Threads, Futures

and some nastier things too

COS 326
David Walker
Princeton University

slides copyright 2013-2015 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

Last Time: Informal Error Rate Chart/

0

regularity

with which
you shoot

yourself

in the foot

v

Last Time: Informal Error Rate Chart/;P

regularity

with which

you shoot
yourself
in the foot

heaven _ |
on earth

manual
memory
management

kitchen
sink +
manual
memory

\

null pointers,
paucity of types,
inheritance

\

unstructured
parallel

or concurrent
programming

v

Threads: A Warning

* Concurrent Threads with Locks: the classic shoot-yourself-in-
the-foot concurrent programming model

— all the classic error modes

* Why Threads?

— almost all programming languages will have a threads library
* OCaml in particular!

— you need to know where the pitfalls are

— the assembly language of concurrent programming paradigms

* we’ll use threads to build several higher-level programming
models

Threads

 Threads: an abstraction of a processor.

— programmer (or compiler) decides that some work can be done
in parallel with some other work, e.g.:

let = compute big thing() in
let y = compute other big thing() in

— we fork a thread to run the computation in parallel, e.g.:

let t = Thread.create compute big thing () in
let y = compute other big thing () in

Intuition in Pictures

time 1

time 2

time 3

let v = g

()

let t = Thread.create f

in

() in

processor 1

processor 2

Thread.create

execute g ()

(* doing nothing *)

execute £ ()

Of Course...

Suppose you have 2 available cores and you fork 4 threads. In a
typical multi-threaded system,

— the operating system provides the illusion that there are an
infinite number of processors.

* not really: each thread consumes space, so if you fork too many
threads the process will die.

— it ime-multiplexes the threads across the available processors.

* about every 10 msec, it stops the current thread on a processor,
and switches to another thread.

* so athreadisreally a virtual processor.

[OCaml, Concurrency and Parallelism

Unfortunately, even if your computer has 2, 4, 6, 8 cores, OCaml
cannot exploit them. It multiplexes all threads over a single core

thread thread thread

e - =

core

Hence, OCaml provides concurrency, but not parallelism. Why?
Because OCaml (like Python) has no parallel “runtime system” or
garbage collector. Other functional languages (Haskell, F#, ...) do.

Fortunately, when thinking about program correctness, it doesn’t
matter that OCaml is not parallel -- | will often pretend that it is.

You can hide I/O latency, do multiprocess programming or distribute
tasks amongst multiple computers in OCaml.

Coordination

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create £ () in
let v = g () in

How do we get back the result that t is computing?

First Attempt

let r =
let t =
let vy =

match

ref None
Thread.create (fun -> r := Some (f

g() in B
'r with

| Some v -> (* compute with v and y *)

| None -> failwith "impossible"

()))

in

What’s wrong with this?

10

Second Attempt

let r = ref None
let t = Thread.create (fun -> r := Some(f ())) in
let v = g() in

let rec wait () =

match !'r with
| Some v -> v

| None -> wait ()
in
let v = wait () in
(* compute with v and y *)

Two Problems

let r = ref None
let t = Thread.create (fun -> r := Some(f ())) in
let v = g() in

let rec wait () =

match !'r with
| Some v —-> v

| None -> wait ()
in
let v = wait () in
(* compute with v and y *)

First, we are busy-waiting.
* consuming CPU without doing something useful.
* CPU could either be running a useful thread/program or power down.

12

Two Problems

let r = ref None
let t = Thread.create (fun -> r := Some(f ())) in
let v = g() in

let rec wait () =

match !'r with
| Some v -> v

| None -> wait ()
in
let v = wait () in
(* compute with v and y *)

Second, an operation like r := Some v may not be atomic.
* r:=Some v requires us to copy the bytes of Some v into the ref r

* we might see part of the bytes (corresponding to Some) before we’ve
written in the other parts (e.g., v).

* So the waiter might see the wrong value.

13

Atomicity

Consider the following:

let inc(r:int ref) = r := (!'r) + 1

and suppose two threads are incrementing the same ref r:

Thread 1 Thread 2
inc (r) ; inc (r) ;
'r 'r

If r initially holds O, then what will Thread 1 see when it reads r?

14

Atomicity

The problem is that we can’t see exactly what instructions the
compiler might produce to execute the code.

It might look like this:

Thread 1 Thread 2

EAX := load(r); EAX := load(r) ;
EAX := EAX + 1; EAX := EAX + 1;
store EAX 1into r store EAX 1into r

EAX := load(r) FEAX := load(r)

Atomicity

But a clever compiler might optimize this to:

Thread 1 Thread 2

EAX := load(r):; EAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;
store EAX 1into r store EAX 1into r
FAX———Tcaa) FAX——ac)

Atomicity

Furthermore, we don’t know when the OS might interrupt one
thread and run the other.

Thread 1 Thread 2

FEAX := load(r):; EAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;
store EAX 1into r store EAX 1into r
FEAX := load(r) EAX := load(r)

(The situation is similar, but not quite the same on multi-
processor systems.)

17

The Happens Before Relation

We don’t know exactly when each instruction will execute, but
there are some constraints: the Happens Before relation

Rule 1: Given two expressions (or instructions) in sequence, el;
e2 we know that el happens before e2.

Rule 2: Given a program:

let t = Thread.create f x in

Thread.join t;
e

we know that (f x) happens before e.

Atomicity

One possible interleaving of the instructions:

Thread 1 Thread 2

EAX := load(r); 7" EAX := load(r);
EAX := EAX + 1;ki::;EAX := EAX + 1;
store EAX 1into r store EAX 1into r
EAX := load(r)= EAX := load(r)

What answer do we get if r points to O to start?

