
A	Func'onal	Space	Model	

COS	326	
David	Walker	

Princeton	University	
	
slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	

permission	granted	to	reuse	these	slides	for	non-commercial	educa'onal	purposes	
	

Space	
Understanding	the	space	complexity	of	func'onal	programs	

–  At	least	two	interes'ng	components:	
•  the	amount	of	live	space	at	any	instant	in	'me	
•  the	rate	of	alloca.on	

–  a	func'on	call	may	not	change	the	amount	of	live	space	by	
much	but	may	allocate	at	a	substan'al	rate	

–  because	func'onal	programs	act	by	genera'ng	new	data	
structures	and	discarding	old	ones,	they	oNen	allocate	a	lot	
»  OCaml	garbage	collector	is	op'mized	with	this	in	mind	
»  interes'ng	fact:		at	the	assembly	level,	the	number	of	
writes	by	a	func'onal	program	is	roughly	the	same	as	the	
number	of	writes	by	an	impera've	program	

Space	
Understanding	the	space	complexity	of	func'onal	programs	

–  At	least	two	interes'ng	components:	
•  the	amount	of	live	space	at	any	instant	in	'me	
•  the	rate	of	alloca.on	

–  a	func'on	call	may	not	change	the	amount	of	live	space	by	
much	but	may	allocate	at	a	substan'al	rate	

–  because	func'onal	programs	act	by	genera'ng	new	data	
structures	and	discarding	old	ones,	they	oNen	allocate	a	lot	
»  OCaml	garbage	collector	is	op'mized	with	this	in	mind	
»  interes'ng	fact:		at	the	assembly	level,	the	number	of	
writes	by	a	func'on	program	is	roughly	the	same	as	the	
number	of	writes	by	an	impera've	program	

–  What	takes	up	space?	
•  conven'onal	first-order	data:		tuples,	lists,	strings,	datatypes	
•  func'on	representa'ons	(closures)	
•  the	call	stack	

CONVENTIONAL	DATA	

Blackboard!	
	
Numbers	
	
Tuples	
	
Data	types	
	
Lists	

Space	Model	
Data	type	representa'ons:	

Node	

0	

3	 leN	 right	

Leaf:	 Node(i,	leN,	right):	

type tree = Leaf | Node of int * tree * tree

Alloca'ng	space	
In	C,	you	allocate	when	you	call	“malloc”	
	
In	Java,	you	allocate	when	you	call	“new”	
	
What	about	ML?	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

t	

Consider:	
	
insert	t	21	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

t	

Consider:	
	
insert	t	21	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

21

Consider:	
	
insert	t	21	

t	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

15

21

Consider:	
	
insert	t	21	

t	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

9

15

21

Consider:	
	
insert	t	21	

t	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

3

9

15

21

Consider:	
	
insert	t	21	

t	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

3

9

15

21

Total	space	allocated	is	
propor'onal	to	the	
height	of	the	tree.	
	
~	log	n,	if	tree	with	n		
nodes	is	balanced	

t	

Net	space	allocated	
The	garbage	collector	reclaims	
unreachable	data	structures	on	the	heap.	

John	McCarthy	
	invented	g.c.	

	1960	

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t	

Net	space	allocated	
The	garbage	collector	reclaims		
unreachable	data	structures	on	the	heap.	

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t	

If t is dead
(unreachable),

Net	space	allocated	
The	garbage	collector	reclaims		
unreachable	data	structures	on	the	heap.	

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t	

If	t	is	dead	(unreachable),	

Then	all	these	nodes	
will	be	reclaimed!	

Net	space	allocated	
The	garbage	collector	reclaims		
unreachable	data	structures	on	the	heap.	

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t	

Net	new	space	allocated:	
1	node	

	
(just	like	“impera've”	version	

	of	binary	search	trees)	

Net	space	allocated	
But	what	if	you	want	to	keep	the	old	tree?	

let faddle (t: tree) =
 (t, insert t 21)

3

9

15

3

9

15

21

t	

faddle(t)	

Net	space	allocated	
But	what	if	you	want	to	keep	the	old	tree?	

let faddle (t: tree) =
 (t, insert t 21)

3

9

15

3

9

15

21

t	

faddle(t)	

Net	new	space	allocated:	
log(N)	nodes	

	
but	note:	“impera've”	version	
would	have	to	copy	the	old	tree,	
space	cost	N	new	nodes!	

Compare	

let check_option (o:int option) : int option =
 match o with
 Some _ -> o
 | None -> failwith “found none”
;;

let check_option (o:int option) : int option =
 match o with
 Some j -> Some j
 | None -> failwith “found none”
;;

Compare	

let check_option (o:int option) : int option =
 match o with
 Some _ -> o
 | None -> failwith “found none”
;;

let check_option (o:int option) : int option =
 match o with
 Some j -> Some j
 | None -> failwith “found none”
;;

allocates	nothing		
when	arg	is	Some	i	

allocates	an	op'on	
when	arg	is	Some	i	

Compare	

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2
;;

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

let double (c1:int*int) : int*int =
 cadd c1 c1
;;

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)
;;

Compare	

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2
;;

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

let double (c1:int*int) : int*int =
 cadd c1 c1
;;

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)
;;

1 2

c1 c2

Compare	

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2
;;

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

let double (c1:int*int) : int*int =
 cadd c1 c1
;;

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)
;;

1 2

c1

Compare	

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2
;;

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

let double (c1:int*int) : int*int =
 cadd c1 c1
;;

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)
;;
 1 2

c1

1 2

arg1

1 2

arg2

Compare	

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2
;;

no	alloca'on	

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

let double (c1:int*int) : int*int =
 cadd c1 c1
;;

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)
;;

no	alloca'on	

allocates	2	pairs	
	(unless	the	compiler	
happens	to	op'mize…)	

Compare	

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd c1 c1
;;

double	does	not	
allocate	

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)
;;

extracts	components:		it	is	a	read	

FUNCTION	CLOSURES	

Closures	
Consider	the	following	program:	
	
	
	
	
	
	

let choose (arg:bool * int * int) : int -> int =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

Closures	
Consider	the	following	program:	
	
	
	
	
	
	
Its	execu'on	behavior	according	to	the	subs'tu'on	model:	

let choose (arg:bool * int * int) : int -> int =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

 choose (true, 1, 2)

Closures	
Consider	the	following	program:	
	
	
	
	
	
	
Its	execu'on	behavior	according	to	the	subs'tu'on	model:	

let choose (arg:bool * int * int) : int -> int =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

 choose (true, 1, 2)
-->
 let (b, x, y) = (true, 1, 2) in
 if b then (fun n -> n + x)
 else (fun n -> n + y)

Closures	
Consider	the	following	program:	
	
	
	
	
	
