
Func%onal	Abstrac%ons	
over	Impera%ve	Infrastructure	

and	
Lazy	Evalua*on	

COS	326	
David	Walker	

Princeton	University	
	
slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	

permission	granted	to	reuse	these	slides	for	non-commercial	educa%onal	purposes	
	

2	

–  Abstrac*ons	involve	using	your	imagina*on	

Welcome	to	the	Infinite!	

module	type	INFINITE	=	
		sig	
				type	‘a	stream				 	 	(*	an	infinite	series	of	values	*)	
	
				val	const	:	‘a	->	‘a	stream 	(*	an	infinite	series	–	all	the	same	*)	
	
				val	nats	:	()	->	int	stream																(*	all	of	the	natural	numbers	*)	
				val	head	:	‘a	stream	->	‘a			 	(*	get	the	next	value	–	there	always	is	one!	*)	
				val	tail	:	‘a	stream	->	‘a	stream 	(*	get	all	the	rest	*)	
	
				val	map	:	(‘a	->	‘b)	->	‘a	stream	->	‘b	stream 		
	
				...	
end	
	
module	Inf	:	INFINITE	=	...	?	

How	would	you	implement	this	data	structure?	

module	type	INFINITE	=	
		sig	
				type	‘a	stream				 	 	(*	an	infinite	series	of	values	*)	
	
				val	const	:	‘a	->	‘a	stream 	(*	an	infinite	series	–	all	the	same	*)	
	
				val	nats	:	()	->	int	stream																(*	all	of	the	natural	numbers	*)	
				val	head	:	‘a	stream	->	‘a			 	(*	get	the	next	value	–	there	always	is	one!	*)	
				val	tail	:	‘a	stream	->	‘a	stream 	(*	get	all	the	rest	*)	
	
				val	map	:	(‘a	->	‘b)	->	‘a	stream	->	‘b	stream 		
	
				...	
end	
	
module	Inf	:	INFINITE	=	...	?	

Consider	this	defini%on:	

5	

type ‘a stream =
 Cons of ‘a * (‘a stream)
	
	

We	can	write	func%ons	to	extract	the	head	and	tail	of	a	stream:	
	
let head(s:’a stream):’a =
 match s with
 | Cons (h,_) -> h

let tail(s:’a stream):’a stream =
 match s with
 | Cons (_,t) -> t

But	there’s	a	problem…	

6	

type ‘a stream =
 Cons of ‘a * (‘a stream)
	
How	do	I	build	a	value	of	type	‘a	stream?	
	

a^empt:								Cons	(3,	_____)							Cons	(3,	Cons	(4,	___))	
	
There	doesn’t	seem	to	be	a	base	case	(e.g.,	Nil)	
	
Since	we	need	a	stream	to	build	a	stream,		
what	can	we	do	to	get	started?	
	

One	idea	

7	

type ‘a stream =
 Cons of ‘a * (‘a stream)	

let rec ones = Cons(1,ones) ;;

What happens?
	
	#	let	rec	ones	=	Cons(1,ones);;	
val	ones	:	int	stream	=	
		Cons	(1,	
			Cons	(1,	
				Cons	(1,	
					Cons	(1,	...	
))))	
#		

One	idea	

8	

type ‘a stream =
 Cons of ‘a * (‘a stream)	

let rec ones = Cons(1,ones) ;;

What happens?
	
	#	let	rec	ones	=	Cons(1,ones);;	
val	ones	:	int	stream	=	
		Cons	(1,	
			Cons	(1,	
				Cons	(1,	
					Cons	(1,	...	
))))	
#		

1	

OCaml	builds	this!	

I	lied	...	big	%me	

#	let	rec	twos	=	2::twos	;;	
val	ones	:	int	stream	=	
		[2;	2;	2;	...]	

It	bugs	me	you	can	do	this	in	OCaml.		WHY????	

OCAML	–1!	
C	–200	
Java	-12	

Theore%cian's	bubble	
where	lists	are	finite	and		

non-circular.	

