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— Abstractions involve using your imagination



Welcome to the Infinite!

module type INFINITE =

Sig
type ‘a stream

val const : ‘a -> ‘a stream
val nats : () -> int stream

val head : ‘a stream -> ‘a
val tail : ‘a stream -> ‘a stream

(* an infinite series of values *)
(* an infinite series — all the same *)
(* all of the natural numbers *)

(* get the next value — there always is one! *)
(* get all the rest *)

val map : (‘a -> ‘b) -> ‘a stream -> ‘b stream

end

module Inf : INFINITE =... ?




[ How would you implement this data structure? ]

module type INFINITE =

Sig
type ‘a stream (* an infinite series of values *)
val const : ‘a -> ‘a stream (* an infinite series — all the same *)
val nats : () -> int stream (* all of the natural numbers *)
val head : ‘a stream -> ‘a (* get the next value — there always is one! *)

val tail : ‘a stream -> ‘a stream  (* get all the rest *)

val map : (‘a -> ‘b) -> ‘a stream -> ‘b stream

end

module Inf : INFINITE =... ?




Consider this definition:

type ‘a stream =
Cons of ‘a * (‘a stream)

We can write functions to extract the head and tail of a stream:

let head(s:’a stream):’'a =
match s with
| Cons (h, ) -> h

let tail(s:’'a stream):’a stream =
match s with
| Cons (_,t) > t



But there’s a problem...

type ‘a stream =
Cons of ‘a * (‘a stream)

How do | build a value of type ‘a stream?

attempt: Cons (3, ) ... Cons(3,Cons(4, )

There doesn’t seem to be a base case (e.g., Nil)

Since we need a stream to build a stream,
what can we do to get started?



One idea

type ‘a stream =
Cons of ‘a * (‘a stream)

let rec ones = Cons(1l,ones) ;;

What happens?

# let rec ones = Cons(1,ones);;
val ones : int stream =
Cons (1,
Cons (1,
Cons (1,
Cons (1, ...

)
#




One idea

type ‘a stream =
Cons of ‘a * (‘a stream)

let rec ones = Cons(1l,ones) ;;

OCaml builds this!

/

What happens?

# let rec ones = Cons(1,ones);; /

val ones : int stream =

Cons (1,
Cons (1,
Cons (1,
Cons (1, ...

)
#




| lied ... big time
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An alternative would be to use refs

type ‘a stream =

Cons of ‘a * (‘a stream) option ref
r

let circular cons h =

. None
let r = ref None 1in C
let ¢ = Cons(h,r) in
(r := (Some c); c) Cons(h, r)
T None
C
This works ... Cons(h, r)
but has a serious drawback
Some)

-
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An alternative would be to use refs

type ‘a stream =
Cons of ‘a * (‘a stream) option ref

let circular cons h =
let r = ref None in
let ¢ = Cons(h,r) in
(r := (Some c); c)

This works .... but has a serious drawback...
when we try to get out the tail, it may not exist.
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Back to our earlier idea

type ‘a stream =

Cons of ‘a * (‘a stream)
Let's look at creating the stream of all natural numbers:

let rec nats 1 = Cons(i,nats (1i+1))

o o
rr

# let n = nats 0;;
Stack overflow during evaluation (looping recursion?).

OCaml evaluates our code just a little bit too eagerly.
We want to evaluate the right-hand side only when necessary ...
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Another idea

One way to implement “waiting” is to wrap a computation
up in a function and then call that function later when we want to.

Another attempt:

type ‘a stream =

let rec ones =
fun ()

let head (x) =
match x () with
Cons (hd, tail)

o o
r7

head (ones);;

Cons of

-> Cons(1,ones)

™~

-> hd

‘a * (‘a stream)

Are there any problems
with this code?

Darn. Doesn’t type check!
It’s a function with type
unit -> int stream

not just int stream
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Functional Implementation

What if we changed the definition of streams one more time?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str \\

What we had before.
let rec ones : int stream =

fun () -> Cons(1,ones) Augmented as a

mutually recursive
type definition

Or, the way we’d normally write it:

let rec ones () = Cons(1,ones)
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let head(s:'a stream):’'a =



Functional Implementation

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let head(s:'a stream):’'a =
match s() with
| Cons(h, ) -=> h



Functional Implementation

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let head(s:'a stream):’'a =
match s() with
| Cons(h, ) -=> h

let tail(s:’'a stream):’'a stream =
match s() with
| Cons(_,t) -> t



Functional Implementation

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:’'a->'b) (s:’'a stream) : ’'b stream
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:’'a->'b) (s:’'a stream) : ’'b stream

Cons(f (head s), map £ (tail s))

20



Functional Implementation

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:'a->'b) (s:’'a stream) : ’'b stream =

Cons(f (head s), map £ (tail s))

Rats!