	
Its	execu'on	behavior	according	to	the	subs'tu'on	model:	

let choose (arg:bool * int * int) : int -> int =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

 choose (true, 1, 2)
-->
 let (b, x, y) = (true, 1, 2) in
 if b then (fun n -> n + x)
 else (fun n -> n + y)
-->
 if true then (fun n -> n + 1)
 else (fun n -> n + 2)

Closures	
Consider	the	following	program:	
	
	
	
	
	
	
Its	execu'on	behavior	according	to	the	subs'tu'on	model:	

let choose (arg:bool * int * int) : int -> int =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

 choose (true, 1, 2)
-->
 let (b, x, y) = (true, 1, 2) in
 if b then (fun n -> n + x)
 else (fun n -> n + y)
-->
 if true then (fun n -> n + 1)
 else (fun n -> n + 2)
-->
 (fun n -> n + 1)

Subs'tu'on	and	Compiled	Code	
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

Subs'tu'on	and	Compiled	Code	
choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 compare rb 0
 ...
 jmp ret

main:
 ...
 jmp choose

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

compile	

Subs'tu'on	and	Compiled	Code	

let (b, x, y) = (true, 1, 2) in
if b then
 (fun n -> n + x)
else
 (fun n -> n + y)

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 compare rb 0
 ...
 jmp ret

main:
 ...
 jmp choose

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

compile	

execute	with	
subs'tu'on	

Subs'tu'on	and	Compiled	Code	

let (b, x, y) = (true, 1, 2) in
if b then
 (fun n -> n + x)
else
 (fun n -> n + y)

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 compare rb 0
 ...
 jmp ret

main:
 ...
 jmp choose

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

compile	

execute	with	
subs'tu'on	

execute	with	subs'tu'on		
==	
generate	new	code	block	with	
parameters	replaced	by	arguments	

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 ...
 jmp ret

main:
 ...
 jmp choose

Subs'tu'on	and	Compiled	Code	

let (b, x, y) = (true, 1, 2) in
if b then
 (fun n -> n + x)
else
 (fun n -> n + y)

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 compare rb 0
 ...
 jmp ret

main:
 ...
 jmp choose

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

compile	

execute	with	
subs'tu'on	

execute	with	subs'tu'on		
==	
generate	new	code	block	with	
parameters	replaced	by	arguments	

choose_subst:
 mov rb 0xF8[0]
 mov rx 0xF8[4]
 mov ry 0xF8[8]
 compare rb 0
 ...
 jmp ret

0xF8: 0
 1
 2

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 ...
 jmp ret

main:
 ...
 jmp choose

Subs'tu'on	and	Compiled	Code	

let (b, x, y) = (true, 1, 2) in
if b then
 (fun n -> n + x)
else
 (fun n -> n + y)

choose:
 mov rb r_arg[0]
 mov rx r_arg[4]
 mov ry r_arg[8]
 compare rb 0
 ...
 jmp ret

main:
 ...
 jmp choose

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

choose (true, 1, 2);;

compile	

execute	with	
subs'tu'on	

execute	with	subs'tu'on		
==	
generate	new	code	block	with	
parameters	replaced	by	arguments	

choose_subst:
 mov rb 0xF8[0]
 mov rx 0xFF44]
 mov ry 0xFF84[8]
 compare rb 0
 ...
 jmp ret

if true then
 (fun n -> n + 1)
else
 (fun n -> n + 2)

execute	with	
subs'tu'on	 0xF8: 0

 1
 2 choose_subst2:

 compare 1 0
 ...
 jmp ret

What	we	aren’t	going	to	do	
The	subs'tu'on	model	of	evalua'on	is	just	a	model.		It	says	that	
we	generate	new	code	at	each	step	of	a	computa'on.		We	don’t	
do	that	in	reality.		Too	expensive!	
	
The	subs'tu'on	model	is	a	faithful	model	for	reasoning	about	
the	rela'onship	between	inputs	and	outputs	of	a	func'on	but	it	
doesn’t	tell	us	much	about	the	resources	that	are	used	along	the	
way.		
	
I’m	going	to	tell	you	a	licle	bit	about	how	ML	programs	are	
compiled	so	you	can	understand	how	much	space	your	
programs	will	use.		Understanding	the	space	consump'on	of	
your	programs	is	an	important	component	in	making	these	
programs	more	efficient.	

Compiling	func'ons	
	
	
	
	
	
	
	
	
	

let add (x:int*int) : int =
 let (y,z) = x in
 y + z
;;

argument in r1
return address in r0

add:
 ld r2, r1[0] # y in r2
 ld r3, r1[4] # z in r3
 add r4, r2, r3 # sum in r4
 jmp r0

General	tac'c:		Reduce	the	problem	of	compiling	ML-like	func'ons	to	the		
problem	of	compiling	C-like	func'ons.	
	
Some	func'ons	are	already	C-like:	

But	what	about	nested,	higher-order	func'ons?	

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

let choose arg =
 let (b, x, y) = arg in
 if b then
 f1
 else
 f2
;;

let f1 n = n + x;;

let f2 n = n + y;;

?	

?	

?	

But	what	about	nested,	higher-order	func'ons?	

let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x)
 else
 (fun n -> n + y)
;;

let choose arg =
 let (b, x, y) = arg in
 if b then
 f1
 else
 f2
;;

let f1 n = n + x;;

let f2 n = n + y;;

?	

?	

?	

Darn!		Doesn’t	work	naively.	Nested	func'ons	contain	free	variables.			
Simple	unnes'ng	leaves	them	undefined.	

But	what	about	nested,	higher-order	func'ons?	
We	can’t	execute	a	func'on	like	the	following:	
	
	
	
But	we	can	execute	a	closure	which	is	a	pair	of	some	code	and	
an	environment:	

let f2 n = n + y;;

let f2 (n,env) =
 n + env.y
;;

{y = 1}

environment	code	

closure	

Closure	Conversion	
Closure	conversion	(also	called	lambda	liNing)	converts	open,	
nested	func'ons	into	closed,	top-level	func'ons.	
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

Closure	Conversion	
Closure	conversion	(also	called	lambda	liNing)	converts	open,	
nested	func'ons	in	to	closed,	top-level	func'ons.	
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

create	
closures	

use	
environment	
variables	
instead	of		
free	variables	

add	environment	
parameter	

Closure	Conversion	
Closure	conversion	converts	open,	nested	func'ons	in	to	closed,	
top-level	func'ons.	
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

(choose (true,1,2)) 3

create	
closures	

use	
environment	
variables	
instead	of		
free	variables	

add	environment	
parameter	

let c_closure = (choose, ()) in (* create closure *)
let (c_code, c_cenv) = c_closure in (* extract code, env *)
let f_closure = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)
let (f_code, f_env) = f_closure in (* extract code, env *)
f_code (3, f_env) (* call f code *)
;;

Closure	Conversion	
Closure	conversion	converts	open,	nested	func'ons	in	to	closed,	
top-level	func'ons.	
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