19

Atomicity

Another possible interleaving:

Thread 1 Thread 2

EAX := load(r); EAX := load(r);
EAX := EAX + 1; /EAX := EAX + 1;
store EAX 1into r store EAX 1into r
EAX := load(r) = EAX := load(r)

What answer do we get this time?

20

Atomicity

Another possible interleaving:

Thread 1 Thread 2

FEAX := load(r); FEAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;
store EAX 1nto r store EAX 1nto r
FEAX := load(r)= EAX := load(r)

What answer do we get this time?

Moral: The system is responsible for scheduling execution of
instructions.

Moral: This can lead to an enormous degree of nondeterminism.

21

Atomicity

In fact, today’s multicore processors don’t treat memory in a
sequentially consistent fashion.

Thread 1 Thread 2

EAX := load(r):; EAX := load(r);
EAX := EAX + 1; EAX := EAX + 1;
store EAX 1into r store EAX 1into r
EAX := load(r) EAX := load(r)

That means that we can’t even assume that what we will see
corresponds to some interleaving of the threads’ instructions!

Beyond the scope of this class! But the take-away is this: It’s not a good idea

to use ordinary loads/stores to synchronize threads; you should use explicit synchronization
primitives so the hardware and optimizing compiler don’t optimize them away.

22

Atomicity

In fact, today’s multicore processors don’t treat memory in a
sequentially consistent fashion. That means that we can’t even
assume that what we will see corresponds to some interleaving

of the threads’ instructions!

Core 1 Core 2 Core 3 Core 4
ALU ALU ALU ALU
L1 cache L1 cache L1 cache L1 cache
L2 cache

When Corel stores to
“memory”, it lazily
propagates to Core2’s L1
cache. The load at Core2
might not see it, unless
there is an explicit
synchronization.

Beyond the scope of this class! But the take-away is this: It’s not a good idea
to use ordinary loads/stores to synchronize threads; you should use explicit synchronization
primitives so the hardware and optimizing compiler don’t optimize them away.

23

Summary: Interleaving & Race Conditions]

Calculate possible outcomes for a program by considering all of the possible
interleavings of the atomic actions performed by each thread.
— Subject to the happens-before relation.
e can’t have a child thread’s actions happening before a parent forks it.
e can’t have later instructions execute earlier in the same thread.
— Here, atomic means indivisible actions.
* For example, on most machines reading or writing a 32-bit word is atomic.
* But, writing a multi-word object is usually not atomic.

* Most operations like “b := b - w” are implemented in terms of a series of
simpler operations such as

— rl =read(b); r2 =read(w); r3 =rl —r2; write(b, r3)

Reasoning about all interleavings is hAard. just about impossible for people
— Number of interleavings grows exponentially with number of statements.
— It’s hard for us to tell what is and isn’t atomic in a high-level language.
— YOU ARE DOOMED TO FAIL IF YOU HAVE TO WORRY ABOUT THIS STUFF2!4

Interleaving]

Calculate possible outcomes for a program by considering all of the possible
interleavings

| WARNING |

G you see people talk about interleavings, BEWAREN
It probably means they’re assuming
“sequential consistency,”
which is an oversimplified, naive model of what the
parallel computer really does.
k It’s actually more complicated than that. J

Reasoning about all interleavings is hAard. just about impossible for people

— YOU ARE DOOMED TO FAIL IF YOU HAVE TO WORRY ABOUT THIS STUFF),

[A conventional solution for shared-memory parallelism]

let inc(r:int ref) = r := (!'r) + 1
Thread 1 Thread 2

lock (mutex) ; lock (mutex) ;
inc (r) ; inc(r) ;

l'r l'r

unlock (mutex) ; unlock (mutex) ;

Guarantees mutual exclusion of these critical sections.

This solution works (even for real machines that are not
sequentially consistent), but...

Complex to program, subject to deadlock, prone to bugs,
not fault-tolerant, hard to reason about.

[A conventional solution for shared-memory parallelism]

let inc(r:int ref) = r := (!'r) + 1
Thread 1 Thread 2
lock (mutex) ; lock (mutex) ;
inc(r) ; inc(r); ™
¢ ! Synchronization
l'r l'r ///
unlock (mutex) ; unlock (mutex) ;

Guarantees mutual exclusion of these critical sections.

This solution works (even for real machines that are not
sequentially consistent), but...

Complex to program, subject to deadlock, prone to bugs,
not fault-tolerant, hard to reason about.

[Another approach to the coordination Problem]

Thread.create : (‘a -> ‘b) -> ‘Ya -> Thread.t

let t = Thread.create £ () in
let v = g () in

How do we get back the result that t is computing?

28

One Solution (using join)

let r = ref None

let t = Thread.create (fun -> r := Some(f
let v = g() in

Thread.join t ;

match !'r with
| Some v -> (* compute with v and y *)

| None -> failwith “impossible”

()))

in

29

One Solution (using join)

let r = ref None

let t = Thread.create (fun -> r := Some(f ())) in

let v = g() in
Thread.joilin t ;

match !'r with
| Some v -> (* compu th v and y *)

| None -> failwith “impo

Thread.joln t causes
the current thread to wait
until the thread t
terminates.

- /

30

[One Solution (using join)

Thread.joilin t ; 4’/—[Synchronization]

4

match !'r with
| S v -> (* compute with v and y *)

| e —> failwith “impossible”

4 h

So after the join, we know
that any of the operations
of t have completed.

