either:	
	
(1)  pop	one	from	each	if	both	

nonempty,	or	

(2)  have	no	effect	at	all	

A	trickier	problem	

90	

type ‘a stack = { mutable contents : ‘a list;
 lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =

 match pop s1, pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> push s1 x ; None
 | None, Some y -> push s2 y ; None

But	some	other	
thread	could	sneak	in	

here	and	try	to	
perform	an	opera0on	

on	our	contents	
before	we’ve	

managed	to	push	the	
value	back	on.	

Yet	another	broken	solu0on	

91	

let no_lock_pop (s1:‘a stack) : ‘a option =
 match s1.contents with
 | [] -> None
 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =
 contents <- x::contents

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =
 with_lock s1.lock (fun _ ->
 with_lock s2.lock (fun _ ->
 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x ; None
 | None, Some y -> no_lock_push s2 y ; None))

Yet	another	broken	solu0on	

92	

let no_lock_pop (s1:‘a stack) : ‘a option =
 match s1.contents with
 | [] -> None
 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =
 contents <- x::contents

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =
 with_lock s1.lock (fun _ ->
 with_lock s2.lock (fun _ ->
 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x ; None
 | None, Some y -> no_lock_push s2 y ; None))

Problems?	

Yet	another	broken	solu0on	

93	

let no_lock_pop (s1:‘a stack) : ‘a option =
 match s1.contents with
 | [] -> None
 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =
 contents <- x::contents

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =
 with_lock s1.lock (fun _ ->
 with_lock s2.lock (fun _ ->
 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x ; None
 | None, Some y -> no_lock_push s2 y ; None))

What	happens	if	we	call	
pop_two	x	x?			

Yet	another	broken	solu0on	

94	

let no_lock_pop (s1:‘a stack) : ‘a option =
 match s1.contents with
 | [] -> None
 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =
 contents <- x::contents

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =
 with_lock s1.lock (fun _ ->
 with_lock s2.lock (fun _ ->
 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x ; None
 | None, Some y -> no_lock_push s2 y ; None))

What	happens	if	two	
threads	are	trying	to	call	
pop_two	at	the	same	

0me?	

In	par0cular,	consider:	
	
Thread.create (fun _ -> pop_two x y)
Thread.create (fun _ -> pop_two y x)

Yet	another	broken	solu0on	

95	

let no_lock_pop (s1:‘a stack) : ‘a option =
 match s1.contents with
 | [] -> None
 | h::t -> (s1.contents <- t ; Some h)

let no_lock_push (s1:‘a stack) (x :‘a) : unit =
 contents <- x::contents

let pop_two (s1:‘a stack)
 (s2:‘a stack) : (‘a * ‘a) option =
 with_lock s1.lock (fun _ ->
 with_lock s2.lock (fun _ ->
 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x ; None
 | None, Some y -> no_lock_push s2 y ; None))

In	par0cular,	consider:	
	
Thread.create (fun _ -> pop_two x y)
Thread.create (fun _ -> pop_two y x)

One	possible	interleaving:	
T1	acquires	x’s	lock.	
T2	acquires	y’s	lock.	

T1	tries	to	acquire	y’s	lock	
and	blocks.	

T2	tries	to	acquire	x’s	lock	
and	blocks.	

A	fix	

96	

type ‘a stack = { mutable contents : ‘a list; lock : Mutex.t; id : int }

let new_id : unit -> int =

 let c = ref 0 in (fun _ -> c := (!c) + 1 ; !c)

let empty () = {contents=[]; lock=Mutex.create(); id=new_id()};;

let no_lock_pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =

 match no_lock_pop s1, no_lock_pop s2 with

 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x; None

 | None, Some y -> no_lock_push s2 y; None

let pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =
 if s1.id < s2.id then

 with_lock s1.lock (fun _ ->

 with_lock s2.lock (fun _ ->

 no_lock_pop_two s1 s2))

 else if s1.id > s2.id then

 with_lock s2.lock (fun _ ->

 with_lock s1.lock (fun _ ->

 no_lock_pop_two s1 s2))

 else with_lock s1.lock (fun _ -> no_lock_pop_two s1 s2)

sigh	...	