(choose (true,1,2)) 3

create	
closures	

use	
environment	
variables	
instead	of		
free	variables	

add	environment	
parameter	

let c_closure = (choose, ()) in (* create closure *)
let (c_code, c_cenv) = c_closure in (* extract code, env *)
let f_closure = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)
let (f_code, f_env) = f_closure in (* extract code, env *)
f_code (3, f_env) (* call f code *)

Closure	Conversion	
Closure	conversion	converts	open,	nested	func'ons	in	to	closed,	
top-level	func'ons.	
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

(choose (true,1,2)) 3

create	
closures	

use	
environment	
variables	
instead	of		
free	variables	

add	environment	
parameter	

let c_closure = (choose, ()) in (* create closure *)
let (c_code, c_cenv) = c_closure in (* extract code, env *)
let f_closure = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)
let (f_code, f_env) = f_closure in (* extract code, env *)
f_code (3, f_env) (* call f code *)

Closure	Conversion	
Closure	conversion	converts	open,	nested	func'ons	in	to	closed,	
top-level	func'ons.	
let choose arg =
 let (b, x, y) = arg in
 if b then
 (fun n -> n + x + y)
 else
 (fun n -> n + y)
;;

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

(choose (true,1,2)) 3

create	
closures	

use	
environment	
variables	
instead	of		
free	variables	

add	environment	
parameter	

let c_closure = (choose, ()) in (* create closure *)
let (c_code, c_cenv) = c_closure in (* extract code, env *)
let f_closure = c_code ((true,1,2), c_env) in (* call choose code, extract f code, env *)
let (f_code, f_env) = f_closure in (* extract code, env *)
f_code (3, f_env) (* call f code *)

One	Extra	Note:		Typing	
Even	though	the	original,	non-closure-converted	code	was	well-
typed,	the	closure-converted	code	isn’t—because	the	
environments	are	different	

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, F1 {xe=x; ye=y})
 else
 (f2, F2 {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

type f1_env = {x1:int; y1:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {y2:int} type f2_clos = (int * f2_env -> int) * f2_env

One	Extra	Note:		Typing	
Even	though	the	original,	non-closure-converted	code	was	well-
typed,	the	closure-converted	code	isn’t	because	the	
environments	are	different	

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, F1 {xe=x; ye=y})
 else
 (f2, F2 {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

Solu'on	0:				Don’t		bother		to	typecheck	aNer	closure	conversion.	
	
ANer	all,	the	source	program	was	well	typed	(checked	by	the	source-language	ML	typechecker),	
and	the	compiler	(with	its		closure	conversion		algorithm)		cannot	possibly	have	produced	
a	program	with	the	wrong	behavior.	
	
That	is,	consider	the		post-closure-converted	language	to	be	an	untyped		language.	
	
This	is		the	tradi'onal	solu'on,	and	it’s	not	stupid.		But	can	we	do	becer?	

One	Extra	Note:		Typing	
Even	though	the	original,	non-closure-converted	code	was	well-
typed,	the	closure-converted	code	isn’t	because	the	
environments	are	different	

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, F1 {x1=x; y2=y})
 else
 (f2, F2 {y2=y})
;;

let f1 (n,env) =
 match env with
 F1 e -> n + e.x1 + e.y2
 | F2 _ -> failwith "bad env!"
;;

let f2 (n,env) =
 match env with
 F1 _ -> failwith "bad env!"
 | F2 e -> n + e.y2
;;

type f1_env = {x1:int; y1:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {y2:int} type f2_clos = (int * f2_env -> int) * f2_env

type env = F1 of f1_env | F2 of f2_env
type f1_clos = (int * env -> int) * env
type f2_clos = (int * env -> int) * env

fix	I:	

One	Extra	Note:		Typing	
Even	though	the	original,	non-closure-converted	code	was	well-
typed,	the	closure-converted	code	isn’t	because	the	
environments	are	different	

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

type f1_env = {xe:int; ye:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {xe:int} type f2_clos = (int * f2_env -> int) * f2_env

type f1_env = {xe:int; ye:int}
type f2_env = {xe:int}
type f1_clos = ∃env.(int * env -> int) * env
type f2_clos = ∃env.(int * env -> int) * env

fix	II:	

One	Extra	Note:		Typing	
Even	though	the	original,	non-closure-converted	code	was	well-
typed,	the	closure-converted	code	isn’t	because	the	
environments	are	different	

let choose (arg,env) =
 let (b, x, y) = arg in
 if b then
 (f1, {xe=x; ye=y})
 else
 (f2, {ye=y})
;;

let f1 (n,env) =
 n + env.xe + env.ye
;;

let f2 (n,env) =
 n + env.ye
;;

type f1_env = {xe:int; ye:int} type f1_clos = (int * f1_env -> int) * f1_env

type f2_env = {xe:int} type f2_clos = (int * f2_env -> int) * f2_env

type f1_env = {xe:int; ye:int}
type f2_env = {xe:int}
type f1_clos = ∃ env.(int * env -> int) * env
type f2_clos = ∃ env.(int * env -> int) * env

fix	II:	

“From	System	F	to	Typed	Assembly	Language,”	
	--	Morrisec,	Walker	et	al.	

Aside:		Existen'al	Types	
map	has	a	universal	polymorphic	type:	
	
		
	
when	we	closure-convert	a	func'on	that	has	type	int	->	int,	we	get	a	func'on	
with	existen.al	polymorphic	type:	
	
											∃ 'a.	((int	*	'a)	->	int)	*	'a	
	
In	OCaml,	we	can	approximate	existen'al	types	using	datatypes	(a	data	type	
allows	you	to	say	"there	exists	a	type	'a	drawn	from	one	of	the	following	
finite	number	of	op'ons."		In	Haskell,	you've	got	the	real	thing.			

map	:	('a	->	'b)	->	'a	list	->	'b	list	 "for	all	types	'a	and	for	all	types	'b,	…"		

"there	exists	some	type	'a	such	that,	…"		

Closure	Conversion:	Summary	

All	func'on	defini'ons	equipped	with	extra	env	parameter:	
	
	
All	free	variables	obtained	from	parameters	or	environment:	
	
	
All	func'ons	values	paired	with	environment:		
	
	
All	func'on	calls	extract	code	and	environment	and	call	code:	

let f_code (arg, env) = ...

x

let f arg = ...

env.cx

f (f_code, {cx1=v1; ...; cxn=vn})

f e let (f_code, f_env) = f in
f_code (e, f_env)

(after) (before)

The	Space	Cost	of	Closures	

The	space	cost	of	a	closure	
=	the	cost	of	the	pair	of	code	and	environment	pointers	(2	words)	
+	the	cost	of	the	data	referred	to	by	func'on	free	variables	
				(1	word	for	each	free	variable)	

Assignment	#4	
An	environment-based	interpreter:	
	
•  Instead	of	subs'tu'on,	build	up	environment.	