An	alterna%ve	would	be	to	use	refs	

10	

type ‘a stream =
 Cons of ‘a * (‘a stream) option ref

let circular_cons h =
 let r = ref None in
 let c = Cons(h,r) in
 (r := (Some c); c)
	
	
	
	
This	works	...	
but	has	a	serious	drawback	
	
	
	
	

None	

Cons(h,	r)	

r	

None	

c	

Cons(h,	r)	

Some	c	

c	

An	alterna%ve	would	be	to	use	refs	

11	

type ‘a stream =
 Cons of ‘a * (‘a stream) option ref

let circular_cons h =
 let r = ref None in
 let c = Cons(h,r) in
 (r := (Some c); c)
	
	
	
	
This	works	but	has	a	serious	drawback…	
		when	we	try	to	get	out	the	tail,	it	may	not	exist.			
	
	
	
	

Back	to	our	earlier	idea	

12	

type ‘a stream =
 Cons of ‘a * (‘a stream)	
	
Let's	look	at	crea%ng	the	stream	of	all	natural	numbers:	

let rec nats i = Cons(i,nats (i+1)) ;;
	
	#	let	n	=	nats	0;;	
Stack	overflow	during	evalua%on	(looping	recursion?).		

OCaml	evaluates	our	code	just	a	li^le	bit	too	eagerly.	
We	want	to	evaluate	the	right-hand	side	only	when	necessary	...	

Another	idea	

13	

type ‘a stream = Cons of ‘a * (‘a stream)	

let rec ones =
 fun () -> Cons(1,ones)

let head (x) =
match x () with
 Cons (hd, tail) -> hd

;;

head (ones);;
	

One	way	to	implement	“wai%ng”	is	to	wrap	a	computa%on		
up	in	a	func%on	and	then	call	that	func%on	later	when	we	want	to.	
	
Another	a^empt:	

Darn.		Doesn’t	type	check!	
It’s	a	func%on	with	type	
unit	->	int	stream	
not	just	int	stream	

Are	there	any	problems	
with	this	code?	

Func%onal	Implementa%on	

14	

What	if	we	changed	the	defini%on	of	streams	one	more	%me?	

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec ones : int stream =
 fun () -> Cons(1,ones)

	
	
let rec ones () = Cons(1,ones)

Or,	the	way	we’d	normally	write	it:	

What	we	had	before.	

Augmented	as	a	
mutually	recursive	
type	defini%on	

Func%onal	Implementa%on	

15	

How	would	we	define	head,	tail,	and	map	of	an	'a	stream?	

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

	
	

Func%onal	Implementa%on	

16	

How	would	we	define	head,	tail,	and	map	of	an	'a	stream?	

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =

	
	

Func%onal	Implementa%on	

17	

How	would	we	define	head,	tail,	and	map	of	an	'a	stream?	

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =
 match s() with
 | Cons(h,_) -> h

	
	

Func%onal	Implementa%on	

18	

How	would	we	define	head,	tail,	and	map	of	an	'a	stream?	

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =
 match s() with
 | Cons(h,_) -> h

let tail(s:’a stream):’a stream =
 match s() with
 | Cons(_,t) -> t

	
	

Func%onal	Implementa%on	

19	

How	would	we	define	head,	tail,	and	map	of	an	'a	stream?	

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =

	
	

Func%onal	Implementa%on	

20	

How	would	we	define	head,	tail,	and	map	of	an	'a	stream?	

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
 Cons(f (head s), map f (tail s))

	
	

Func%onal	Implementa%on	

21	

How	would	we	define	head,	tail,	and	map	of	an	'a	stream?	

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
 Cons(f (head s), map f (tail s))

	
	 Rats!	

	
Infinite	looping!	

Func%onal	Implementa%on	

22	

How	would	we	define	head,	tail,	and	map	of	an	'a	stream?	

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
 Cons(f (head s), map f (tail s))

	
	

But	we	don’t	
infinite	loop,	
because	the	

typechecker	saves	
us:	Cons	(x,y)	

is	a	str	not	a	stream	

Func%onal	Implementa%on	

23	

How	would	we	define	head,	tail,	and	map	of	an	'a	stream?	