S /

let r = ref None
let t = Thread.create (fun -> r := Some (£ jl}) in
let v = g() in

31

In Pictures

Thread 1 Thread 2 We know that for each
thread the previous

cmreate fx instructions must happen
mStl,l; before the later instructions.

inst, ,; inst, ;

: tl’zf : tz’li So for instance, inst,; ; must
NSty 35 NS00 happen before inst ,.
INst, ,; Inst, 5;

Inst; ;.

Inst, .;
Inst, .;

joint

32

In Pictures

Thread 1 Thread 2 We also know that the
fork must happen before

cmreate fx the first instruction of the
InStl,l; second thread.

Inst, ,; inst, ;
|n5t1,3; mstz'z;
|n5t1,4; InSt2’3;

Inst; ;.

Inst, ..;
Inst, .;

joint

33

In Pictures

Thread 1 Thread 2
t=create f x 1

inst, ,; \

inst, ,; inst, ;;
inst, s; inst, ,;
INsty 4 inst, ,;
inst, 1. inst, .
instl,n; /

joint

We also know that the
fork must happen before

the first instruction of the
second thread.

And thanks to the join,
we know that all of the
instructions of the second
thread must be completed
before the join finishes.

34

In Pictures

However, in general, we
do not know whether

Thread 1 Thread 2 inst, ; executes before or
t=create f x- after inst; ;.

inStl,l; \ In general, synchronization
inst, ,; inst, ;; instructions like fork and

: . - . join reduce the number of
! NSty s I NSt; 2 possible interleavings.
NSty 4; INst, 3;

Synchronization cuts down
in Stl - instz - nondeterminism.

inStl,n; / In the absence of

joint synchronization we don’t

know anything...

35

[Fork-join synchronization

Thread.joilin t ; 4’/—[Synchronization]

4

match !'r with
| S v -> (* compute with v and y *)

| e —> failwith “impossible”

4 h

So after the join, we know
that any of the operations
of t have completed.

S /

let r = ref None
let t = Thread.create (fun -> r := Some (£ jl}) in
let v = g() in

36

FUTURES: A PARALLEL
PROGRAMMING ABSTRACTION

Futures

The fork-join pattern we just saw is so common, we’ll create an abstraction for it:

module type FUTURE =
sig
type ‘a future

(* future f x forks a thread to run f(x)
and stores the result in a future when complete *)
val future : (‘a->‘'b) -> ‘'Ya -> ‘b future

(* force f causes us to wait until the
thread computing the future value 1is done
and then returns its value. *)

val force : ‘a future -> ‘a

end

38

Does that interface looks familiar ?

.

Future Implementation

module Future
struct

type ‘a future

end

FUTURE =
= {tid Thread.t ;
value a option ref }

Future Implementation

.

module Future : FUTURE =

struct
type ‘a future = {tid : Thread.t g
value : ‘a option ref }
let future(f:‘a->'b) (x:'a) : ‘b future =
let r = ref None in
let t = Thread.create (fun () -> r := Some(f x)) ()
in

{tid=t ; wvalue=r}

end

[Future Implementation

module Future : FUTURE =

struct
type ‘a future = {tid : Thread.t g
value : ‘a option ref }
let future(f:‘a->'b) (x:'a) : ‘b future =
let r = ref None in
let t = Thread.create (fun () -> r := Some(f x)) ()
in

{tid=t ,; wvalue=r}

let force (f:‘a future) : ‘a =
Thread.join f.tid ;
match ! (f.value) with
| Some v -> v
| None -> failwith “impossible!”

end

Now using Futures

let x = future £ () 1in
let v = g () in
let v = force x in

(* compute with v and y *)

43

Back to the Futures

module type FUTURE =
sig

type ‘a future val £ : unit -> int

val future : (ra_>rb) -> 3 -> ‘b future val g : unit —-> int
val force :’a future -> ‘a

end

with futures library: without futures library:

let x = future £ () in let r = ref None

let y = g () in let t = Thread.create

let v = force x in o = = = Semel(E 0))

y t+ v ()

in

let v = g() in
Thread.join t ;
match !'r with

Some v -> vy + v

| None -> failwith “impossible”

Back to the Futures

module type FUTURE =
sig

\
E2E el FEENEE val £ : unit -> int

val future : ("a->'b) -> 'a -> ‘b future val g : unit -> int
val force :’a future -> ‘a

end

with futures library: without futures library:

let x = future £ () in let r = ref None

let vy = g () in

let t = Thread.create
let v = force x in

(fun -> r := Some(f ()))
y + v 'X 0 N

in

let v = g() in

,////’//////////;> Thread. join t ;
. match !'r with
what happens if
we delete these

Some v -> vy + v

| None -> failwith “impossible”

lines?

45

Back to the Futures

module type FUTURE =
sig

type ‘a future val £ : unit -> int

val future : ("a->'b) -> 'a -> ‘b future val g : unit -> int
val force :’a future -> ‘a

end

with futures library: without futures library:

let x = future £ () in let r = ref None

let vy = g () in

let t = Thread.create
let v = force x in

(fun -> r := Some(f ()))

R 0

y + X

in

let v = g() in

//////////,////’/> Thread.join t ;

. match !'r with
what happens if
we use x and

Some v -> vy + v

| None -> failwith “impossible”

forget to force?