97	

type ‘a stack = { mutable contents : ‘a list; lock : Mutex.t; id : int }

let new_id : unit -> int =

 let c = ref 0 in let l = Mutex.create() in
 (fun _ -> with_lock l (fun _ -> (c := (!c) + 1 ; !c)))

let empty () = {contents=[]; lock=Mutex.create(); id=new_id()};;

let no_lock_pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =

 match no_lock_pop s1, no_lock_pop s2 with
 | Some x, Some y -> Some (x,y)
 | Some x, None -> no_lock_push s1 x; None

 | None, Some y -> no_lock_push s2 y; None

let pop_two (s1:‘a stack) (s2:‘a stack) : (‘a * ‘a) option =

 …

;;

Refined	Design	Pacern	

98	

•  Associate	a	lock	with	each	shared,	mutable	object.	
•  Choose	some	ordering	on	shared	mutable	objects.	

–  doesn’t	macer	what	the	order	is,	as	long	as	it	is	total.	
–  in	C/C++,	oden	use	the	address	of	the	object	as	a	unique	
number.	

–  Our	solu0on:		add	a	unique	ID	number	to	each	object	
•  To	perform	ac;ons	on	a	set	of	objects	S	atomically:	

–  acquire	the	locks	for	the	objects	in	S	in	order.	
–  perform	the	ac0ons.	
–  release	the	locks.	
	

Refined	Design	Pacern	

99	

•  Associate	a	lock	with	each	shared,	mutable	object.	
•  Choose	some	ordering	on	shared	mutable	objects.	

–  doesn’t	macer	what	the	order	is,	as	long	as	it	is	total.	
–  in	C/C++,	oden	use	the	address	of	the	object	as	a	unique	
number.	

–  Our	solu0on:		add	a	unique	ID	number	to	each	object	
•  To	perform	ac;ons	on	a	set	of	objects	S	atomically:	

–  acquire	the	locks	for	the	objects	in	S	in	order.	
–  perform	the	ac0ons.	
–  release	the	locks.	

BUT:		IN	A	BIG	PROGRAM,	IT	IS	REALLY	HARD	TO	GET	THIS	RIGHT	
A	HUGE	COMPONENT	OF	PL	RESEARCH	INVOLVES	TRYING	TO	
FIND	THE	MISTAKES	PEOPLE	MAKE	WHEN	DOING	THIS.		AVOID	
WHENEVER	POSSIBLE!		USE	FUNCTIONAL	ABSTRACTIONS!	

Important!	
	

Acquire	all	the	locks	you	will	need		
BEFORE	

performing	any	irreversible	ac0ons!	

SUMMARY	

Programming	with	muta0on,	threads	and	locks	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

thread	1	 thread	2	

Reasoning	about	shared	variables	
and	semaphores	is	hard	in	general,	

but		futures	are	a	discipline	
for	gezng	it	right.	

	
Much	of	programming-language	design	
is	the	art	of	finding	good	disciplines	

in	which	it’s	harder*	to	write	bad	programs.	
	

Even	aside	from	PL	design,	the	same	is	true	of	
sodware	engineering	with	Abstract	Data	Types:	

engineer	disciplines	in	your	interfaces,	
harder	for	the	user	to	get	it	wrong.	

*but	somebody	will	always	find	a	way…	

Reasoning	about	the	correctness	of	pure	parallel	programs	that	
include	futures	is	easy	--	no	harder	than	ordinary,	sequen0al	
programs.		(Reasoning	about	their	performance	may	be	harder.)	
	

Programming	with	muta0on,	threads	and	locks	
Reasoning	about	the	correctness	of	pure	parallel	programs	that	
include	futures	is	easy	--	no	harder	than	ordinary,	sequen0al	
programs.		(Reasoning	about	their	performance	may	be	harder.)	
	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

Reasoning	about	concurrent	programs	with	
effects	requires	considering	all	interleavings*	of	
instruc;ons	of	concurrently	execu;ng	threads.	

–  oden	too	many	interleavings	for	normal	
humans	to	keep	track	of	

–  nonmodular:	you	oden	have	to	look	at	the	
details	of	each	thread	to	figure	out	what	is	
going	on	

–  locks	cut	down	interleavings	
–  but	knowing	you	have	done	it	right	s0ll	
requires	deep	analysis	

*and	worse…	

thread	1	 thread	2	