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
 fun () -> Cons(f (head s), map f (tail s))

	
	

Importantly,	map	
must	return	a	
func%on,	which	
delays	evalua%ng	
the	recursive	call	to	

map.	

Func%onal	Implementa%on	

24	

Now	we	can	use	map	to	build	other	infinite	streams:	

let rec map(f:’a->’b)(s:’a stream):’b stream =
 fun () -> Cons(f (head s), map f (tail s))

let rec ones = fun () -> Cons(1,ones) ;;
let inc x = x + 1
let twos = map inc ones ;;

	
	

head	twos	
-->	head	(map	inc	ones)	
-->	head	(fun	()	->	Cons	(inc	(head	ones),	map	inc	(tail	ones)))	
-->	match	(fun	()	->	...)	()	with	Cons	(hd,	_)	->	h	
-->	match	Cons	(inc	(head	ones),	map	inc	(tail	ones))	with	Cons	(hd,	_)	->	h	
-->	match	Cons	(inc	(head	ones),	fun	()	->	...)	with	Cons	(hd,	_)	->	h	
-->	...	-->	2	

Another	combinator	for	streams:	

25	

let rec zip f s1 s2 =
 fun () ->
 Cons(f (head s1) (head s2),
 zip f (tail s1) (tail s2)) ;;

let threes = zip (+) ones twos ;;

let rec fibs =
 fun () ->
 Cons(0, fun () ->
 Cons (1,
 zip (+) fibs (tail fibs)))
	

Unfortunately	

26	

This	is	not	very	efficient:	

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

Every	%me	we	want	to	look	at	a	stream	(e.g.,	to	get	the	head	or	
tail),	we	have	to	re-run	the	func%on.			

	
So	when	you	ask	for	the	10th	fib	and	then	the	11th	fib,	we	are	re-

calcula%ng	the	fibs	star%ng	from	0,	when	we	could	cache	or	
memoize	the	result	of	previous	fibs.	

	
	

LAZY	EVALUATION	

Memoizing	Streams	

28	

We	can	take	advantage	of	refs	to	memoize:	
	
type ‘a thunk =
 Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref

When	we	build	a	stream,	we	use	an	Unevaluated	thunk	to	be	

lazy.		But	when	we	ask	for	the	head	or	tail,	we	remember	
what	Cons-cell	we	get	out	and	save	it	to	be	re-used	in	the	
future.	

	
	

Memoizing	Streams	

29	

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a lazy_t = (‘a thunk) ref ;;

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t;;

let rec head(s:’a stream):’a =
 match !s with
 | Evaluated (Cons(h,_)) -> h
 | Unevaluated f ->
 let x = f() in (s := Evaluated x; x)

	
	

Memoizing	Streams	

30	

type ‘a thunk =
 Unevaluated of (unit -> ‘a) | Evaluated of ‘a
type ‘a lazy_t = (‘a thunk) ref ;;

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t;;

let rec tail(s:’a stream) : ’a stream =
 match !s with
 | Evaluated (Cons(_,t)) -> t
 | Unevaluated f ->
 (s := Evaluated (f()); tail s) ;;

	
	

Memoizing	Streams	

31	

type ‘a thunk =
 Unevaluated of (unit -> ‘a) | Evaluated of ‘a
type ‘a lazy_t = (‘a thunk) ref ;;

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t;;

let rec tail(s:’a stream) : ’a stream =
 match !s with
 | Evaluated (Cons(_,t)) -> t
 | Unevaluated f ->
 (s := Evaluated (f()); tail s) ;;

	
	

Common	pa^ern!	
	