46

Back to the Futures

module type FUTURE =

sig

type ‘a future val £ : unit -> int

val future : ("a->'b) -> "a -> ‘b future val g : unit —-> int
val force :’a future -> ‘a
end
with futures library: without futures library:
let x = future £ () in let r = ref None
let y =g () in let t = Thread.create
let v = force x in
(fun -> r := Some(f ()))
y + X -
()
in
Moral: Futures + typing ensure STy =g

entire categories of errors can’t Thread.join t /

happen -- you protect yourself
from your own stupidity

match !'r with

Some v -> vy + v

| None -> failwith “impossible”

47

Back to the Futures

module type FUTURE =
sig

type ‘a future

("a=>"b) -> "a —->
:"a future -> 1‘a

val future
val force
end

‘b future

val £ : unit -> int

val g : unit -> int

with futures library:

without futures library:

let x = future £ () in
let v = force x in
let y =g () in A

y + X

4//////////////4>

what happens if you
relocate force, join?

let r = ref None

let t = Thread.create
(fun -> r := Some(f ()))
0

in

Thread.join t ;

let v = g() in

match !'r with

Some v -> vy + v

| None -> failwith “impossible”

48

Back to the Futures

module type FUTURE =
sig

type ‘a future

("a->"b)
:"a future ->

val future
val force
end

-> 'a —>

‘a

val £ : unit -> int

val g : unit -> int

‘b future

with futures library:

let x =

let v = force x in
let y = g () in
y + X

future £ () in

Moral: Futures are
not a universal savior

without futures library:

let r = ref None

let t = Thread.create
(fun -> r := Some(f ()))
()

in

Thread.join t ;

let v = g() in

match !'r with

Some v -> vy + v

| None -> failwith “impossible”

49

An Example: Mergesort on Arrays

let mergesort (cmp:'a->'a->int)
(arr : 'a array) : 'a array =
let rec msort (start:int) (len:int) : 'a array =
match len with
| 0 -> Array.of list []
| 1 -> Array.make 1 arr. (start)
| -> let half = len / 2 in
let al = msort start half in
let a2 = msort (start + half)
(len - half) in

merge al a2

and merge (al:'a array) (a2:'a array) : 'a array =

An Example: Mergesort on Arrays

let mergesort (cmp:'a->'a->int) (arr : 'a array) : 'a array =
let rec msort (start:int) (len:int) : 'a array =
match len with
| 0 -> Array.of list []
| 1 -> Array.make 1 arr. (start)
| -> let half = len / 2 in
let al = msort start half in
let a2 = msort (start + half) (len - half) in
merge al a2
and merge (al:'a array) (a2:'a array) : 'a array =
let a = Array.make (Array.length al + Array.length a2) al. (0) in
let rec loop 1 j k =
match i < Array.length al, 7 < Array.length a2 with
| true, true -> if cmp al. (i) a2.(j) <= 0 then
(a. (k) <= al. (1) ; loop (i+1l) J (k+1))
else (a. (k) <- a2.(j) ; loop 1 (J+1) (k+1))
| true, false -> a. (k) <= al. (i) ; loop (i+l) J (k+1)
| false, true -> a. (k) <= a2.(j) ; loop i (j+1) (k+1)
| false, false -> ()
in
loop 0 0 0 ; a
in

msort O (Array.length arr)

An Example: Mergesort on Arrays

let mergesort (cmp:'a->'a->int)

(arr : 'a array) : 'a arrasr—=
Opportunity for

parallelization

let rec msort (start:int) (len:int)

match len with

| 0 -> Array.of list []
| 1 -> Array.make 1 arr. (start)
| —> let half = len / 2 in
let al = msort start half in
let a2 = msort (start + half)
(len - half) 1in

merge al aZ

and merge (al:'a array) (a2:'a array) : 'a array =

Making Mergesort Parallel

let mergesort (cmp:'a->'a->int)
(arr : 'a array) : 'a array =
let rec msort (start:int) (len:int) : 'a array =
match len with
| 0 -> Array.of list []
| 1 -> Array.make 1 arr. (start)
| -> let half = len / 2 in
let al £ =
Future.future (msort start) half in
let a2 =
msort (start + half) (len - half) 1in

merge (Future.force al f) aZ

and merge (al:'a array) (a2:'a array) : 'a array

Divide-and-Conquer

This is an instance of a basic divide-and-conquer pattern in
parallel programming

— take the problem to be solved and divide it in half

— fork a thread to solve the first half

— simultaneously solve the second half

— synchronize with the thread we forked to get its results

— combine the two solution halves into a solution for the whole
problem.

Warning: the fact that we only had to rewrite 2 lines of code for
mergesort made the parallelization transformation look
deceptively easy

— we also had to verify that any two threads did not touch

overlapping portions of the array -- if they did we would have to
again worry about scheduling nondeterminism

Caveats

There is some overhead for creating a thread.
— On uniprocessor, parallel code slower than sequential code.

Even on a multiprocessor, we do not always want to fork.
— when the subarray is small, faster to sort it sequentially than to fork
e similar to using insertion sort when arrays are small vs. quicksort
— this is known as a granularity problem
* more parallelism than we can effectively take advantage of.

55

[Caveats

In a good implementation of futures, a compiler and run-time system
might look to see whether the cost of doing the fork is justified by
the amount of work that will be done. Today, it’s up to you to figure
this out... ®
— typically, use parallel divide-and-conquer until:
(a) we have generated at least as many threads as there are processors

— often more threads than processors because different jobs take
different amounts of time to complete and we would like to keep
all processors busy

(b) the sub-arrays have gotten small enough that it’s not worth forking.

We're not going to worry about these performance-tuning details
but rather focus on the distinctions between parallel and sequential
algorithms.

