
Did	I	get	it	right?	

COS	326	
David	Walker	

Princeton	University	
	

h>p://~cos326/notes/evaluaDon.php	
h>p://~cos326/notes/reasoning.php	

slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	
permission	granted	to	reuse	these	slides	for	non-commercial	educaDonal	purposes	

	

1	

Did	I	get	it	right?	 2	

“Did	I	get	it	right?”	
–  Most	fundamental	quesDon	you	can	ask	about	a	computer	program	

Techniques	for	answering:	

TesDng	
•  create	a	set	of	sample	inputs	
•  run	the	program	on	each	input	
•  check	the	results	
•  how	far	does	this	get	you?	

•  has	anyone	ever	tested	a	
homework	and	not	received	an	A?	

•  why	did	that	happen?	

Proving	
•  consider	all	legal	inputs	
•  show	every	input	yields	correct	result	
•  how	far	does	this	get	you?	

•  has	anyone	ever	proven	a	
homework	correct	and	not	received	
an	A?	

•  why	did	that	happen?	

Grading	
•  hand	in	program	to	TA	
•  check	to	see	if	you	got	an	A	
•  (does	not	apply	aVer	school	is	out)	

Program	proving	 3	

•  The	basic,	overall	mechanics	of	proving	funcDonal	programs	correct	
is	not	parDcularly	hard.			
–  You	are	already	doing	it	to	some	degree.			
–  The	real	goal	of	this	lecture	to	help	you	further	organize	your	thoughts	

and	to	give	you	a	more	systemaDc	means	of	understanding	your	
programs.	

–  Of	course,	it	can	certainly	be	hard	to	prove	some	specific	program	has	
some	specific	property	--	just	like	it	can	be	hard	to	write	a	program	
that	solves	some	hard	problem	

•  We	are	going	to	focus	on	proving	the	correctness	of	pure	
expressions	
–  their	meaning	is	determined	exclusively	by	the	value	they	return	
–  don’t	print,		don’t	mutate	global	variables,	don’t	raise	excepDons	
–  always	terminate	
–  another	word	for	“pure	expression”	is	“valuable	expression”	

“Expressions	always	terminate”	 4	

Two	key	concepts:	
–  A	valuable	expression	

•  an	expression	that	always	terminates	(without	side	effects)	and	produces	
a	value	

–  A	total	func5on	with	type	t1	->	t2	
•  a	funcDon	that	terminates	on	all	arguments	with	type	t1,	producing	a	
value	of	type	t2	

•  the	“opposite”	of	a	total	funcDon	is	a	par5al	func5on	
–  terminates	on	some	(possibly	all)	input	values	

Many	reasoning	rules	depend	on	expressions	being	valuable	and	
hence	the	funcDons	that	are	applied	being	total.	
	
Unless	told	otherwise,	you	can	assume	funcDons	are	total	and	
expressions	are	valuable.		(Such	facts	can	typically	be	proven	by	
inducDon.)	

Example	Theorems	

We'll	prove	properDes	of	OCaml	
expressions,	starDng	with	equivalence	
properDes:	
	
Theorem:		easy	1	20	30	==	50	
	
Theorem:			
			for	all	natural	numbers	n,	
			exp	n	==	2^n	
	
Theorem:	
			for	all	lists	xs,	ys,	
			length	(cat	xs	ys)	==	length	xs	+	length	ys	

let	easy	x	y	z	=		
			x	*	(y	+	z)	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	=>	0	
		|	x::xs	=>	1	+	length	xs	

let	rec	cat	xs1	xs2	=	
			match	xs	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

5	

Things	to	Watch	For	
•  The	types	are	going	to	guide	us	in	our	theorem	proving,	just	like	

they	guided	us	in	our	programming	

6	

Things	to	Watch	For	
•  The	types	are	going	to	guide	us	in	our	theorem	proving,	just	like	

they	guided	us	in	our	programming	
–  when	programming	with	lists,	func5ons	(oVen)	have	2	cases:	

•  []	
•  hd	::	tl	

–  when	proving	with	lists,	proofs	(oVen)	have	2	cases:	
•  []	
•  hd	::	tl	

7	

Things	to	Watch	For	
•  The	types	are	going	to	guide	us	in	our	theorem	proving,	just	like	

they	guided	us	in	our	programming	
–  when	programming	with	lists,	func5ons	(oVen)	have	2	cases:	

•  []	
•  hd	::	tl	

–  when	proving	with	lists,	proofs	(oVen)	have	2	cases:	
•  []	
•  hd	::	tl	

–  when	programming	with	natural	numbers,	func5ons	have	2	cases:	
•  0	
•  k	+	1	

–  when	proving	with	natural	numbers,	proofs	have	2	cases:	
•  0		
•  k	+	1	

•  This	is	not	a	fluke!		Proofs	usually	follow	the	structure	of	programs.	

8	

Things	to	Watch	For	
•  More	structure:	

–  when	programming	with	lists:	
•  []	is	oVen	easy	
•  hd	::	tl	oVen	requires	a	recursive	func5on	call	on	tl	

– we	assume	our	recursive	funcDon	behaves	correctly	on	tl	
–  when	proving	with	lists:	

•  []	is	oVen	easy	
•  hd	::	tl	oVen	requires	appeal	to	an	induc5on	hypothesis	for	tl	

– we	assume	our	property	of	interest	holds	for	tl	

	

9	

Things	to	Watch	For	
•  More	structure:	

–  when	programming	with	lists:	
•  []	is	oVen	easy	
•  hd	::	tl	oVen	requires	a	recursive	func5on	call	on	tl	

– we	assume	our	recursive	funcDon	behaves	correctly	on	tl	
–  when	proving	with	lists:	

•  []	is	oVen	easy	
•  hd	::	tl	oVen	requires	appeal	to	an	induc5on	hypothesis	for	tl	

– we	assume	our	property	of	interest	holds	for	tl	
–  when	programming	with	natural	numbers:	

•  0	is	oVen	easy	
•  k	+	1	oVen	requires	a	recursive	call	on	k	

–  when	proving	with	natural	numbers:	
•  0	is	oVen	easy	
•  k	+	1	oVen	requires	appeal	to	an	induc5on	hypothesis	for	k	

	

10	

Key	Ideas	
Idea	1:	The	fundamental	definiDon	of	when	programs	are	equal.	
	