Infinite looping!
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:’'a->'b) (s:’'a stream) : ’'b stream

Cons(f (head s), map £ (tail s))

But we don’t
infinite loop,
because the
typechecker saves
us: Cons (x,y)
is a str not a strea
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Functional Implementation

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:’'a->'b) (s:’'a stream) : ’'b stream
fun () -> Cons(f (head s), map £ (tail s))

Importantly, map
must return a
function, which
delays evaluating
the recursive call to
map.

23



Functional Implementation

Now we can use map to build other infinite streams:

let rec map(f:’a->'b)(s:’a stream):’'b stream =
fun () -> Cons(f (head s), map £ (tail s))

let rec ones = fun () -> Cons(1l,ones) ;;
let inc x = x + 1
let twos = map inc ones ;;

head twos

--> head (map inc ones)

--> head (fun () -> Cons (inc (head ones), map inc (tail ones)))

--> match (fun () ->...) () with Cons (hd, ) ->h

--> match Cons (inc (head ones), map inc (tail ones)) with Cons (hd, ) ->h
--> match Cons (inc (head ones), fun () ->...) with Cons (hd, ) ->h

-=-> .. > 2
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Another combinator for streams:

let rec zip f sl s2 =
fun () ->
Cons(f (head sl) (head s2),
zip £ (tail sl) (tail s2)) ;;

let threes = zip (+) ones twos ;;

let rec fibs =
fun () ->
Cons(0, fun () ->
Cons (1,
zip (+) fibs (tail fibs)))
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Unfortunately

This is not very efficient:

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

Every time we want to look at a stream (e.g., to get the head or
tail), we have to re-run the function.

So when you ask for the 10t fib and then the 11t fib, we are re-

calculating the fibs starting from 0, when we could cache or
memoize the result of previous fibs.
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LAZY EVALUATION



Memoizing Streams

We can take advantage of refs to memoize:

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref

When we build a stream, we use an Unevaluated thunk to be
lazy. But when we ask for the head or tail, we remember
what Cons-cell we get out and save it to be re-used in the
future.
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Memoizing Streams

type ‘a thunk =

Unevaluated of (unit -> ‘a) | Evaluated of ‘a
type ‘a lazy t = (‘a thunk) ref ;;
type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy t;;

let rec head(s:’'a stream):’'a =
match !s with
| Evaluated (Cons(h, )) -> h
| Unevaluated f ->

let x = £() in (s := Evaluated x; x)
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Memoizing Streams

type ‘a thunk =

Unevaluated of (unit -> ‘a) | Evaluated of ‘a
type ‘a lazy t = (‘a thunk) ref ;;
type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy t;;

let rec tail(s:’'a stream) a stream =
match !s with
| Evaluated (Cons( ,t)) -> t

| Unevaluated f ->

(s := Evaluated (f()); tail s) ;;
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Memoizing Streams

type ‘a thunk =

Unevaluated of (unit -> ‘a) aluated of ‘a
type ‘a lazy t = (’a k)
type ‘a st
Ang = "~ Common pattern!
let re. Dereference & check if evaluated:

* |f so, take the value.
* |f not, evaluate it & take the
value



Memoizing Streams

type ‘a thunk =
Unevaluated of (unit -> ‘a)

| Evaluated of ‘a

type ‘a lazy t = (‘a thunk) ref

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = (‘a str) lazy

let rec force(t:’'a lazy t):’'a
match !t with
| Evaluated v -> v
| Unevaluated f ->
let v = £() in
(t:= Evaluated v ; v)

t

let head(s:'a stream) : 'a =
match force s with
| Cons(h, ) -> h
let tail(s:’'a stream) : 'a stream =

match force s with
| Cons(_,t) -> t
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Memoizing Streams

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref;;

let rec ones =

ref (Unevaluated (fun () -> Cons(1l,ones))) ;;
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Memoizing Streams

type ‘a thunk =
Unevaluated of unit -> ‘a | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref;;

let thunk f = ref (Unevaluated f)

let rec ones =

thunk (fun () -> Cons(1l,ones))
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[

What’s the interface?