Dereference	&	check	if	evaluated:	
•  If	so,	take	the	value.	
•  If	not,	evaluate	it	&	take	the	

value	

Memoizing	Streams	

32	

type ‘a thunk =
 Unevaluated of (unit -> ‘a) | Evaluated of ‘a
type ‘a lazy_t = (‘a thunk) ref

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t

let rec force(t:’a lazy_t):’a =
 match !t with
 | Evaluated v -> v
 | Unevaluated f ->
 let v = f() in
 (t:= Evaluated v ; v)

let head(s:’a stream) : ’a =
 match force s with
 | Cons(h,_) -> h

let tail(s:’a stream) : ’a stream =
 match force s with
 | Cons(_,t) -> t

	
	

Memoizing	Streams	

33	

type ‘a thunk =
 Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref;;

let rec ones =
 ref (Unevaluated (fun () -> Cons(1,ones))) ;;

	
	

Memoizing	Streams	

34	

type ‘a thunk =
 Unevaluated of unit -> ‘a | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref;;

let thunk f = ref (Unevaluated f)

let rec ones =
 thunk (fun () -> Cons(1,ones))

	
	

What’s	the	interface?	

35	

type ‘a lazy

val thunk : (unit -> ‘a) -> ‘a lazy

val force: ‘a lazy -> ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy

let rec ones =
 thunk(fun () -> Cons(1,ones))

	
	

OCaml’s	Buil%n	Lazy	Constructor	

36	

If	you	use	Ocaml’s	built-in	lazy_t,	then	you	can	write:	
	
let rec ones = lazy (Cons(1,ones)) ;;

and	this	takes	care	of	wrapping	a	“ref	(Unevaluated	(fun	()	->	…))”	
around	the	whole	thing.			

	
So	for	example:	
	
let rec fibs =
 lazy (Cons(0,

 lazy (Cons(1,zip (+) fibs (tail fibs)))))	
	
	

	
	

The	whole	example	at	once	
type 'a str = Cons of 'a * 'a stream
and 'a stream = ('a str) Lazy.t;;

let rec zip f (s1: 'a stream) (s2: 'a stream) : 'a stream =
 lazy (match Lazy.force s1, Lazy.force s2 with
 Cons (x1,r1), Cons (x2,r2) ->
 Cons (f x1 x2, zip f r1 r2));;

let tail (s: 'a stream) : 'a stream =

 match Lazy.force s with Cons (x,r) -> r;;

let rec fibs : int stream =
 lazy (Cons(0, lazy (Cons (1, zip (+) fibs (tail fibs)))));;

let rec g n s =

 if n>0 then
 match Lazy.force s with Cons (x,r) ->
(print_int x; print_string "\n"; g (n-1) r)
 else ();;

g 10 fibs;;

A	note	on	laziness	

38	

•  By	default,	Ocaml	is	an	eager	language,	but	you	can	use	the	
“lazy”	features	to	build	lazy	datatypes.	

•  Other	func%onal	languages,	notably	Haskell,	are	lazy	by	
default.		Everything	is	delayed	un%l	you	ask	for	it.			
–  generally	much	more	pleasant	to	do	programming	with	infinite	
data.	

–  but	harder	to	reason	about	space	and	%me.	
–  and	has	bad	interac%ons	with	side-effects.	

•  The	basic	idea	of	laziness	gets	used	a	lot:	
–  e.g.,	Unix	pipes,	TCP	sockets,	etc.	

Summary	

39	

You	can	build	infinite	data	structures.	
–  Not	really	infinite	–	represented	using	cyclic	data	and/or	lazy	
evalua%on.	

Lazy	evalua%on	is	a	useful	technique	for	delaying	computa%on	un%l	
it’s	needed.	

–  Can	model	using	just	func%ons.	
–  But	behind	the	scenes,	we	are	memoizing	(caching)	results	using	refs.	

This	allows	us	to	separate	model	genera%on	from	evalua%on	to	get	
“scale-free”	programming.	

–  e.g.,	we	can	write	down	the	rou%ne	for	calcula%ng	pi	regardless	of	
the	number	of	bits	of	precision	we	want.	

–  Other	examples:		geometric	models	for	graphics	(procedural	
rendering);	search	spaces	for	AI	and	game	theory	(e.g.,	tree	of	moves	
and	counter-moves).	