	
	
	
	
	
	

two	expressions	are	equal	if	and	only	if:	
•  they	both	evaluate	to	the	same	value,	or	
•  they	both	raise	the	same	excepDon,	or	
•  they	both	infinite	loop	

we	will	use	
what	we	learned	
about	OCaml	
evaluaDon	

11	

Key	Ideas	
Idea	1:	The	fundamental	definiDon	of	when	programs	are	equal.	
	
	
	
	
	
Idea	2:		A	fundamental	proof	principle.	
	
	

two	expressions	are	equal	if	and	only	if:	
•  they	both	evaluate	to	the	same	value,	or	
•  they	both	raise	the	same	excepDon,	or	
•  they	both	infinite	loop	

if	two	expressions	e1	and	e2	are	equal		
and	we	have	a	third	complicated	expression	FOO	(x)	
then	FOO(e1)	is	equal	to	FOO	(e2)	
	

this	is	the	
principle	of	
"subsDtuDon	of	
equals	for	equals"	

super	useful	since	we	can	do	a	small,	local	proof		
and	then	use	it	in	a	big	program:		modularity!	

12	

The	Workhorse:		SubsDtuDon	of	Equals	for	Equals	

	
	
	
	
An	example:		I	know	2+2	==	4.		
	
I	have	a	complicated	expression:	bar	(foo	(___))	*	34		
	
Then	I	also	know	that		bar	(foo	(2+2))	*	34	==	bar	(foo	(4))	*	34.	
	
	
	
	

if	two	expressions	e1	and	e2	are	equal		
and	we	have	a	third	complicated	expression	FOO	(x)	
then	FOO(e1)	is	equal	to	FOO	(e2)	

If	expressions	contain	things	like	mutable	references,	this	proof	principle	
breaks	down.		That’s	a	big	reason	why	I	like	func5onal	programming	and	
a	big	reason	we	are	working	primarily	with	pure	expressions.	

13	

Important	ProperDes	of	Expression	Equality	
Other	important	properDes:	
	
(reflexivity)		every	expression	e	is	equal	to	itself:	e	==	e	
	
(symmetry)	if	e1	==	e2	then	e2	==	e1	
	
(transiDvity)	if	e1	==	e2	and	e2	==	e3	then	e1	==	e3	
	
(evaluaDon)	if	e1	-->	e2	then	e1	==	e2.	
	
(congruence,	aka	subsDtuDon	of	equals	for	equals)	if	two	
expressions	are	equal,	you	can	subsDtute	one	for	the	other	inside	
any	other	expression:		

–  if	e1	==	e2	then	e[e1/x]	==	e[e2/x]	
	
	
	

14	

EASY	EXAMPLES	

15	

Easy	Examples	
Most	of	our	proofs	will	use	what	we	know	about	the	subsDtuDon	
model	of	evaluaDon.		Eg:	

Given:	 let	easy	x	y	z	=	x	*	(y	+	z)	

a	funcDon	definiDon	

16	

Easy	Examples	
Most	of	our	proofs	will	use	what	we	know	about	the	subsDtuDon	
model	of	evaluaDon.		Eg:	

Given:	

Theorem:				easy	1	20	30	==	50		
	

let	easy	x	y	z	=	x	*	(y	+	z)	

17	

Easy	Examples	
Most	of	our	proofs	will	use	what	we	know	about	the	subsDtuDon	
model	of	evaluaDon.		Eg:	

Given:	

Theorem:				easy	1	20	30	==	50		
	
Proof:				
						easy	1	20	30 	(leV-hand	side	of	equaDon)	

let	easy	x	y	z	=	x	*	(y	+	z)	

18	

Easy	Examples	
Most	of	our	proofs	will	use	what	we	know	about	the	subsDtuDon	
model	of	evaluaDon.		Eg:	

Given:	

Theorem:				easy	1	20	30	==	50		
	
Proof:				
						easy	1	20	30 	(leV-hand	side	of	equaDon)	
==		1	*	(20	+	30)											(by	evaluaDng	easy	1	step)	

let	easy	x	y	z	=	x	*	(y	+	z)	

19	

Easy	Examples	
Most	of	our	proofs	will	use	what	we	know	about	the	subsDtuDon	
model	of	evaluaDon.		Eg:	

Given:	

Theorem:				easy	1	20	30	==	50		
	
Proof:				
						easy	1	20	30 	(leV-hand	side	of	equaDon)	
==		1	*	(20	+	30)											(by	evaluaDng	easy	1	step)	
==	50 	 	 	(by	math)	
QED.	

let	easy	x	y	z	=	x	*	(y	+	z)	

20	

Easy	Examples	
Most	of	our	proofs	will	use	what	we	know	about	the	subsDtuDon	
model	of	evaluaDon.		Eg:	

Given:	

Theorem:				easy	1	20	30	==	50		
	
Proof:				
						easy	1	20	30 	(leV-hand	side	of	equaDon)	
==		1	*	(20	+	30)											(by	evaluaDng	easy	1	step)	
==	50 	 	 	(by	math)	
QED.	