~

type ‘a lazy

val thunk : (

val force: ‘

_

unit -> ‘a) -> ‘a lazy

a lazy -> ‘a

type ‘a str =

and ‘a stream

Cons of ‘a * ('a stream)

= ('a str) lazy

let rec ones =

thunk (fun ()

-> Cons(1l,ones))
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OCaml’s Builtin Lazy Constructor

If you use Ocaml’s built-in lazy _t, then you can write:
let rec ones = lazy (Cons(1l,ones)) ;;

and this takes care of wrapping a “ref (Unevaluated (fun () -> ...))”
around the whole thing.

So for example:

let rec fibs =
lazy (Cons (0,
lazy (Cons(1l,zip (+) fibs (tail fibs)))))
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The whole example at once

type 'a str = Cons of 'a * 'a stream
and 'a stream = ('a str) Lazy.t;;

let rec zip f (sl: 'a stream) (s2: 'a stream) : 'a stream =
lazy (match Lazy.force sl, Lazy.force s2 with
Cons (x1,rl), Cons (x2,r2) ->
Cons (f x1 x2, zip f rl r2));;

let tail (s: 'a stream) : 'a stream

match Lazy.force s with Cons (x,r) -> r;;

let rec fibs : int stream =
lazy (Cons(0, lazy (Cons (1, zip (+) fibs (tail fibs)))));:;

let rec g n s =

if n>0 then

match Lazy.force s with Cons (x,r) ->
(print int x; print string "\n"; g (n-1) r)

else ();;

g 10 fibs;;



A note on laziness

By default, Ocaml is an eager language, but you can use the
“lazy” features to build lazy datatypes.

Other functional languages, notably Haskell, are lazy by
default. Everything is delayed until you ask for it.

— generally much more pleasant to do programming with infinite
data.

— but harder to reason about space and time.
— and has bad interactions with side-effects.

The basic idea of laziness gets used a lot:
— e.g., Unix pipes, TCP sockets, etc.
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[

Summary

You can build infinite data structures.
— Not really infinite — represented using cyclic data and/or lazy
evaluation.
Lazy evaluation is a useful technique for delaying computation until
it’s needed.
— Can model using just functions.
— But behind the scenes, we are memoizing (caching) results using refs.

This allows us to separate model generation from evaluation to get
“scale-free” programming.

— e.g., we can write down the routine for calculating pi regardless of
the number of bits of precision we want.

— Other examples: geometric models for graphics (procedural
rendering); search spaces for Al and game theory (e.g., tree of moves

and counter-moves).



Mathematical background: A-calculus

Notation: use (Ax.E) instead of (funx - E)

Rules:

(Ax. A)B = A|B/X] (B-reduction)
A - A B » B

AB —» A’'B AB » APB

(context rules)

A A
(Ax. A)» (Ax. A)

2*3 » 5  (0-reduction)



[ Mathematical background: A-calculus

(Ax. A)B — A|B/X] A o A B » B
" AB » A’'B AB » AP
2*3 » 5

a legal reduction sequence
Ax.(Ay.f(fy)) (x+1)) (2*3) » (Ax.f(f (x+1))) (2*3) » {(f(2*3+1) »
f(f(5+1) » f(f6)

call-by-value reduction
Ax.Ay.f(fy)) (x+1)) (2*3) » (Ax.(Ay.f(fy)) (x+1)) 5+
Ay.f(fy)) (5+1))~» (Ay.f(fy)) 64— f(f6)

call-by-name reduction

Ax.(Ay.f(£Y)) (x+1)) (2*3) » (Ay.f(Fy)) ((2*3)+1) & f(f((2*3)+1))
- £ (f(5+1)) ~ f(f6)

Church-Rosser theorem (1934):
No matter which reduction order you use, you’ll get to the same answer.



[ Call-by-name, call-by-value, lazy evaluation

call-by-value reduction
Ax.(Ay.f(fy)) x+1)) (2*3) » (Ax.(Ay.f(fy)) (x+1)) 5+

Ay.f(fy)) G+1)» (Ay.f(fy)) 6+ f(f6)
(like ordinary ML)

call-by-name reduction
Ax.(Ay.f(fy)) (x+1)) (2*3) » (Ay.f(fy)) ((2*3)+1) » f(f((2*3)+1))
- f(f(5+1)) » f(f6)

(like streams WITHOUT thunks)

lazy evaluation: (using thunks, updated with “memorized” computed values)
To represent this, you can’t just use textual strings, you need pointers.
No wonder nobody thought of it until AFTER computers were invented.



Call-by-name vs. call-by-value

Consider this lambda-term:
(Ay. A) ((Ax.x) 3) where A is some expression

Reducing ((Ax. x) 3) takes one step, but pretend that it takes
many steps (i.e., is expensive).