•  just	a	list	of	variable-value	pairs	
	
•  When	you	reach	a	free	variable,	look	in	environment	for	its	value.	

•  To	evaluate	a	recursive	func'on,	create	a	closure	data	structure	
•  pair	current	environment	with	recursive	code	

•  To	evaluate	a	func'on	call,	extract	environment	and	code	from	
closure,	pass	environment	and	argument	to	code	

TAIL	CALLS	AND	CONTINUATIONS	

Some	Innocuous	Code	
	
	
	
	
	
	
	
	
	
Let’s	try	it.		
	
(Go	to	tail.ml)	

(* sum of 0..n *)

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else 0
;;

let big_int = 1000000;;

sum big_int;;

Some	Other	Code	
Four	func'ons:		Green	works	on	big	inputs;	Red	doesn’t.	
	
	
	
	
	
	
	
	
	
	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else 0
;;

let sum_to2 (n: int) : int =
 let rec aux (n:int) (a:int) : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

let sum (l:int list) : int =
 let rec aux (l:int list) (a:int) : int =
 match l with

 [] -> a
 | hd::tail -> aux tail (a+hd)
 in
 aux l 0
;;

let rec sum2 (l:int list) : int =
 match l with
 [] -> 0
 | hd::tail -> hd + sum2 tail
;;

Some	Other	Code	
Four	func'ons:		Green	works	on	big	inputs;	Red	doesn’t.	
	
	
	
	
	
	
	
	
	
	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else 0
;;

let sum_to2 (n: int) : int =
 let rec aux (n:int) (a:int) : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

let sum (l:int list) : int =
 let rec aux (l:int list) (a:int) : int =
 match l with

 [] -> a
 | hd::tail -> aux tail (a+hd)
 in
 aux l 0
;;

let rec sum2 (l:int list) : int =
 match l with
 [] -> 0
 | hd::tail -> hd + sum2 tail
;;

code	that	works:	
no	computa.on	aDer	
recursive	func.on	call	

Tail	Recursion	

A	tail-recursive	func.on	does	no	work	aNer	it	calls	itself	recursively.	
	
Not	tail-recursive,	the	subs'tu'on	model:	

(* sum of 0..n *)

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else 0
;;

let big_int = 1000000;;

sum big_int;;

 sum_to 1000000

Tail	Recursion	

A	tail-recursive	func.on	does	no	work	aNer	it	calls	itself	recursively.	
	
Not	tail-recursive,	the	subs'tu'on	model:	

(* sum of 0..n *)

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else 0
;;

let big_int = 1000000;;

sum big_int;;

 sum_to 1000000
-->
 1000000 + sum_to 99999

Tail	Recursion	

A	tail-recursive	func.on	does	no	work	aNer	it	calls	itself	recursively.	
	
Not	tail-recursive,	the	subs'tu'on	model:	

(* sum of 0..n *)

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else 0
;;

let big_int = 1000000;;

sum big_int;;

 sum_to 1000000
-->
 1000000 + sum_to 99999
-->
 1000000 + 99999 + sum_to 99998

expression	size	grows	
at	every	recursive	call	...	
	
lots	of	adding	to	do	aNer	
the	call	returns”	

Tail	Recursion	

A	tail-recursive	func.on	does	no	work	aNer	it	calls	itself	recursively.	
	
Not	tail-recursive,	the	subs'tu'on	model:	

(* sum of 0..n *)

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else 0
;;

let big_int = 1000000;;

sum big_int;;

 sum_to 1000000
-->
 1000000 + sum_to 99999
-->
 1000000 + 99999 + sum_to 99998
-->
 ...
-->
 1000000 + 99999 + 99998 + ... + sum_to 0

Tail	Recursion	

A	tail-recursive	func.on	does	no	work	aNer	it	calls	itself	recursively.	
	
Not	tail-recursive,	the	subs'tu'on	model:	

(* sum of 0..n *)

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else 0
;;

let big_int = 1000000;;

sum big_int;;

 sum_to 1000000
-->
 1000000 + sum_to 99999
-->
 1000000 + 99999 + sum_to 99998
-->
 ...
-->
 1000000 + 99999 + 99998 + ... + sum_to 0
-->
 1000000 + 99999 + 99998 + ... + 0

recursion	
finally	bocoms	out	

Tail	Recursion	

A	tail-recursive	func.on	does	no	work	aNer	it	calls	itself	recursively.	
	
Not	tail-recursive,	the	subs'tu'on	model:	

(* sum of 0..n *)

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else 0
;;

let big_int = 1000000;;

sum big_int;;

 sum_to 1000000
-->
 1000000 + sum_to 99999
-->
 1000000 + 99999 + sum_to 99998
-->
 ...
-->
 1000000 + 99999 + 99998 + ... + sum_to 0
-->
 1000000 + 99999 + 99998 + ... + 0
-->
 ... add it all back up ...

do	a	long	series	
of	addi'ons	to	get	
back	an	int	

Non-tail	recursive	
	
	
	
	
	
	
	
	
	

sum_to 10000

stack	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 10000

Non-tail	recursive	
	
	
	
	
	
	
	
	
	

10000 +

sum_to 9999

stack	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 10000

Non-tail	recursive	
	
	
	
	
	
	
	
	
	

10000 +

9999 +

sum_to 9998 stack	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 10000

Non-tail	recursive	
	
	
	
	
	
	
	
	
	

10000 +

9999 +

9998 + stack	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 10000

.	

.	

.	

sum_to 0

Non-tail	recursive	
	
	
	
	
	
	
	
	
	

10000 +

9999 +

9998 + stack	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 10000

.	

.	

.	

0

Non-tail	recursive	
	
	
	
	
	
	
	
	
	

10000 +

9999 +

n stack	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 10000

Non-tail	recursive	
	
	
	
	
	
	
	
	
	

10000 +

m

stack	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 10000

Non-tail	recursive	
	
	
	
	
	
	
	
	
	

result

stack	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 100

Data	Needed	on	Return	Saved	on	Stack	

 sum_to 10000
-->
 ...
-->
 10000 + 9999 + 9998 + 9997 + ... +
-->
 ...
-->
 ...

9996	
9997	
9998	
9999	
10000	
	

every	non-tail	call	puts	the	data	from	the	calling	context	on	the	stack	

not	much	space	leN!	
will	run	out	soon!	

the	stack	

Memory	is	par''oned:	Stack	and	Heap	

heap	space	(big!)	

stack	space	
(small!)	

Tail	Recursion	
A	tail-recursive	func.on	is	a	func'on	that	does	no	work	aNer	it	
calls	itself	recursively.	
	
Tail-recursive:	

(* sum of 0..n *)

let sum_to2 (n: int) : int =
 let rec aux (n:int)(a:int)
 : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

 sum_to2 1000000

Tail	Recursion	
A	tail-recursive	func.on	is	a	func'on	that	does	no	work	aNer	it	
calls	itself	recursively.	
	