let	easy	x	y	z	=	x	*	(y	+	z)	

noDce	the	
2-column	
proof	style	

facts	go	on	the	leV	

jusDficaDons	on	the	right	

21	

Easy	Examples	
We	can	use	symbolic	values	in	in	our	proofs	too.		Eg:	
	
Given:	

Theorem:				for	all	integers	n	and	m,	easy	1	n	m	==	n	+	m		
	
Proof:				
						easy	1	n	m		 	(leV-hand	side	of	equaDon)	

let	easy	x	y	z	=	x	*	(y	+	z)	

22	

Easy	Examples	
We	can	use	symbolic	values	in	in	our	proofs	too.		Eg:	
	
Given:	

Theorem:				for	all	integers	n	and	m,	easy	1	n	m	==	n	+	m		
	
Proof:				
						easy	1	n	m		 	(leV-hand	side	of	equaDon)	
==		1	*	(n	+	m)														(by	evaluaDng	easy)	

let	easy	x	y	z	=	x	*	(y	+	z)	

23	

Easy	Examples	
We	can	use	symbolic	values	in	in	our	proofs	too.		Eg:	
	
Given:	

Theorem:				for	all	integers	n	and	m,	easy	1	n	m	==	n	+	m		
	
Proof:				
						easy	1	n	m		 	(leV-hand	side	of	equaDon)	
==		1	*	(n	+	m)														(by	evaluaDng	easy)	
==	n	+	m 	 	(by	math)	
QED.	

let	easy	x	y	z	=	x	*	(y	+	z)	

24	

Easy	Examples	
We	can	use	symbolic	values	in	in	our	proofs	too.		Eg:	
	
Given:	

Theorem:				for	all	integers	n,	m,	k,	easy	k	n	m	==	easy	k	m	n	
	
Proof:				
						easy	k	n	m		 	(leV-hand	side	of	equaDon)	

let	easy	x	y	z	=	x	*	(y	+	z)	

25	

Easy	Examples	
We	can	use	symbolic	values	in	in	our	proofs	too.		Eg:	
	
Given:	

Theorem:				for	all	integers	n,	m,	k,	easy	k	n	m	==	easy	k	m	n	
	
Proof:				
						easy	k	n	m		 	(leV-hand	side	of	equaDon)	
==	k	*	(n	+	m) 	 	(by	evaluaDng	easy)	

let	easy	x	y	z	=	x	*	(y	+	z)	

26	

Easy	Examples	
We	can	use	symbolic	values	in	in	our	proofs	too.		Eg:	
	
Given:	

Theorem:				for	all	integers	n,	m,	k,	easy	k	n	m	==	easy	k	m	n	
	
Proof:				
						easy	k	n	m		 	(leV-hand	side	of	equaDon)	
==	k	*	(n	+	m) 	 	(by	evaluaDng	easy)	
==	k	*	(m	+	n) 	 	(by	math,	subst	of	equals	for	equals)	

let	easy	x	y	z	=	x	*	(y	+	z)	

I'm	not	going	to	menDon	
this	from	now	on	

27	

Easy	Examples	
We	can	use	symbolic	values	in	in	our	proofs	too.		Eg:	
	
Given:	

Theorem:				for	all	integers	n,	m,	k,	easy	k	n	m	==	easy	k	m	n	
	
Proof:				
						easy	k	n	m		 	(leV-hand	side	of	equaDon)	
==	k	*	(n	+	m) 	 	(by	evaluaDng	easy)	
==	k	*	(m	+	n) 	 	(by	math)	
==	easy	k	m	n 	 	(by	evaluaDng	easy)	
QED.	

let	easy	x	y	z	=	x	*	(y	+	z)	

28	

Easy	Examples	
We	can	use	symbolic	values	in	in	our	proofs	too.		Eg:	
	
Given:	

Theorem:				for	all	integers	n,	m,	k,	easy	k	n	m	==	easy	k	m	n	
	
Proof:				
						easy	k	n	m		 	(leV-hand	side	of	equaDon)	
==	k	*	(n	+	m) 	 	(by	def	of	easy)	
==	k	*	(m	+	n) 	 	(by	math)	
==	easy	k	m	n 	 	(by	def	of	easy)	
QED.	

let	easy	x	y	z	=	x	*	(y	+	z)	

subsDtuDon/	
evaluaDng/	
“unfolding”	
a	definiDon	

the	reverse:	
“folding”	a	definiDon		
back	up	

29	

An	Aside:		Symbolic	EvaluaDon	
One	last	thing:	we	someDmes	find	ourselves	with	a	funcDon,	like	
easy,	that	has	a	symbolic	argument	like	k+1	for	some	k	and	we	would	
like	to	evaluate	it	in	our	proof.	eg:	
	
						easy	x	y	(k+1)	
==	x	*	(y	+	(k+1)) 	 	(by	evaluaDon	of	easy	I	hope)	

	
However,	that	is	not	how	O’Caml	evaluaDon	works.		O’Caml	
evaluates	it’s	arguments	to	a	value	first,	and	then	calls	the	funcDon.			
	
Don’t	worry:	if	you	know	that	the	expression	will	evaluate	to	a	value	
(and	will	not	infinite	loop	or	raise	an	excepDon)	then	you	can	
subsDtute	the	symbolic	expression	for	the	parameter	of	the	funcDon	
To	be	rigorous,	you	should	prove	it	will	evaluate	to	a	value,	not	just	
guess	...	typically	we	will	take	this	for	granted	...	
	
	
	

30	

An	Aside:		Symbolic	EvaluaDon	

An	interesDng	example:	
	
	
	
const	(exp)		==	7 	(By	evaluaDon	of	const?)	
	
	
	

let	const	x	=	7		

does	this	work	for	any	expression?	