56

Another Example

type 'a tree = Leaf | Node of 'a node

and 'a node = {left : 'a tree ;
value : 'a ;
right : 'a tree }

let rec fold (f:'a -> 'b —> 'b -> 'b) (u:'b)
(t:'a tree) : 'b =

match ¢t with
| Leaf -> u
| Node n ->
f n.value (fold £ u n.left) (fold £ u n.right)

let sum (t:int tree) = fold (+) 0 t

57

Another Example

type 'a tree = Leaf | Node of 'a node

and 'a node = {left : 'a tree ;
value : 'a ;
right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)
(t:'a tree) : 'b =
match ¢t with
| Leaf -> u
| Node n ->

let 1 £ = Future.future (pfold £ u) n.left 1in
let r = pfold £ u n.right 1in

f n.value (Future.force 1 f) «r

let sum (t:int tree) = pfold (+) 0 t

Note

If the tree is unbalanced, then we’re not going to get the
same speedup as if it’s balanced.

Consider the degenerate case of a list.

— The forked child will terminate without doing any useful work.

— So the parent is going to have to do all that work.

— Pure overhead... ®

In general, lists are a horrible data structure for parallelism.
— we can’t cut the list in half in constant time

— for arrays and trees, we can do that (assuming the tree is
balanced.)

59

Side Effects?

type 'a tree = Leaf | Node of 'a node

and 'a node = { left : 'a tree ;
value : 'a ;
right : 'a tree }

let rec pfold (f:'a -> 'b -=> 'b -> 'b) (u:'b)
(t:'a tree) : 'b =
match t with
| Leaf -> u

| Node n —>
let 1 £ = Future.future (pfold f u) n.left in
let r = pfold £ u n.right 1in

f n.value (Future.force 1 f) r

let print (t:int tree) =
pfold (fun n -> Printf.print “%d\n” n) ()

Huge Point

If code is purely functional, then it never matters in what order it is run.
If f () and g () are pure then all of the following are equivalent:

1 f = f f]
let x = £() in et x uture () }n
let v = g() in ety =9 0 o
o Y J let x = force x f in
e
let = fut '
Tet v — g f1 4n et vy g uture g () }n
. let x = £ () in
let x = £ () 1n .
o let vy = force y g in
e

As soon as we introduce side-effects, the order starts to matter.

— This is why, IMHO, imperative languages where even the simplest of
program phrases involves a side effect, are doomed.

— Of course, we’ve been saying this for 30 years!

— See J. Backus’s Turing Award lecture, “Can Programming be Liberated from
the von Neumann Style? A Functional Style and Its Algebra of Programs.”

http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf

61

Programming with locks

(trigger warning: this gets pretty nasty)

Perils of Parallelism]

THESE CHARTS SHOW MOVIE CHARACTER INTERACTIONS,
THE HORIZONTAL AXIS 1S TIME. THE VERTICAL GROUPING OF THE
LINES INDICATES WHICH CHARACTERS ARE TOGETHER AT A GIVEN TIME.

LORD oF THE RINGS

STAR WARS

’“"\ (ORIGINAL TRILOGY)

o — — \WE“F—'\MW
oA | —n—fm:f;:\; 7//,/ /,,,W,

DuEL
—
YA\ ,/'7 08
__/

& —
370
,'// \\ \ -
— I o/ W\ = (-
—) —ea A ~—— | =
N // C-3F0 N
e — ‘
GaeEo0 / \;\ J,
) »g oeve
~ L
e
o
e

12 ANGRY MEN

T o '
E 2R 2
Er B 3508 3 R §
3mcR
fr=y 3wk £
b 35k &
Er=y e - oo §
Er SR §
pry SR
Fry £
b SR 36
3R 3R

MANAGING MUTABLE DATA

Consider a Bank Account ADT

type account = { name : string; mutable bal : int
let create (n:string) (b:1nt) : account =

{ name = n; bal = b }
let deposit (a:account) (amount:int) : unit =

if a.bal + amount < max balance then
a.pal <- a.bal + amount

let withdraw (a:account) (amount:int) : int =
if a.bal >= amount then (
a.bal <- a.bal - amount;
amount

) else O

}

65

Simulating a Bank

val bank : account array

let rec atm (loc:string) =
let id = getAccountNumber () in
let w = getWithdrawAmount () in
let d = withdraw (bank. (id)) w in
dispenseDollars d ;
atm loc

let world () =
Thread.create atm “Princeton, Nassau” ;
Thread.create atm “NYC, Penn Station” ;
Thread.create atm “Boston, Lexington Square”

66

The ATM problem

e Suppose two ATMs, running in separate threads, try to
perform a withdrawal from the same bank account around
the same time.

* More specifically:
— suppose bank.(0) is an account that starts with $100

— thread 1 tries to withdraw S50 and thread 2 tries to withdraw
S75 at roughly the same time

67

Simplifying the situation...

[b = ref 100}

let w =

50 in

if 'b > w then

(b <-

W)
else

0

'b - w ;

let w = 75 in

if !'b > w then
(b <= 'b - w ;
W)

else
0

68

Simplifying the situation...

[b = ref 100}

let w = 50 in

if 'b > w then
(b <= 'b - w ;
W)

else

</’
>

0

let w = 75 in

if !'b > w then
(b <= 'b - w ;
W)

else
0

[b = ref 50}

69

Simplifying the situation...