Tail-recursive:	

(* sum of 0..n *)

let sum_to2 (n: int) : int =
 let rec aux (n:int)(a:int)
 : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

 sum_to2 1000000
-->
 aux 1000000 0

Tail	Recursion	
A	tail-recursive	func.on	is	a	func'on	that	does	no	work	aNer	it	
calls	itself	recursively.	
	
Tail-recursive:	

(* sum of 0..n *)

let sum_to2 (n: int) : int =
 let rec aux (n:int)(a:int)
 : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

 sum_to2 1000000
-->
 aux 1000000 0
-->
 aux 99999 1000000

Tail	Recursion	
A	tail-recursive	func.on	is	a	func'on	that	does	no	work	aNer	it	
calls	itself	recursively.	
	
Tail-recursive:	

(* sum of 0..n *)

let sum_to2 (n: int) : int =
 let rec aux (n:int)(a:int)
 : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

 sum_to2 1000000
-->
 aux 1000000 0
-->
 aux 99999 1000000
-->
 aux 99998 1999999

Tail	Recursion	
A	tail-recursive	func.on	is	a	func'on	that	does	no	work	aNer	it	
calls	itself	recursively.	
	
Tail-recursive:	

(* sum of 0..n *)

let sum_to2 (n: int) : int =
 let rec aux (n:int)(a:int)
 : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

 sum_to2 1000000
-->
 aux 1000000 0
-->
 aux 99999 1000000
-->
 aux 99998 1999999
-->
 ...
-->
 aux 0 (-363189984)
-->
 -363189984

(addi'on	overflow	occurred	
at	some	point)	

constant	size	expression	
in	the	subs'tu'on	model	

Tail	Recursion	
A	tail-recursive	func.on	is	a	func'on	that	does	no	work	aNer	it	
calls	itself	recursively.	
	

(* sum of 0..n *)

let sum_to2 (n: int) : int =
 let rec aux (n:int)(a:int)
 : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

aux 10000 0

stack	

Tail	Recursion	
A	tail-recursive	func.on	is	a	func'on	that	does	no	work	aNer	it	
calls	itself	recursively.	
	

(* sum of 0..n *)

let sum_to2 (n: int) : int =
 let rec aux (n:int)(a:int)
 : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

aux 9999 10000

stack	

Tail	Recursion	
A	tail-recursive	func.on	is	a	func'on	that	does	no	work	aNer	it	
calls	itself	recursively.	
	

(* sum of 0..n *)

let sum_to2 (n: int) : int =
 let rec aux (n:int)(a:int)
 : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

aux 9998 19999

stack	

Tail	Recursion	
A	tail-recursive	func.on	is	a	func'on	that	does	no	work	aNer	it	
calls	itself	recursively.	
	

(* sum of 0..n *)

let sum_to2 (n: int) : int =
 let rec aux (n:int)(a:int)
 : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

aux 9997 29998

stack	

Tail	Recursion	
A	tail-recursive	func.on	is	a	func'on	that	does	no	work	aNer	it	
calls	itself	recursively.	
	

(* sum of 0..n *)

let sum_to2 (n: int) : int =
 let rec aux (n:int)(a:int)
 : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

aux 0 BigNum

stack	

Ques'on			

We	used	human	ingenuity	to	do	the	tail-call	transform.	
	
Is	there	a	mechanical	procedure	to	transform	any	recursive	
func'on	in	to	a	tail-recursive	one?	
	

let sum_to2 (n: int) : int =
 let rec aux (n:int)(a:int) : int =
 if n > 0 then
 aux (n-1) (a+n)
 else a
 in
 aux n 0
;;

let rec sum_to (n: int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

human	
ingenuity	

not	only	is	sum2	
tail-recursive	
but	it	reimplements	
an	algorithm	that	
took	linear	space	
(on	the	stack)	
using	an	algorithm	
that	executes	in	
constant	space!	

CONTINUATION-PASSING	STYLE	
CPS!	

CPS	

CPS:	
–  Short	for	Con.nua.on-Passing	Style	
–  Every	func'on	takes	a	con.nua.on	(a	func'on)	as	an	argument	
that	expresses	"what	to	do	next"	

–  CPS	func'ons	only	call	other	func'ons	as	the	last	thing	they	do	
–  All	CPS	func'ons	are	tail-recursive	

Goal:	
–  Find	a	mechanical	way	to	translate	any	func'on	in	to	CPS		

Serial	Killer	or	PL	Researcher?	

Serial	Killer	or	PL	Researcher?	

Gordon	Plotkin	
Programming	languages	researcher	
Invented	CPS	conversion.	
	
Call-by-Name,	Call-by	Value		
and	the	Lambda	Calculus.	TCS,	1975.	

Robert	Garrow	
Serial	Killer	
	
Killed	a	teenager	at	a	campsite	
in	the	Adirondacks	in	1974.	
Confessed	to	3	other	killings.	

Serial	Killer	or	PL	Researcher?	

Gordon	Plotkin	
Programming	languages	researcher	
Invented	CPS	conversion.	
	
Call-by-Name,	Call-by	Value		
and	the	Lambda	Calculus.	TCS,	1975.	

Robert	Garrow	
Serial	Killer	
	
Killed	a	teenager	at	a	campsite	
in	the	Adirondacks	in	1974.	
Confessed	to	3	other	killings.	

Ques'on			

Can	any	non-tail-recursive	func'on	be	transformed	in	to	a	tail-
recursive	one?	Yes,	if	we	can	capture	the	differen.al	between	a	
tail-recursive	func'on	and	a	non-tail-recursive	one.	
	
	
	
	
Idea:		Focus	on	what	happens	aNer	the	recursive	call.			
	

let rec sum (l:int list) : int =
 match l with
 [] -> 0
 | hd::tail -> hd + sum tail
;;

Ques'on			

Can	any	non-tail-recursive	func'on	be	transformed	in	to	a	tail-
recursive	one?	Yes,	if	we	can	capture	the	differen.al	between	a	
tail-recursive	func'on	and	a	non-tail-recursive	one.	
	
	
	
	
Idea:		Focus	on	what	happens	aNer	the	recursive	call.			
Extrac'ng	that	piece:	
	
	
	
How	do	we	capture	it?	
	

let rec sum (l:int list) : int =
 match l with
 [] -> 0
 | hd::tail -> hd + sum tail
;;

hd +

what	happens	
next	

result	of	recursive	
call	gets	plugged	in	
here	

Ques'on			

How	do	we	capture	that	computa'on?	
	

hd +

fun s -> hd + s

result	of	recursive	
call	gets	plugged	in	
here	

Ques'on			

How	do	we	capture	that	computa'on?	
	

let rec sum (l:int list) : int =
 match l with
 [] -> 0
 | hd::tail -> hd + sum tail
;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> ???) ;;

Ques'on			

How	do	we	capture	that	computa'on?	
	

let rec sum (l:int list) : int =
 match l with
 [] -> 0
 | hd::tail -> hd + sum tail
;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

Ques'on			

How	do	we	capture	that	computa'on?	
	

let rec sum (l:int list) : int =
 match l with
 [] -> 0
 | hd::tail -> hd + sum tail
;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = ??