Mathema%cal	background:		λ-calculus	
Nota%on:		use			 (λ x . E)			instead	of			(fun	x	→	E)			
	
Rules:	

(λ x . A) B ↦ A[B/x] (β-reduction)

A ↦ A’

A B ↦ A’ B 	

B ↦ B’

A B ↦ A B’ 	

(context rules)	

2*3 ↦ 5 (δ-reduction) 	

 A ↦ A’

(λ x . A) ↦ (λ x . A’) 	

Mathema%cal	background:		λ-calculus	
(λ x . A) B ↦ A[B/x]

A ↦ A’

A B ↦ A’ B 	

B ↦ B’

A B ↦ A B’ 	

(λ x . (λ y. f (f y)) (x+1)) (2*3) ↦ (λ x . f (f (x+1))) (2*3) ↦ f(f(2*3+1) ↦
f(f(5+1) ↦ f(f 6)

2*3 ↦ 5 	

(λ x . (λ y. f (f y)) (x+1)) (2*3) ↦ (λ x . (λ y. f (f y)) (x+1)) 5 ↦

(λ y. f (f y)) (5+1)) ↦ (λ y. f (f y)) 6 ↦ f (f 6)

(λ x . (λ y. f (f y)) (x+1)) (2*3) ↦ (λ y. f (f y)) ((2*3)+1) ↦ f (f ((2*3)+1))

↦ f (f (5+1)) ↦ f (f 6)

a	legal	reduc%on	sequence	

call-by-value	reduc%on	

call-by-name	reduc%on	

Church-Rosser	theorem	(1934):	
No	ma^er	which	reduc%on	order	you	use,	you’ll	get	to	the	same	answer.	

Call-by-name,	call-by-value,	lazy	evalua%on	

(λ x . (λ y. f (f y)) (x+1)) (2*3) ↦ (λ x . (λ y. f (f y)) (x+1)) 5 ↦

(λ y. f (f y)) (5+1)) ↦ (λ y. f (f y)) 6 ↦ f (f 6)

(λ x . (λ y. f (f y)) (x+1)) (2*3) ↦ (λ y. f (f y)) ((2*3)+1) ↦ f (f ((2*3)+1))

↦ f (f (5+1)) ↦ f (f 6)

call-by-value	reduc%on	

call-by-name	reduc%on	

(like	ordinary	ML)	

(like	streams	WITHOUT	thunks)	

lazy	evalua%on:		(using	thunks,	updated	with	“memorized”	computed	values)	
		To	represent	this,	you	can’t	just	use	textual	strings,	you	need	pointers.	
No	wonder	nobody	thought	of	it	un%l	AFTER	computers	were	invented.	

Call-by-name	vs.	call-by-value	
Consider	this	lambda-term:	
	
	(λy. A) ((λx. x) 3) where A is some expression

Reducing ((λx. x) 3) takes one step, but pretend that it takes
many steps (i.e., is expensive).

 WHICH IS BETTER?

Call-by-value:

(λy. A)((λx. x) 3) ↦ (λy. A) 3 ↦ A[3/y] ↦ . . . ↦ . . .

Call-by-name:

(λy. A)((λx. x) 3) ↦ A[((λx. x) 3)/y] ↦ . . . ↦ . . .

Call-by-name	vs.	call-by-value	
 WHICH IS BETTER?

Depends! if A==(y+y), then:

CBV, 3 steps:

 (λy. y+y)((λx. x) 3) ↦ (λy. y+y) 3 ↦ 3+3 ↦ 6.

CBN, 4 steps:

(λy. A)((λx. x) 3) ↦ ((λx. x) 3)+((λx. x) 3)

 ↦ 3+((λx. x) 3) ↦ 3+3 ↦ 6.

Depends! if A==4, then:

CBV, 2 steps: (λy. 4)((λx. x) 3) ↦ (λy. 4) 3 ↦ 4.

CBN, 1 step: (λy. 4)((λx. x) 3) ↦ 4.

Call-by-name	vs.	call-by-value	
 WHICH IS BETTER?

In general:

CBV can be asymptotically faster than CBN (by exponential factor at
least!)