[b = ref 100}

let w =

50 in

if 'b > w then

(b <-

W)
else

0

'b - w ;

let w = 75 1in

if 'b > w then
(b <= 'b - w ;
W)

else

0

[b = ref 25}

70

Another schedule ...

b = ref 100
let w = 50 in
if 'b > w then
—» let w = 75 1in
if 'b > w then
(b <= 'b - w ;
W)
else O
-
(b <= 'b - w ;
W)
else b = ref -25

71

Good for you ... (less so for the bank)

[b = ref 100}

let w = 50 in > | let w = 75 1n
- if 'b > w then
if 'b > w then
'b - w
— (b <- !'b - w ;
W)
E else 0O
—
(b <- !'b - w ;
w) [b=ref50}
else 0O

72

Good for you ... (less so for the bank)]

[b = ref 100}

let w = 50 in > | let w = 75 1n
- if 'b > w then
if !'b > w then
'b - w
’ — (b <= 'b - w ;
W)
else 0O

Yet we
paid out
= S125!11

(b <= 'b - w ;
W) [b=ref50

=

else O

73

[

More Synchronization: Locks

This is not a problem we can fix with fork/join/futures
— Thread.join waits until one thread terminates
— But the ATMs shouldn’t ever terminate:

let rec atm (loc:string) =
let id = getAccountNumber () in
let w = getWithdrawAmount () in
let d = withdraw (bank. (id)) w in
dispenseDollars d ;
atm loc

— Fundamental problem: atms are long-running computations that
compete over a shared resource (the bank)

74

More Synchronization: Locks

This is not a problem we can fix with fork/join/futures
— Thread.join waits until one thread terminates
— But the ATMs shouldn’t ever terminate:

let rec atm (loc:string) =
let id = getAccountNumber () in
let w = getWithdrawAmount () in
let d = withdraw (bank. (id)) w in
dispenseDollars d ;
atm loc

— Fundamental problem: atms are long-running computations that
compete over a shared resource (the bank)

Solution: use a mutex lock to synchronize threads.
— mutex is short for “mutual exclusion”
— locks give control over resource access

— controlled access to a shared resource is a concurrency problem, not
a parallelization problem ”

Mutex Locks in OCaml

module type Mutex =
sig
type t (* type of mutex locks *)

val create : unit -> t (* create a fresh lock *)

(* try to acquire the lock - makes
the thread go to sleep until the lock
is free. So at most one thread “owns” the lock.

val lock : t -> unit

(* releases the lock so other threads can
wake up and try to acquire the lock. *)

val unlock : t -> unit

(* similar to lock, but never blocks. Instead, 1f
the lock is already locked, it returns "“false”.

val try lock : t -> bool
end

*)

*)

76

Adding a Lock

type account = { name : string; mutable bal : 1nt; lock
let create (n:string) (b:int) : account =

{ name = n; bal = b; lock = Mutex.create() }
let deposit (a:account) (amount:int) : unit =

Mutex.lock a.lock;
if a.bal + amount < max balance then
a.bal <- a.bal + amount;
Mutex.unlock a.lock

let withdraw (a:account) (amount:int) : int =
Mutex.lock a.lock;

let result =
if a.bal >= amount then (
a.bal <- a.bal - amount;

amount) else 0
in
Mutex.unlock a.lock;
result

Mutex.t }

Adding a Lock

type account = { name : string; mutable bal : int; lock : Mutex.t }
let create (n:string) (b:int) : account =

{ name = n; bal = b; lock = Mutex.create() }
let deposit (a:account) (amount:int) : unit =

Mutex.lock a.lock; pretty easy to
if a.bal + amount < max balance then forget to
a.bal <- a.bal + amount; unlock your

Mutex—unteock—a—tock lock
let withdraw (a:account) (amount:int) : int =
Mutex.lock a.lock;
let result =

if a.bal >= amount then (
a.bal <- a.bal - amount;
amount) else 0
in
Mutex.unlock a.lock;
result

Better

type account = { name string;

let create (b:int)

lock =

(n:string)

{ name = n; bal = Db;

let deposit (a:account)

with lock a.lock (fun ->

()

(amount:

mutable bal int; lock Mutex

account =

Mutex.create () }

int) unit =

if a.bal + amount < max balance then

a.pbal <- a.bal + amount))

let withdraw (a:account)
with lock a.lock ()
if a.bal >= amount then (

(fun ->
a.bal <- a.bal - amount;

amount) else 0

(amount:int)

int =

.t

let with lock (l:Mutex.t)
(f:unit->"Db)
Mutex.lock 1;
let res = £ ()
Mutex.unlock 1;

in

res

"b

General Design Pattern

Associate any shared, mutable thing with a lock.
— Java takes care of this for you (but only for one simple case.)
— In OCaml, C, C++, etc. it’s up to you to create & manage locks.

In every thread, before reading or writing the object, acquire the lock.

— This prevents other threads from interleaving their operations on the
object with yours.

— Easy error: forget to acquire or release the lock.

When done operating on the mutable value, release the lock.
— It’s important to minimize the time spent holding the lock.
— That’s because you are blocking all the other threads.
— Easy error: raise an exception and forget to release a lock...
— Hard error: lock at the wrong granularity (too much or too little)

80

Better Still

type account = { name : string; mutable bal : int; lock : Mutex.t }

let create (n:string) (b:int) : account =

{ name = n; bal = b; lock = Mutex.create() }

let deposit (a:account) (amount:int) : unit =
with lock a.lock (fun () ->
if a.bal + amount < max balance then
a.pbal <- a.bal + amount))

let withdraw (a:account) (amount:irlet sl lock (1 utes, k)
with lock a.lock (fun () -> (f:unit->'b) : ‘a =
if a.bal >= amount then (Mutex.lock 1;
a.bal <- a.bal - amount; let res =

try £ ()
with exn -> (Mutex.unlock 1;
raise exn)

amount) else 0

in
Mutex.unlock 1;
res

Unfortunately...