Ques'on			

How	do	we	capture	that	computa'on?	
	

let rec sum (l:int list) : int =
 match l with
 [] -> 0
 | hd::tail -> hd + sum tail
;;

hd +

fun s -> hd + s

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execu'on	

 sum [1;2]

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execu'on	

 sum [1;2]
-->
 sum_cont [1;2] (fun s -> s)

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execu'on	

 sum [1;2]
-->
 sum_cont [1;2] (fun s -> s)
-->
 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execu'on	

 sum [1;2]
-->
 sum_cont [1;2] (fun s -> s)
-->
 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->
 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execu'on	

 sum [1;2]
-->
 sum_cont [1;2] (fun s -> s)
-->
 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->
 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->
 (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execu'on	

 sum [1;2]
-->
 sum_cont [1;2] (fun s -> s)
-->
 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->
 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->
 (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
-->
 (fun s -> (fun s -> s) (1 + s)) (2 + 0))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execu'on	

 sum [1;2]
-->
 sum_cont [1;2] (fun s -> s)
-->
 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->
 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->
 (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
-->
 (fun s -> (fun s -> s) (1 + s)) (2 + 0))
-->
 (fun s -> s) (1 + (2 + 0))

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Execu'on	

 sum [1;2]
-->
 sum_cont [1;2] (fun s -> s)
-->
 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->
 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->
 (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) 0
-->
 (fun s -> (fun s -> s) (1 + s)) (2 + 0))
-->
 (fun s -> s) (1 + (2 + 0))
-->
 1 + (2 + 0)
-->
 3

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Ques'on	

 sum [1;2]
-->
 sum_cont [1;2] (fun s -> s)
-->
 sum_cont [2] (fun s -> (fun s -> s) (1 + s));;
-->
 sum_cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-->
 ...
-->
 3

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum_cont l (fun s -> s)

Where	did	the	stack	space	go?	

	
	
	
	
	
	
	
	
	

sum_cont []
 (fun s3 ->
 (fun s2 ->
 (fun s1 -> s1) (hd1 + s2)
) (hd2 + s3)
)

func'on	inside	
func'on	inside	
func'on	inside	
expression	

a	stack	of	
closures	on		
the	heap	

each	func'on	
is	a	closure;	
points	to	the	
closure	inside	it	

sum_cont

stack	

 (fun s3 ->
 (fun s2 ->
 (fun s1 -> s1) (hd1 + s2)
) (hd2 + s3)
)

heap	

1

sum_cont []
 (fun s3 ->
 (fun s2 ->
 (fun s1 -> s1) (hd1 + s2)
) (hd2 + s3)
)

2

func'on	inside	
func'on	inside	
func'on	inside	
expression	

a	stack	of	
closures	on		
the	heap	

	
	
	
	
	
	
	
	
	

sum_cont

stack	

hd1 = 1

k =

fun s env ->
 env.k (env.hd1 + s)

fun s env -> s

hd2 = 2
99
k =

fun s env ->
 env.k (env.h2 + s)

heap	

1

sum_cont []
 (fun s3 ->
 (fun s2 ->
 (fun s1 -> s1) (hd1 + s2)
) (hd2 + s3)
)

2

func'on	inside	
func'on	inside	
func'on	inside	
expression	

a	stack	of	
closures	on		
the	heap	

Con'nua'on-passing	style	
	
	
	
	
	
	
	
	
	

stack	

fun s env -> s

sum_to_cont k

heap	

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

heap	

Con'nua'on-passing	style	
	
	
	
	
	
	
	
	
	

stack	

n = 100

k =

fun s env ->
 env.k (env.n + s)

fun s env -> s

sum_to_cont k2

heap	

Con'nua'on-passing	style	
	
	
	
	
	
	
	
	
	

stack	

let rec sum_to_cont (n:int) (k:int->int) : int =
 if n > 0 then
 sum_to_cont (n-1) (fun s -> k (n+s))
 else
 k 0 ;;

sum_to_cont 100 (fun s -> s)

fun s env -> s

sum_to_cont 100 k

heap	

Con'nua'on-passing	style	
	
	
	
	
	
	
	
	
	

stack	

n = 100

k =

fun s env ->
 env.k (env.n + s)

fun s env -> s

sum_to_cont k2

heap	

let rec sum_to_cont (n:int) (k:int->int) : int =
 if n > 0 then
 sum_to_cont (n-1) (fun s -> k (n+s))
 else
 k 0 ;;

sum_to_cont 100 (fun s -> s)

Con'nua'on-passing	style	
	
	
	
	
	
	
	
	
	

sum_to_cont 98 k3

stack	

let rec sum_to_cont (n:int) (k:int->int) : int =
 if n > 0 then
 sum_to_cont (n-1) (fun s -> k (n+s))
 else
 k 0 ;;

sum_to 100 (fun s -> s)

n = 100

k =

fun s env ->
 env.k (env.n + s)

fun s env -> s

n = 99

k =

fun s env ->
 env.k (env.n + s)

heap	

Back	to	stacks	
	
	
	
	
	
	
	
	
	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 100

100 +

99 +

sum_to 98

stack	
function

that called
sum_to

Back	to	stacks	
	
	
	
	
	
	
	
	
	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 100

100 +

99 +

sum_to 98

stack	
function

that called
sum_to

but	how	do	you	really	implement	that?	

Back	to	stacks	
	
	
	
	
	
	
	
	
	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 100

100 +

99 +

sum_to 98

stack	
function

that called
sum_to

but	how	do	you	really	implement	that?	

there	is	two	bits	of	informa'on	here:	
(1)  some	state	(n=100)	we	had	to	remember	
(2)  some	code	we	have	to	run	later	

Back	to	stacks	
	
	
	
	
	
	
	
	
	

n = 100

return_address
stack	

let rec sum_to (n:int) : int =
 if n > 0 then
 n + sum_to (n-1)
 else
 0
;;

sum_to 100

fun s stack ->
 return (stack.n + s)

100 +

99 +

sum_to 98

stack	

n = 99

return_address

fun s stack ->
 return (stack.n + s)

function
that called

sum_to

return_address
state

sum_to 98

with	reality	added	

code	we	have	to	
run	next	

	
	
	
	
	
	
	
	
	

n = 100

return_address

fun s stack ->
 return (stack.n+s)

n = 99

return_address

fun s stack ->
 return (stack.n+s)

return_address
state

sum_to 98

sum_to_cont 98 k3

n = 100

k =

fun s env ->
 env.k (env.n + s)

fun s env -> s

n = 99

k =

fun s env ->
 env.k (env.n + s)

with	the	stack	

with	the	heap	

stack	

	
	
	
	
	
	
	
	
	

n = 100

return_address

fun s stack ->
 return (stack.n+s)

n = 99

return_address

fun s stack ->
 return (stack.n+s)

return_address
state

sum_to 98

sum_to_cont 98 k3

n = 100

k =

fun s env ->
 env.k (env.n + s)

fun s env -> s

n = 99

k =

fun s env ->
 env.k (env.n + s)

with	the	stack	

with	the	heap	

stack	

CPS	

Why	CPS?	
Con'nua'on-passing	style	is	inevitable.	
	