31	

An	Aside:		Symbolic	EvaluaDon	

An	interesDng	example:	
	
	
	
const	(n	/	0)		==	7 	(By	careless,	wrong!	evaluaDon	of	const)	
	
	
	

let	const	x	=	7		

32	

An	Aside:		Symbolic	EvaluaDon	

An	interesDng	example:	
	
	
	
const	(n	/	0)		==	7 	(By	careless,	wrong!	evaluaDon	of	const)	
	
	
	
	

let	const	x	=	7		

•  n	/	0	raises	an	excepDon	
•  so	const	(n	/	0)	raises	an	excepDon	
•  but	7	is	just	7	and	doesn’t	raise	an	excepDon	
•  an	expression	that	raises	an	excepDon	is	not	equal	to	one	that	returns	a	value!	

33	

An	Aside:		Symbolic	EvaluaDon	

An	interesDng	example:	
	
	
	
const	(n	/	0)		==	7 	(By	careless,	wrong!	evaluaDon	of	const)	
	
	
	
	

let	const	x	=	7		

what	to	remember:	
	
f	(e)	==	body_of_f_with_e_subsDtuted_for_f_parameter	
	
whenever	e	evaluates	to	a	value	(not	an	excepDon	or	infinite	loop)	

34	

Summary	so	far:		Proof	by	simple	calculaDon	
•  Some	proofs	are	very	easy	and	can	be	done	by:	

–  unfolding	definiDons	(ie:	using	forwards	evaluaDon)	
–  using	lemmas	or	facts	we	already	know	(eg:	math)	
–  folding	definiDons	back	up	(ie:	using	reverse	evaluaDon)	

•  Eg:	

Theorem:		easy	a	b	c	==	easy	a	c	b	
	
Proof:	
	
easy	a	b	c	
	
==		a	*	(b	+	c) 	(by	def	of	easy)	
	
==		a	*	(c	+	b) 	(by	math)	
	
==		easy	a	c	b 	(by	def	of	easy)	

DefiniDon:	
let	easy	x	y	z	=	x	*	(y	+	z)	

given	this	

we	do	this	proof	

35	

INDUCTIVE	PROOFS	

36	

A	problem	 37	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

A	problem	 38	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

A	problem	 39	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	=	0:	
						exp	0	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

A	problem	 40	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	=	0:	
						exp	0	
==	match	0	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

A	problem	 41	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	=	0:	
						exp	0	
==	match	0	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		
==	1		 	 	 	 	 	(by	evaluaDng	match)	
==	2^0 	 	 	 	 	(by	math)	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

A	problem	 42	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	==	k+1:	
						exp	(k+1)	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

A	problem	 43	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	==	k+1:	
						exp	(k+1)	
==	match	(k+1)	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

A	problem	 44	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	==	k+1:	
						exp	(k+1)	
==	match	(k+1)	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		
==	2	*	exp	(k+1	-	1)	 	 	 	 	(by	evaluaDng	case)	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

A	problem	 45	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	==	k+1:	
						exp	(k+1)	
==	match	(k+1)	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		
==	2	*	exp	(k+1	-	1)	 	 	 	 	(by	evaluaDng	case)	
==	??	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

A	problem	 46	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	==	k+1:	
						exp	(k+1)	
==	match	(k+1)	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		
==	2	*	exp	(k+1	-	1)	 	 	 	 	(by	evaluaDng	case)	
==	2	*	(match	(k+1-1)	with	0	->	1	|	n	->	2	*	exp	(n	-1))	(by	unfolding	exp)	
	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

A	problem	 47	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	==	k+1:	
						exp	(k+1)	
==	match	(k+1)	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		
==	2	*	exp	(k+1	-	1)	 	 	 	 	(by	evaluaDng	case)	
==	2	*	(match	(k+1-1)	with	0	->	1	|	n	->	2	*	exp	(n	-1))	(by	unfolding	exp)	
==	2	*	(2	*	exp	((k+1)	-	1	-	1)) 	 	 	(by	evaluaDng	case)	
	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

A	problem	 48	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	==	k+1:	
						exp	(k+1)	
==	match	(k+1)	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		
==	2	*	exp	(k+1	-	1)	 	 	 	 	(by	evaluaDng	case)	
==	2	*	(match	(k+1	-	1)	of	0	->	1	|	n	->	2	*	exp	(n	-1))			(by	unfolding	exp)	
==	2	*	(2	*	exp	((k+1)	-	1	-	1)) 	 	 	(by	evaluaDng	case)	
==	...	we	aren’t	making	progress	...	just	unrolling	the	loop	forever	...	
	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

InducDon	
•  When	proving	theorems	about	recursive	funcDons,	we	usually	

need	to	use	induc5on.	
–  In	inducDve	proofs,	in	a	case	for	object	X,	we	assume	that	the	
theorem	holds	for	all	objects	smaller	than	X	
•  this	assumpDon	is	called	the	induc5ve	hypothesis	(IH	for	short)	

–  Eg:		When	proving	a	theorem	about	natural	numbers	by	
inducDon,	and	considering	the	case	for	natural	number	k+1,	we	
get	to	assume	our	theorem	is	true	for	natural	number	k	
(because	k	is	smaller	than	k+1)	

–  Eg:		When	proving	a	theorem	about	lists	by	inducDon,	and	
considering	the	case	for	a	list	x::xs,	we	get	to	assume	our	
theorem	is	true	for	the	list	xs	(which	is	a	shorter	list	than	x::xs)	

49	

Back	to	the	Proof	 50	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	==	k+1:	
						exp	(k+1)	
==	match	(k+1)	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		
==	2	*	exp	(k+1	-	1)	 	 	 		 	(by	evaluaDng	case)	
	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

Back	to	the	Proof	 51	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	==	k+1:	
						exp	(k+1)	
==	match	(k+1)	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		
==	2	*	exp	(k+1	-	1)	 	 	 	 	(by	evaluaDng	case)	
==	2	*	exp	(k) 	 	 	 	 	(by	math)	
	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

Back	to	the	Proof	 52	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	==	k+1:	
						exp	(k+1)	
==	match	(k+1)	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		
==	2	*	exp	(k+1	-	1)	 	 	 	 	(by	evaluaDng	case)	
==	2	*	exp	(k) 	 	 	 	 	(by	math)	
==	2	*	2^k 	 	 	 	 	(by	IH!)	
	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+1	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

Back	to	the	Proof	 53	

Theorem:		For	all	natural	numbers	n,		

exp(n)	==	2^n.	
	