This design pattern of associating a lock with each object, and
using with_lock on each method works well when we need to
make the method seem atomic.

— In fact, Java has a synchronize construct to cover this.

But it does not work when we need to do some set of actions on
multiple objects.

82

MANAGING MULTIPLE
MUTABLE DATA STRUCTURES

Another Example

type

let

let

let

‘a stack = { mutable contents : ‘a list;
lock : Mutex.t

[

empty () = {contents=[]; lock=Mutex.create()};;

push (s:‘a stack) (x:%'a) : unit =
with lock s.lock (fun ->

s.contents <- x::s.contents)

pop (s:‘'a stack) : ‘a option =
with lock s.lock (fun ->
match s.contents with
| [] —-> None

| h::t -> (s.contents <- t ; Some h))

84

Another Example

type ‘a stack = { mutable contents
lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit
val pop : ‘a stack -> ‘a option
let transfer one (sl:‘a stack) (s2Z:
with lock sl.lock (fun ->
match pop sl with
| None -> ()

| Some x —-> push s2 Xx)

‘a 1list;

‘a stack)

85

Another Example]

type ‘a stack = { mutable contents : ‘a list;
lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit

val pop : ‘a stack -> ‘a option

let transfer one (sl:‘a stack) (s2: ‘a stack) =

with lock sl.lock (fun ->

Unfortunately, we

match pop sl with

| None -> () already hold
| Some x -> push s2 x) Sl°l?Ck
when we invoke
pop sl

which tries to acquire
the lock.

86

Another Example

type ‘a stack = { mutable contents ‘a list;
lock Mutex.t }
val empty () —> ‘a stack
val push ‘a stack -> a -> unit
val pop ‘a stack -> ‘a option
let transfer one (sl:‘a stack) (s2: ‘a stack) =
with lock sl.lock (fun ->
match pop sl with Unfortunately, we
| None -> () already hold
sl.lock
->
| Some x pN when we invoke
pop sl
which tries to acquire
the lock.

So we end up dead-
locked.

Another Example

type ‘a stack = { mutable contents : ‘a list;
lock : Mutex.t }

val empty : () -> ‘a stack
val push : ‘a stack -> a -> unit

val pop : ‘a stack -> ‘a option

let transfer one (sl:‘a stack) (s2: ‘a stack) =

with lock sl.lock (fun ->

match pop sl with
| None -> ()
| Some x -> push s2 x)

Avoid deadlock by
deleting the line that
aquires sl.lock

initially

88

| A trickier problem]

type ‘a stack = { mutable contents : ‘a list;
lock : Mutex.t }

Either:

val empty : () -> ‘a stack (1) pop one from each if both

nonempty, or

val push : ‘a stack -> a ->

val pop : ‘a stack

(2) have no effect at all

let pop two (sl:‘'a stack)
(s2:'a stack) : ('a * ‘a) option =
match pop sl, pop sZ2 with
| Some x, Some y —-> Some (X,VY)
| Some x, None -> push sl x ; None

| None, Some y —-> push sZ2 y ; None

89

[A trickier problem

type ‘a stack = { mutable contents : ‘a list;
lock : Mutex.t }

But some other
thread could sneak in

val empty : () -> ‘a stack here and try to
val push : ‘a stack -> a -> unit perform an operation
val pop : ‘a stack -> ‘a option on our contents

before we’ve
managed to push the
value back on.

let pop two (sl:‘'a stack)
(s2:'a stack
match pop sl, pop s2 wit
| Some x, Some y —->
| Some x, None -> push sl x ; None

| None, Some y —> push s2 y ; None

Yet another broken solution

let no lock pop (sl:‘a stack) : ‘a option =

match sl.contents with
| [] —-> None
| h::t -> (sl.contents <- t ; Some h)

let no lock push (sl:‘'a stack) (x :'a) : unit =

contents <- xX::contents

let pop two (sl:‘'a stack)

(s2:'a stack) : (‘a * ‘a) option =
with lock sl.lock (fun ->
with lock sZ2.lock (fun —>

match no lock pop sl, no lock pop s2Z2 with
| Some x, Some y —-> Some (X,VY)
| Some x, None -> no lock push sl x ; None
| None, Some y —-> no lock push s2 y ; None))

Yet another broken solution

let no lock pop (sl:‘a stack) : ‘a option =
match sl.contents with
| [] —-> None
| h::t -> (sl.contents <- t ; Some

let no lock push (sl:‘a stack)
contents <- X::contents

Problems?

let pop two (sl:‘'a stack)

(s2:'a stack) : ('a * ‘a) option =
with lock sl.lock (fun ->
with lock sZ2.lock (fun ->

match no lock pop sl, no lock pop s2Z2 with
| Some x, Some y —-> Some (X,VY)
| Some x, None -> no lock push sl x ; None
| None, Some y —-> no lock push s2 y ; None))

Yet another broken solution

let no lock pop (sl:‘a stack) : ‘a option =
match sl.contents with
| [] —-> None
| h::t -> (sl.contents <- t ; Some

let no lock push (sl:‘a stack)
contents <- X::contents

What happens if we call
pop _two x x?

let pop two (sl:‘'a stack)

(s2:'a stack) : (‘a * ‘a) option =
with lock sl.lock (fun ->
with lock sZ2.lock (fun —>

match no lock pop sl, no lock pop s2Z2 with
| Some x, Some y —-> Some (X,VY)
| Some x, None -> no lock push sl x ; None
| None, Some y —-> no lock push s2 y ; None))