It	does	not	macer	whether	you	program	in	Java	or	C	or	OCaml	--	
there’s	code	around	that	tells	you	“what	to	do	next”		

–  If	you	explicitly	CPS-convert	your	code,	“what	to	do	next”	is	
stored	on	the	heap	

–  If	you	don’t,	it’s	stored	on	the	stack	

If	you	take	a	conven'onal	compilers	class,	the	con'nua'on	will	
be	called	a	return	address	(but	you’ll	know	what	it	really	is!)	
	
The	idea	of	a	con.nua.on	is	much	more	general!	
	

Standard	ML	of	New	Jersey	

Your	compiler	can	put	all	the	con'nua'ons	in	
the	heap	so	you	don’t	have	to	(and	you	don’t	
run	out	of	stack	space)!	

Other	pros:	
	
•  light-weight	concurrent	threads	

Some	cons:	
	
•  hardware	architectures	op'mized	to	use	a	

stack	
•  need	'ght	integra'on	with	a	good	garbage	

collector	
see
Empirical	and	Analy'c	Study	of	Stack	versus	
Heap	Cost	for	Languages	with	Closures.	Shao	&	
Appel	

Call-backs:	Another	use	of	con'nua'ons	

	
Call-backs:	
	request_url : url -> (html -> 'a) -> 'a

request_url http://www.stuff.com/i.html
 (fun html -> process html)

con'nua'on	

Summary	
CPS	is	interes'ng	and		important:	
•  unavoidable	

•  assembly	language	is	con'nua'on-passing	
•  theore.cal	ramifica.ons	

•  fixes	evalua'on	order	
•  call-by-value	evalua'on	==	call-by-name	evalua'on	

•  efficiency			
•  generic	way	to	create	tail-recursive	func'ons	
•  Appel's	SML/NJ	compiler	based	on	this	style	

•  con.nua.on-based	programming	
•  call-backs	
•  programming	with	"what	to	do	next"	

•  implementa.on-technique	for	concurrency	

Overall	Summary	
We	developed	techniques	for	reasoning	about	the	space	costs	of	
func'onal	programs	

–  the	cost	of	manipula.ng	data	types	like	tuples	and	trees	
–  the	cost	of	alloca'ng	and	using	func.on	closures	
–  the	cost	of	tail-recursive	and	non-tail-recursive	func.ons	

	
We	also	talked	about	some	important	program	transforma'ons:	

–  closure	conversion	makes	nested	func'ons	with	free	variables	in	to	
pairs	of	closed	code	and	environment	

–  the	con.nua.on-passing	style	(CPS)	transforma'on	turns	non-tail-
recursive	func'ons	in	to	tail-recursive	ones	that	use	no	stack	space	
•  the	stack	gets	moved	in	to	the	func'on	closure	

–  since	stack	space	is	oNen	small	compared	with	heap	space,	it	is	
oNen	necessary	to	use	con.nua.ons	and	tail	recursion	
•  but	full	CPS-converted	programs	are	unreadable:	use	judgement	

Challenge:		CPS	Convert	the	incr	func'on	

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
 | Node (j,left,right) -> Node (i+j, incr left i, incr right i)
;;

Hint	1:	introduce	one	let	expression	for	each	func'on	call:	
													let	x	=	incr	leN	i	in	...	

Hint	2:	you	will	need	two	con'nua'ons	

CORRECTNESS	OF	A	CPS	
TRANSFORM	

Are	the	two	func'ons	the	same?	

Here,	it	is	really	precy	tricky	to	be	sure	you've	done	it	right	if	
you	don't	prove	it.		Let's	try	to	prove	this	theorem	and	see	what	
happens:	
	

let rec sum (l:int list) : int =
 match l with
 [] -> 0
 | hd::tail -> hd + sum tail
;;

type cont = int -> int;;

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s)) ;;

let sum2 (l:int list) : int = sum_cont l (fun s -> s)

for all l:int list,
 sum_cont l (fun x -> x) == sum l

Acemp'ng	a	Proof	

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
 ...

case: hd::tail
 IH: sum_cont tail (fun s -> s) == sum tail

Acemp'ng	a	Proof	

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
 ...

case: hd::tail
 IH: sum_cont tail (fun s -> s) == sum tail

 sum_cont (hd::tail) (fun s -> s)
==

Acemp'ng	a	Proof	

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
 ...

case: hd::tail
 IH: sum_cont tail (fun s -> s) == sum tail

 sum_cont (hd::tail) (fun s -> s)
== sum_cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)

Acemp'ng	a	Proof	

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
 ...

case: hd::tail
 IH: sum_cont tail (fun s -> s) == sum tail

 sum_cont (hd::tail) (fun s -> s)
== sum_cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)
== sum_cont tail (fn s' -> hd + s') (eval -- hd + s' valuable)

Need	to	Generalize	the	Theorem	and	IH	

for all l:int list, sum_cont l (fun s -> s) == sum l

Proof: By induction on the structure of the list l.

case l = []
 ...

case: hd::tail
 IH: sum_cont tail (fun s -> s) == sum tail

 sum_cont (hd::tail) (fun s -> s)
== sum_cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)
== sum_cont tail (fn s' -> hd + s') (eval -- hd + s' valuable)

== darn!

we'd	like	to	use	the	IH,	but	we	can't!	
we	might	like:	
	
sum_cont	tail	(fn	s'	->	hd	+	s')	==	sum	tail	
	
...	but	that's	not	even	true	

not	the	iden'ty	con'nua'on	
(fun	s	->	s)	like	the	IH	requires	

Need	to	Generalize	the	Theorem	and	IH	

for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Need	to	Generalize	the	Theorem	and	IH	

for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

Need	to	Generalize	the	Theorem	and	IH	

for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

 pick an arbitrary k:

Need	to	Generalize	the	Theorem	and	IH	

for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

 pick an arbitrary k:

 sum_cont [] k

Need	to	Generalize	the	Theorem	and	IH	

for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

 pick an arbitrary k:

 sum_cont [] k
 == match [] with [] -> k 0 | hd::tail -> ... (eval)
 == k 0 (eval)

Need	to	Generalize	the	Theorem	and	IH	

for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

 pick an arbitrary k:

 sum_cont [] k
 == match [] with [] -> k 0 | hd::tail -> ... (eval)
 == k 0 (eval)

 == k (sum [])

Need	to	Generalize	the	Theorem	and	IH	

for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = []

 must prove: for all k:int->int, sum_cont [] k == k (sum [])

 pick an arbitrary k:

 sum_cont [] k
 == match [] with [] -> k 0 | hd::tail -> ... (eval)
 == k 0 (eval)

 == k (0) (eval, reverse)
 == k (match [] with [] -> 0 | hd::tail -> ...) (eval, reverse)
 == k (sum [])

case done!