	
	
	
	
Case:		n	==	k+1:	
						exp	(k+1)	
==	match	(k+1)	with	0	->	1	|	n	->	2	*	exp	(n	-1) 	(by	unfolding	exp)		
==	2	*	exp	(k+1	-	1)	 	 	 	 	(by	evaluaDng	case)	
==	2	*	exp	(k) 	 	 	 	 	(by	math)	
==	2	*	2^k 	 	 	 	 	(by	IH!)	
==	2^(k+1) 	 	 	 	 	(by	math)	
QED!	
	

Proof:			
	

Recall:		Every	natural	number	n	is	
either	0	or	it	is	k+2	(where	k	is	also	a	natural	number).	
Hence,	we	follow	the	structure	of	the	data	and	do	
our	proof	in	two	cases.	
	

let	rec	exp	n	=	
		match	n	with	
				|	0	->	1	
				|	n	->	2	*	exp	(n-1)	

Another	example	

let	rec	even	n	=	
		match	n	with	
				|	0	->	true	
				|	1	->	false	
				|	n	->	even	(n-2)	

Recall:		Every	natural	number	n	is	
either	0	or	k+1,	where	k	is	also	a		
natural	number.	

Case:		n	==	0:	
		...	

Case:		n	==	k+1:	
		...	

Theorem:		For	all	natural	numbers	n,		
even(2*n)	==	true.	

	
	
	
	
	

54	

Another	example	

Theorem:		For	all	natural	numbers	n,		
even(2*n)	==	true.	

	
	
	
	
	

Recall:		Every	natural	number	n	is	
either	0	or	k+1,	where	k	is	also	a		
natural	number.			

Case:		n	==	0:	
						even	(2*0) 	 		
==	

let	rec	even	n	=	
		match	n	with	
				|	0	->	true	
				|	1	->	false	
				|	n	->	even	(n-2)	

55	

Another	example	

Theorem:		For	all	natural	numbers	n,		
even(2*n)	==	true.	

	
	
	
	
	

Recall:		Every	natural	number	n	is	
either	0	or	k+1,	where	k	is	also	a		
natural	number.			

Case:		n	==	0:	
						even	(2*0) 	 		
==	even	(0) 	 	 	 	 	 	(by	math)	
==	 	 	 	 	 		

let	rec	even	n	=	
		match	n	with	
				|	0	->	true	
				|	1	->	false	
				|	n	->	even	(n-2)	

56	

Another	example	

Recall:		Every	natural	number	n	is	
either	0	or	k+1,	where	k	is	also	a		
natural	number.			

Case:		n	==	0:	
						even	(2*0) 	 		
==	even	(0) 	 	 	 	 	 	(by	math)	
==	match	0	of	(0	->	true	|	1	->	false	|	n	->	even	(n-2))	 	(by	def	of	even)	
==	true 	 	 	 	 	 	 	(by	evaluaDon)	

Theorem:		For	all	natural	numbers	n,		
even(2*n)	==	true.	

	
	
	
	
	

let	rec	even	n	=	
		match	n	with	
				|	0	->	true	
				|	1	->	false	
				|	n	->	even	(n-2)	

57	

Another	example	

Case:		n	==	k+1:	
						even	(2*(k+1)) 	 		
==	

Theorem:		For	all	natural	numbers	n,		
even(2*n)	==	true.	

	
	
	
	
	

Recall:		Every	natural	number	n	is	
either	0	or	k+1,	where	k	is	also	a		
natural	number.			

let	rec	even	n	=	
		match	n	with	
				|	0	->	true	
				|	1	->	false	
				|	n	->	even	(n-2)	

58	

Another	example	

Case:		n	==	k+1:	
						even	(2*(k+1)) 	 		
==	even	(2*k+2) 	 	 	 	 	 	(by	math)	
==	

Theorem:		For	all	natural	numbers	n,		
even(2*n)	==	true.	

	
	
	
	
	

Recall:		Every	natural	number	n	is	
either	0	or	k+1,	where	k	is	also	a		
natural	number.			

let	rec	even	n	=	
		match	n	with	
				|	0	->	true	
				|	1	->	false	
				|	n	->	even	(n-2)	

59	

Another	example	

Case:		n	==	k+1:	
						even	(2*(k+1)) 	 		
==	even	(2*k+2) 	 	 	 	 	 	(by	math)	
==	match	2*k+2	of	(0	->	true	|	1	->	false	|	n	->	even	(n-2)) 	(by	def	of	even)	
==	even	((2*k+2)-2) 	 	 	 	 	(by	evaluaDon)	
==	even	(2*k) 	 	 	 	 	 	(by	math)	

Theorem:		For	all	natural	numbers	n,		
even(2*n)	==	true.	