Yet another broken solution

| In particular, consider:
let no lock pop (sl:

match sl.contents 1 Thread.create (fun _ —> pop two x y)
| [] -> None Thread.create (fun -> pop two y X)

| h::t -> (sl.contents <- t ;

What happens if two
threads are trying to call
pop_two at the same
time?

let no lock push (sl:‘a stack)
contents <- X::contents

let pop two (sl:‘'a stack)

(s2:'a stack) : (‘a * ‘a) option =
with lock sl.lock (fun ->
with lock sZ2.lock (fun —>

match no lock pop sl, no lock pop s2Z2 with
| Some x, Some y —-> Some (X,VY)
| Some x, None -> no lock push sl x ; None
| None, Some y —-> no lock push s2 y ; None))

Yet another broken solution

In particular, consider:
let no lock pop (sl:

match sl.contents {Thread.create (fun -> pop two x V)
| [] -> None Thread.create rSfun _ —> pop two y X)
| h::t -> (sl.contents <- t ; S h)

let no lock push (sl:‘a stack) Onepossibleinterleaving:

N P T1 acquires x’s lock.
T2 acquires y’s lock.

T1 tries to acquire y’s lock

contents <- xX::contents

let pop two (sl:‘'a stack) and blocks.
(52° ‘a s;tacﬂq) : T2 tries to acquire x’s lock
with lock and hlocks.

natch no DEADLOCK ..

| Some x, Some y —-> Some (xX,VY)
| Some x, None -> no lock push sl x ; None

| None, Some y —-> no lock push s2 y ; None))

A fix

.

type ‘a stack = { mutable contents : ‘a list; lock : Mutex.t; id : int }

let new id : unit -> int =

let ¢ = ref 0 in (fun -> c := (!c) + 1 ; lc)
let empty () = {contents=[]; lock=Mutex.create(); id=new id()};;
let no lock pop two (sl:‘a stack) (s2:‘'a stack) : (‘a * ‘a) option =

match no lock pop sl, no lock pop s2 with
| Some x, Some y —-> Some (X,YVY)
| Some x, None -> no lock push sl x; None

| None, Some y -> no lock push s2 y; None

let pop two (sl:‘a stack) (s2:‘'a stack) : ('a * ‘a) option =
if sl.1id < s2.1id then
with lock sl.lock (fun ->
with lock s2.lock (fun ->

no lock pop two sl s2))
else if sl.id > s2.id then
with lock s2.lock (fun ->
with lock sl.lock (fun ->
no lock pop two sl s2))

else with lock sl.lock (fun _ -> no lock pop two sl s2)

sigh ...

.

type ‘a stack = { mutable contents : ‘a list; lock : Mutex.t; id : int }

let new id : unit -> int =
let ¢ = ref 0 in let 1 = Mutex.create() in
(fun -> with lock 1 (fun -> (c := (lc) + 1 ; !c)))
let empty () = {contents=[]; lock=Mutex.create(); id=new id()};;
let no lock pop two (sl:‘a stack) (s2:‘'a stack) : (‘'a * ‘a) option =

match no lock pop sl, no lock pop s2 with
| Some x, Some y —-> Some (X,VY)
| Some x, None -> no lock push sl x; None
| None, Some y -> no lock push s2 y; None

let pop two (sl:‘a stack) (s2:‘'a stack) : ('a * ‘a) option =

Refined Design Pattern

* Associate a lock with each shared, mutable object.
 Choose some ordering on shared mutable objects.

— doesn’t matter what the order is, as long as it is total.

— in C/C++, often use the address of the object as a unique
number.

— QOur solution: add a unique ID number to each object
* To perform actions on a set of objects S atomically:
— acquire the locks for the objects in S in order.

— perform the actions.
— release the locks.

98

Refined Design Pattern]

* Associate a lock with each shared, mutable object.
* Choose some ordering on shared mutahle ohiects

— doesn’t matter what the order Important! A
— in C/C++, often use the address
number. Acquire all the locks you will need
: : BEFORE
— Our solution: add a unique ID : : : :
performing any irreversible actions!
* To perform actions on a set of o . J

— acquire the locks for the
— perform the actions.
— release the locks.

BUT: IN A BIG PROGRAM, IT IS REALLY HARD TO GET THIS RIGHT

A HUGE COMPONENT OF PL RESEARCH INVOLVES TRYING TO
FIND THE MISTAKES PEOPLE MAKE WHEN DOING THIS. AVOID .
WHENEVER POSSIBLE! USE FUNCTIONAL ABSTRACTIONS!

9

SUMMARY

[Programming with mutation, threads and locks]

Reasoning about the correctness of pure parallel programs that
include futures is easy -- no harder than ordinary, sequential
programs. (Reasoning about their performance may be harder.)

-

&

Reasoning about shared variables
and semaphores is hard in general,
but futures are a discipline
for getting it right.

Much of programming-language design
is the art of finding good disciplines

engineer disciplines in your interfaces,
harder for the user to get it wrong.

~

in which it’s harder* to write bad programs.

Even aside from PL design, the same is true of
software engineering with Abstract Data Types:

/

thread 1 thread 2

~ *but somebody will always find a way...

[Programming with mutation, threads and locks]

Reasoning about the correctness of pure parallel programs that
include futures is easy -- no harder than ordinary, sequential
programs. (Reasoning about their performance may be harder.)

Reasoning about concurrent programs with
effects requires considering all interleavings* of

instructions of concurrently executing threads.

: : thread 1 thread 2
— often too many interleavings for normal

humans to keep track of

— nonmodular: you often have to look at the
details of each thread to figure out what is
going on

— locks cut down interleavings

— but knowing you have done it right still
requires deep analysis

*and worse...