Need	to	Generalize	the	Theorem	and	IH	
for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

Need	to	Generalize	the	Theorem	and	IH	
for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

 Pick an arbitrary k,

 sum_cont (hd::tail) k

Need	to	Generalize	the	Theorem	and	IH	
for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

 Pick an arbitrary k,

 sum_cont (hd::tail) k
 == sum_cont tail (fun s -> k (hd + x)) (eval)

Need	to	Generalize	the	Theorem	and	IH	
for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

 Pick an arbitrary k,

 sum_cont (hd::tail) k
 == sum_cont tail (fun s -> k (hd + x)) (eval)

 == (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'
 replaced with (fun s -> k (hd+s))

Need	to	Generalize	the	Theorem	and	IH	
for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

 Pick an arbitrary k,

 sum_cont (hd::tail) k
 == sum_cont tail (fun s -> k (hd + x)) (eval)

 == (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'
 replaced with (fun s -> k (hd+s))
 == k (hd + (sum tail)) (eval, since sum total and
 and sum tail valuable)

Need	to	Generalize	the	Theorem	and	IH	
for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Proof: By induction on the structure of the list l.

case l = [] ===> done!

case l = hd::tail

 IH: for all k':int->int, sum_cont tail k' == k' (sum tail)

 Must prove: for all k:int->int, sum_cont (hd::tail) k == k (sum (hd::tail))

 Pick an arbitrary k,

 sum_cont (hd::tail) k
 == sum_cont tail (fun s -> k (hd + x)) (eval)

 == (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'
 replaced with (fun s -> k (hd+s))
 == k (hd + (sum tail)) (eval, since sum total and
 and sum tail valuable)
 == k (sum (hd:tail)) (eval sum, reverse)

case done!
QED!

Finishing	Up	
Ok,	now	what	we	have	is	a	proof	of	this	theorem:	
	
	
	
We	can	use	that	general	theorem	to	get	what	we	really	want:	
	
	
	
	
So,	we've	show	that	the	func'on	sum2,	which	is	tail-recursive,	is	
func'onally	equivalent	to		the	non-tail-recursive	func'on	sum.		

for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

for all l:int list,
 sum2 l
== sum_cont l (fun s -> s) (by eval sum2)
== (fun s -> s) (sum l) (by theorem, instantiating k with (fun s -> s)
== sum l (by eval, since sum l valuable)

SUMMARY	

Summary	of	the	CPS	Proof	
We	tried	to	prove	the	specific	theorem	we	wanted:	
	
	
But	it	didn't	work	because	in	the	middle	of	the	proof,	the	IH	didn't	
apply	--	inside	our	func'on	we	had	the	wrong	kind	of	con'nua'on	
--	not	(fun	s	->	s)	like	our	IH	required.		So	we	had	to	prove	a	more	
general	theorem	about	all	con'nua'ons.	
	
	
	
This	is	a	common	occurrence	--	generalizing	the	induc.on	
hypothesis	--	and	it	requires	human	ingenuity.		It's	why	proving	
theorems	is	hard.		It's	also	why	wri'ng	programs	is	hard	--	you	
have	to	make	the	proofs	and	programs	work	more	generally,	
around	every	itera'on	of	a	loop.	

for all l:int list, sum_cont l (fun s -> s) == sum l

for all l:int list,
 for all k:int->int, sum_cont l k == k (sum l)

Overall	Summary	
We	developed	techniques	for	reasoning	about	the	space	costs	of	
func'onal	programs	

–  the	cost	of	manipula.ng	data	types	like	tuples	and	trees	
–  the	cost	of	alloca'ng	and	using	func.on	closures	
–  the	cost	of	tail-recursive	and	non-tail-recursive	func.ons	

	
We	also	talked	about	some	important	program	transforma'ons:	

–  closure	conversion	makes	nested	func'ons	with	free	variables	into	
pairs	of	closed	code	and	environment	

–  the	con.nua.on-passing	style	(CPS)	transforma'on	turns	non-tail-
recursive	func'ons	in	to	tail-recursive	ones	that	use	no	stack	space	
•  the	stack	gets	moved	in	to	the	func'on	closure	

–  since	stack	space	is	oNen	small	compared	with	heap	space,	it	is	
oNen	necessary	to	use	con.nua.ons	and	tail	recursion	
•  but	full	CPS-converted	programs	are	unreadable:	use	judgement	

Challenge:		CPS	Convert	the	incr	func'on	

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
 | Node (j,left,right) -> Node (i+j, incr left i, incr right i)
;;

(see	solu'on	aNer	the	next	slide)	

CPS	CONVERT	THE	INCR	FUNCTION	
Solu'on:	

CPS	Convert	the	incr	func'on	

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
 | Node (j,left,right) -> Node (i+j, incr left i, incr right i)
;;

type cont = tree -> tree ;;

let rec incr_cps (t:tree) (i:int) (k:cont) : tree =
 match t with
 Leaf -> k Leaf
 | Node (j,left,right) -> ...
;;

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
 | Node (j,left,right) -> Node (i+j, incr left i, incr right i)
;;

Node (i+j, ___________ , incr right i)

Node (i+j, left_done, ______________)

first	con'nua'on:	

second	con'nua'on:	

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
 | Node (j,left,right) -> Node (i+j, incr i left, incr i right)
;;

fun left_done -> Node (i+j, left_done , incr right i)

fun right_done -> k (Node (i+j, left_done, right_done))

first	con'nua'on:	

second	con'nua'on:	

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
 | Node (j,left,right) -> Node (i+j, incr left i, incr right i)
;;

fun left_done ->
 let k2 =
 (fun right_done ->
 k (Node (i+j, left_done, right_done))
)
 in
 incr right i k2

second	con'nua'on	
inside	

first	con'nua'on:	

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
 | Node (j,left,right) -> Node (i+j, incr left i, incr right i)
;;

type cont = tree -> tree ;;

let rec incr_cps (t:tree) (i:int) (k:cont) : tree =
 match t with
 Leaf -> k Leaf
 | Node (j,left,right) ->
 let k1 = (fun left_done ->
 let k2 = (fun right_done ->
 k (Node (i+j, left_done, right_done)))
 in
 incr_cps right i k2
)
 in
 incr_cps left i k1
;;

let incr_tail (t:tree) (i:int) : tree = incr_cps t i (fun t -> t);;