	
	
	
	
	

Recall:		Every	natural	number	n	is	
either	0	or	k+1,	where	k	is	also	a		
natural	number.			

let	rec	even	n	=	
		match	n	with	
				|	0	->	true	
				|	1	->	false	
				|	n	->	even	(n-2)	

60	

Another	example	

Case:		n	==	k+1:	
						even	(2*(k+1)) 	 		
==	even	(2*k+2) 	 	 	 	 	 	(by	math)	
==	match	2*k+2	of	(0	->	true	|	1	->	false	|	n	->	even	(n-2)) 	(by	def	of	even)	
==	even	((2*k+2)-2) 	 	 	 	 	(by	evaluaDon)	
==	even	(2*k) 	 	 	 	 	 	(by	math)	
==	true 	 	 	 	 	 	 	(by	IH)	
QED.	

Theorem:		For	all	natural	numbers	n,		
even(2*n)	==	true.	

	
	
	
	
	

Recall:		Every	natural	number	n	is	
either	0	or	k+1,	where	k	is	also	a		
natural	number.			

let	rec	even	n	=	
		match	n	with	
				|	0	->	true	
				|	1	->	false	
				|	n	->	even	(n-2)	

61	

Template	for	InducDve	Proofs	on	Natural	Numbers	

Proof:		By	inducDon	on	natural	numbers	n.	

Case:		n	==	0:	
		...	

Case:		n	==	k+1:	
		...	

Theorem:		For	all	natural	numbers	n,	property	of	n.	

	
	
	
	
	

jusDficaDons	to	use:	
•  simple	math	
•  evaluaDon,	reverse	evaluaDon	
•  IH	

proof	methodology.	
write	this	down.	

cases	must	
cover	all		
natural	
numbers	

62	

Template	for	InducDve	Proofs	on	Natural	Numbers	

Proof:		By	inducDon	on	natural	numbers	n.	

Case:		n	==	0:	
		...	

Case:		n	==	k+1:	
		...	

Theorem:		For	all	natural	numbers	n,	property	of	n.	

	
	
	
	
	

cases	must	
cover	all		
natural	
numbers	

Note	there	are	other	ways	to	cover	all	natural	numbers:	
•  eg:		case	for	0,	case	for	1,	case	for	k+2	
	

63	

PROOFS	ABOUT	LIST-PROCESSORS	

64	

A	Couple	of	Useful	FuncDons	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

65	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
	
Proof	strategy:	
•  Proof	by	inducDon	on	the	list	xs?	or	on	the	list	ys?	

–  answering	that	quesDon,	may	be	the	hardest	part	of	the	proof!	
–  it	tells	you	how	to	split	up	your	cases	
–  someDmes	you	just	need	to	do	some	trial	and	error	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

a	clue:	
pa>ern	matching	
on	first	argument.	
In	the	theorem:	
cat	xs	ys	
Hence	inducDon	
on	xs.	Case	split	
the	same	way	
as	the	program	

66	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
	
Proof	strategy:	
•  Proof	by	inducDon	on	the	list	xs	

–  recall,	a	list	may	be	of	these	two	things:	
•  []					 	 	(the	empty	list)	
•  hd::tl 	 	(a	non-empty	list,	where	tl	is	shorter)	

–  a	proof	must	cover	both	cases:	[]	and	hd	::	tl	
–  in	the	second	case,		you	will	oVen	use	the	inducDve	hypothesis	
on	the	smaller	list	tl	

–  otherwise	as	before:	
•  use	folding/unfolding	of	OCaml	definiDons	
•  use	your	knowledge	of	OCaml	evaluaDon	
•  use	lemmas/properDes	you	know	of	basic	operaDons	like	::	and	+	

67	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	[]:	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

68	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	[]:	
				length	(cat	[]	ys) 	 	(LHS	of	theorem)	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

69	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	[]:	
				length	(cat	[]	ys) 	 	(LHS	of	theorem)	
	=	length	ys 	 	 	(evaluate	cat)	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

70	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	[]:	
				length	(cat	[]	ys) 	 	(LHS	of	theorem)	
	=	length	ys 	 	 	(evaluate	cat)	
	=	0	+	(length	ys) 	 	 	(arithmeDc)	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

71	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	[]:	
				length	(cat	[]	ys) 	 	(LHS	of	theorem)	
	=	length	ys 	 	 	(evaluate	cat)	
	=	0	+	(length	ys) 	 	 	(arithmeDc)	
	=	(length	[])	+	(length	ys) 	 	(fold	length)	
	
case	done!	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

72	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd::tl	
	
	
	
	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

73	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd::tl	
				IH:	length	(cat	tl	ys)	=	length	tl	+	length	ys	
	
	
	
	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

74	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd::tl	
				IH:	length	(cat	tl	ys)	=	length	tl	+	length	ys	
	
						length	(cat	(hd::tl)	ys) 	 	(LHS	of	theorem)	
==	
	
	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

75	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd::tl	
				IH:	length	(cat	tl	ys)	=	length	tl	+	length	ys	
	
						length	(cat	(hd::tl)	ys) 	 	(LHS	of	theorem)	
==	length	(hd	::	(cat	tl	ys))							 	(evaluate	cat,	take	2nd	branch)	
==	
	
	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

76	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd::tl	
				IH:	length	(cat	tl	ys)	=	length	tl	+	length	ys	
	
						length	(cat	(hd::tl)	ys) 	 	(LHS	of	theorem)	
==	length	(hd	::	(cat	tl	ys))							 	(evaluate	cat,	take	2nd	branch)	
==	1	+	length	(cat	tl	ys) 	 	(evaluate	length,	take	2nd	branch)	
==		
	