WHICH IS BETTER?
Call-by-value:

Oy. A)(Oxx)3) » (Ay. A)3 > A[3/y]—...>...

Call-by-name:
Ay. A )(Ax.x)3) » Al(Ax.x)3)/y] = ...> ...



Call-by-name vs. call-by-value

WHICH IS BETTER?
Depends! if A==(y+y), then:
CBYV, 3 steps:
Ay. yv+y)(Ax.x)3) » (Ay.y+y )3 - 3+3 6.
CBN, 4 steps:
(Ay. A )(Ax.x) 3) = ((Ax.x) 3)+((Ax.x) 3)
= 34+((Ax.x)3) » 3+3 6.

Depends! if A==4, then:
CBV, 2 steps: (Ay. 4)((Ax.x)3) = (Ay.4 )3 = 4.
CBN, 1step: (Ay. 4 )((Ax.x)3) = 4.



Call-by-name vs. call-by-value

WHICH IS BETTER?

In general:

CBV can be asymptotically faster than CBN (by exponential factor at
least!)

CBN can be asymptotically faster than CBV (by exponential factor at
least!)

However:
CBV can diverge (infinite-loop) where CBN terminates

but not vice versal
[f CBN diverges, then ANY strategy diverges

Therefore:

CBN is the most general strategy (which doesn’t mean it’s
always fastest).



Call-by-name vs. lazy evaluation

In general:
LAZY can be asymptotically faster than CBN.

CBN is never asymptotically faster than LAZY.
CBN terminates if-and-only-iff LAZY terminates.

(Thus) LAZY is also a most-general strategy.

However:

It's hard to express LAZY using the lambda-notation as on the
previous slides, because it’s inherently about pointer-sharing
(DAGs representing common subexpressions),

which is hard to represent in textual lambda calculus.
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More fun with streams:

let rec filter p s =
if p (head s) then
lazy (Cons (head s,

filter p (tail s)))

else (filter p (tail s))

let even x

let odd x

let evens
let odds

= (x mod 2) = 0;;

not(even x);;

filter even nats ;;
filter odd nats ;;
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Sieve of Eratosthenes

let not div by n m =
not (m mod n = 0) ;;

let rec sieve s =

lazy (Cons (head s,
sieve (filter (not div by (head s))

(tail s))))

o o
rrs

let primes = sieve (tail (tail nats)) ;;
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Taylor Series

let rec fact n = 1f n <= 0 then 1 else n * (fact
(n-1)) ;3

let £ ones = map float of int ones ;;

(* The following series corresponds to the Taylor
* expansion of e:
* 1/1! + 1/2! + 1/3! + ...

* So you can just pull the floats off and start
adding

* them up. *)
let e series =

zip (/.) £ ones (map float of int (map fact
nats)) ;;j;

let e up to n =
List.fold left (+.) 0. (first n e series) ;;

50



Pi

(* pl 1s approximated by the Taylor series:
* 4/1 - 4/3 + 4/5 - 4/7 + ...
*)
let rec alt fours =
lazy (Cons (4.0,
lazy (Cons (-4.0, alt fours))));;

let pi series = zip (/.) alt fours (map
float of int odds);;

let pi up to n =
List.fold left (+.) 0.0
(first n pi series) ;;
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Integration to arbitrary precision...

let approx area (f:float->float)(a:float)(b:float) =
(((f a) +. (£ b)) *. (b -. a)) /. 2.0 ;;

let mid a b = (a +. b) /. 2.0 ;;

let rec integrate f a b =
lazy (Cons (approx area f a b,
zip (+.) (integrate f a (mid a b))
(integrate £ (mid a b) b))) ;;

let rec within eps s =
let (h,t) = (head s, tail s) in

if abs(h -. (head t)) < eps then h else within eps t ;;

let integral f a b eps = within eps (integrate f a b) ;;



Thought Exercises

Do other Taylor series using streams:
— e.g., cos(x) =1—(x%/2!) + (x*/4!) - (x8/6!) + (x8/8!) ...

* You can model a wire as a stream of booleans and a combinational
circuit as a stream transformer.

— define the “not” circuit which takes a stream of booleans and
produces a stream where each value is the negation of the values in
the input stream.

— define the “and” and “or” circuits which take streams of booleans and
produce a stream of the logical-and/logical-or of the input values.

n «u

— better: define the “nor” circuit and show how “not”, “and”, and “or”
can be defined in terms of “nor”.

— For those of you in EE: define a JK-flip-flop

* How would you define infinite trees?
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