CBN can be asymptotically faster than CBV (by exponential factor at
least!)

However:

CBV can diverge (in`inite-loop) where CBN terminates

 but not vice versa!�
If CBN diverges, then ANY strategy diverges

Therefore:

CBN is the most general strategy (which doesn’t mean it’s
always fastest).

Call-by-name	vs.	lazy	evalua%on	

In general:

LAZY can be asymptotically faster than CBN.

CBN is never asymptotically faster than LAZY.

CBN terminates if-and-only-iff LAZY terminates.

(Thus) LAZY is also a most-general strategy.

However:

It’s hard to express LAZY using the lambda-notation as on the
previous slides, because it’s inherently about pointer-sharing
(DAGs representing common subexpressions),

which is hard to represent in textual lambda calculus.

End	

More	fun	with	streams:	

48	

let rec filter p s =
 if p (head s) then
 lazy (Cons (head s,
 filter p (tail s)))
 else (filter p (tail s))
 ;;

let even x = (x mod 2) = 0;;
let odd x = not(even x);;

let evens = filter even nats ;;
let odds = filter odd nats ;;

Sieve	of	Eratosthenes	

49	

let not_div_by n m =
 not (m mod n = 0) ;;

let rec sieve s =
 lazy (Cons (head s,
 sieve (filter (not_div_by (head s))

(tail s))))
 ;;

let primes = sieve (tail (tail nats)) ;;

Taylor	Series	

50	

let rec fact n = if n <= 0 then 1 else n * (fact
(n-1)) ;;

let f_ones = map float_of_int ones ;;

(* The following series corresponds to the Taylor
 * expansion of e:
 * 1/1! + 1/2! + 1/3! + ...
 * So you can just pull the floats off and start

adding
 * them up. *)
let e_series =
 zip (/.) f_ones (map float_of_int (map fact

nats)) ;;

let e_up_to n =
 List.fold_left (+.) 0. (first n e_series) ;;

Pi	

51	

(* pi is approximated by the Taylor series:
 * 4/1 - 4/3 + 4/5 - 4/7 + ...
 *)
let rec alt_fours =
 lazy (Cons (4.0,
 lazy (Cons (-4.0, alt_fours))));;

let pi_series = zip (/.) alt_fours (map
float_of_int odds);;

let pi_up_to n =
 List.fold_left (+.) 0.0
 (first n pi_series) ;;

Integra%on	to	arbitrary	precision…	

52	

let approx_area (f:float->float)(a:float)(b:float) =
 (((f a) +. (f b)) *. (b -. a)) /. 2.0 ;;

let mid a b = (a +. b) /. 2.0 ;;

let rec integrate f a b =
 lazy (Cons (approx_area f a b,
 zip (+.) (integrate f a (mid a b))
 (integrate f (mid a b) b))) ;;

let rec within eps s =
 let (h,t) = (head s, tail s) in
 if abs(h -. (head t)) < eps then h else within eps t ;;

let integral f a b eps = within eps (integrate f a b) ;;

Thought	Exercises	

53	

•  Do	other	Taylor	series	using	streams:	
–  e.g.,	cos(x)	=	1	–	(x2/2!)		+		(x4/4!)	–	(x6/6!)	+	(x8/8!)	…	

•  You	can	model	a	wire	as	a	stream	of	booleans	and	a	combina%onal	
circuit	as	a	stream	transformer.	
–  define	the	“not”	circuit	which	takes	a	stream	of	booleans	and	

produces	a	stream	where	each	value	is	the	nega%on	of	the	values	in	
the	input	stream.	

–  define	the	“and”	and	“or”	circuits	which	take	streams	of	booleans	and	
produce	a	stream	of	the	logical-and/logical-or	of	the	input	values.	

–  be^er:		define	the	“nor”	circuit	and	show	how	“not”,	“and”,	and	“or”	
can	be	defined	in	terms	of	“nor”.			

–  For	those	of	you	in	EE:		define	a	JK-flip-flop		

•  How	would	you	define	infinite	trees?	

END	