	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

77	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd::tl	
				IH:	length	(cat	tl	ys)	=	length	tl	+	length	ys	
	
						length	(cat	(hd::tl)	ys) 	 	(LHS	of	theorem)	
==	length	(hd	::	(cat	tl	ys))							 	(evaluate	cat,	take	2nd	branch)	
==	1	+	length	(cat	tl	ys) 	 	(evaluate	length,	take	2nd	branch)	
==	1	+	(length	tl	+	length	ys) 	(by	IH)	
==		
	
	
	 let	rec	cat	xs1	xs2	=	

			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

78	

Proofs	About	Lists	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd::tl	
				IH:	length	(cat	tl	ys)	=	length	tl	+	length	ys	
	
						length	(cat	(hd::tl)	ys) 	 	(LHS	of	theorem)	
==	length	(hd	::	(cat	tl	ys))							 	(evaluate	cat,	take	2nd	branch)	
==	1	+	length	(cat	tl	ys) 	 	(evaluate	length,	take	2nd	branch)	
==	1	+	(length	tl	+	length	ys) 	(by	IH)	
==	length	(hd::tl)	+	length	ys 	(reparenthesizing	and	evaling	length	in	reverse	

	 	 	 	we	have	RHS	with	hd::tl	for	xs)	
	
case	done!	
	
	
	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

79	

Be	careful	with	the	InducDon	Hypothesis!	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd::tl	
				IH:	length	(cat	tl	ys)	=	length	tl	+	length	ys	
	
						length	(cat	(hd::tl)	ys) 	 	(LHS	of	theorem)	
==	length	(hd	::	(cat	tl	ys))							 	(evaluate	cat,	take	2nd	branch)	
==	1	+	length	(cat	tl	ys) 	 	(evaluate	length,	take	2nd	branch)	
==	1	+	(length	tl	+	length	ys) 	(by	IH)	
==	length	(hd::tl)	+	length	ys 	(reparenthesizing	and	evaling	length	in	reverse	

	 	 	 	we	have	RHS	with	hd::tl	for	xs)	
	
case	done!	
	
	
	
	

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

InducDon	hypothesis	is	a	funcDon	
of	one	variable	(in	this	case,	xs)	

The	use	of	the	IH	must	be	
at	a	smaller	value		

(in	this	case,	“tl”	is	smaller	than	“xs”)	

In	your	proofs,	it	should	be	really	obvious	
•  which	variable	the	IH	is	supposed	to	be	a	funcDon	of	
•  that	your	inducDon	is	on	that	variable	
•  that	you’re	applying	the	IH	at	smaller	values	
If	you’re	not	sure	it’s	obvious,	just	say	explicitly	in	your	proof:	which	
variable	it	is,	and	why	you	claim	you’re	applying	it	at	smaller	values	

80	

Be	careful	with	the	InducDon	Hypothesis!	
Theorem:		For	all	lists	xs	and	ys,		

	 	length(cat	xs	ys)	=	length	xs	+	length	ys	
Proof:		By	inducDon	on	xs.	
			

let	rec	cat	xs1	xs2	=	
			match	xs1	with	
			|	[]	->	xs2	
			|	hd::tl	->	hd	::	cat	tl	xs2	

let	rec	length	xs	=	
		match	xs	with	
		|	[]	->	0	
		|	x::xs	->	1	+	length	xs	

InducDon	hypothesis	is	a	funcDon	
of	one	variable	(in	this	case,	xs)	

In	your	proofs,	it	should	be	really	obvious	
•  which	variable	the	IH	is	supposed	to	be	a	funcDon	of	
•  that	your	inducDon	is	on	that	variable	
•  that	you’re	applying	the	IH	at	smaller	values	
If	you’re	not	sure	it’s	obvious,	just	say	explicitly	in	your	proof:	which	
variable	it	is,	and	why	you	claim	you’re	applying	it	at	smaller	values	

In	more	complicated	proofs,	the	inducDon	hypothesis	is	
a	funcDon	of	one	structure	where	the	ordering	of	

elements	in	the	structure	is	well-founded	(there	are	no	
infinite	descending	chains).	Eg,	we	could	do	inducDon	
on	pairs	of	naturals	(x,	y)	where	pairs	are	ordered	

lexicographically.	ie:	
(x1,	y1)	>	(x2,	y2)		

iff	x1	>	x2	or	(x1	=	x2	and	y1	>	y2)	

81	

Another	List	example	
Theorem:		For	all	lists	xs,		
																							add_all	(add_all	xs	a)	b	==	add_all	xs	(a+b)	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	[]:	
	
						add_all	(add_all	[]	a)	b 	 	(LHS	of	theorem)	
==	
	
	

let	rec	add_all	xs	c	=	
		match	xs	with	
		|	[]	->	[]	
		|	hd::tl	->	(hd+c)::add_all	tl	c	

82	

Another	List	example	
Theorem:		For	all	lists	xs,		
																							add_all	(add_all	xs	a)	b	==	add_all	xs	(a+b)	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	[]:	
	
						add_all	(add_all	[]	a)	b 	 	(LHS	of	theorem)	
==	add_all	[]	b 	 	 	(by	evaluaDon	of		add_all)	
==	
	

let	rec	add_all	xs	c	=	
		match	xs	with	
		|	[]	->	[]	
		|	hd::tl	->	(hd+c)::add_all	tl	c	

83	

Another	List	example	
Theorem:		For	all	lists	xs,		
																							add_all	(add_all	xs	a)	b	==	add_all	xs	(a+b)	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	[]:	
	
						add_all	(add_all	[]	a)	b 	 	(LHS	of	theorem)	
==	add_all	[]	b 	 	 	(by	evaluaDon	of		add_all)	
==	[]														 	 	 	(by	evaluaDon	of	add_all)	
==	
	
	

let	rec	add_all	xs	c	=	
		match	xs	with	
		|	[]	->	[]	
		|	hd::tl	->	(hd+c)::add_all	tl	c	

84	

Another	List	example	
Theorem:		For	all	lists	xs,		
																							add_all	(add_all	xs	a)	b	==	add_all	xs	(a+b)	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	[]:	
	
						add_all	(add_all	[]	a)	b 	 	(LHS	of	theorem)	
==	add_all	[]	b 	 	 	(by	evaluaDon	of		add_all)	
==	[]														 	 	 	(by	evaluaDon	of	add_all)	
==	add_all	[]	(a	+	b) 	 	(by	evaluaDon	of	add_all)	
	
	
	

let	rec	add_all	xs	c	=	
		match	xs	with	
		|	[]	->	[]	
		|	hd::tl	->	(hd+c)::add_all	tl	c	

85	

Another	List	example	
Theorem:		For	all	lists	xs,		
																							add_all	(add_all	xs	a)	b	==	add_all	xs	(a+b)	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd	::	tl:	
	
						add_all	(add_all	(hd	::	tl)	a)	b 	 	(LHS	of	theorem)	
==	
	
	

let	rec	add_all	xs	c	=	
		match	xs	with	
		|	[]	->	[]	
		|	hd::tl	->	(hd+c)::add_all	tl	c	

86	

Another	List	example	
Theorem:		For	all	lists	xs,		
																							add_all	(add_all	xs	a)	b	==	add_all	xs	(a+b)	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd	::	tl:	
	
						add_all	(add_all	(hd	::	tl)	a)	b 	 	(LHS	of	theorem)	
==	add_all	((hd+a)	::	add_all	tl	a)	b 	 	(by	eval	inner	add_all)	
==	
	
	

let	rec	add_all	xs	c	=	
		match	xs	with	
		|	[]	->	[]	
		|	hd::tl	->	(hd+c)::add_all	tl	c	

87	

Another	List	example	
Theorem:		For	all	lists	xs,		
																							add_all	(add_all	xs	a)	b	==	add_all	xs	(a+b)	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd	::	tl:	
	
						add_all	(add_all	(hd	::	tl)	a)	b 	 	(LHS	of	theorem)	
==	add_all	((hd+a)	::	add_all	tl	a)	b 	 	(by	eval	inner	add_all)	
==	(hd+a+b)	::	(add_all	(add_all	tl	a)	b)											(by	eval	outer	add_all)	
==	
	
	

let	rec	add_all	xs	c	=	
		match	xs	with	
		|	[]	->	[]	
		|	hd::tl	->	(hd+c)::add_all	tl	c	

88	

Another	List	example	
Theorem:		For	all	lists	xs,		
																							add_all	(add_all	xs	a)	b	==	add_all	xs	(a+b)	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd	::	tl:	
	
						add_all	(add_all	(hd	::	tl)	a)	b 	 	(LHS	of	theorem)	
==	add_all	((hd+a)	::	add_all	tl	a)	b 	 	(by	eval	inner	add_all)	
==	(hd+a+b)	::	(add_all	(add_all	tl	a)	b)											(by	eval	outer	add_all)	
==	(hd+a+b)	::	add_all	tl	(a+b) 	 	(by	IH)	
	
	
	

let	rec	add_all	xs	c	=	
		match	xs	with	
		|	[]	->	[]	
		|	hd::tl	->	(hd+c)::add_all	tl	c	

89	

Another	List	example	
Theorem:		For	all	lists	xs,		
																							add_all	(add_all	xs	a)	b	==	add_all	xs	(a+b)	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd	::	tl:	
	
						add_all	(add_all	(hd	::	tl)	a)	b 	 	(LHS	of	theorem)	
==	add_all	((hd+a)	::	add_all	tl	a)	b 	 	(by	eval	inner	add_all)	
==	(hd+a+b)	::	(add_all	(add_all	tl	a)	b)											(by	eval	outer	add_all)	
==	(hd+a+b)	::	add_all	tl	(a+b) 	 	(by	IH)	
==	(hd+(a+b))	::	add_all	tl	(a+b) 	 	(associaDvity	of	+)	
	
	
	

let	rec	add_all	xs	c	=	
		match	xs	with	
		|	[]	->	[]	
		|	hd::tl	->	(hd+c)::add_all	tl	c	

90	

Another	List	example	
Theorem:		For	all	lists	xs,		
																							add_all	(add_all	xs	a)	b	==	add_all	xs	(a+b)	
Proof:		By	inducDon	on	xs.	
			
case	xs	=	hd	::	tl:	
	
						add_all	(add_all	(hd	::	tl)	a)	b 	 	(LHS	of	theorem)	
==	add_all	((hd+a)	::	add_all	tl	a)	b 	 	(by	eval	inner	add_all)	
==	(hd+a+b)	::	(add_all	(add_all	tl	a)	b)											(by	eval	outer	add_all)	
==	(hd+a+b)	::	add_all	tl	(a+b) 	 	(by	IH)	
==	(hd+(a+b))	::	add_all	tl	(a+b) 	 	(associaDvity	of	+)	
==	add_all	(hd::tl)	(a+b) 	 	 	(by	(reverse)	eval	of	add_all)	
	
	
	 let	rec	add_all	xs	c	=	

		match	xs	with	
		|	[]	->	[]	
		|	hd::tl	->	(hd+c)::add_all	tl	c	

91	

Template	for	InducDve	Proofs	on	Lists	

Proof:		By	inducDon	on	lists	xs.	

Theorem:		For	all	lists	xs,	property	of	xs.	

	
	
	
	
	

cases	must	
cover	all		
lists	

Note	there	are	other	ways	to	cover	all	lists:	
•  eg:		case	for	[],	case	for	x1::[],	case	for	x1::x2::tl		
	

Case:		xs	==	[]:	
		...	

Case:		xs	==	hd	::	tl:	
		...	

92	

Template	for	InducDve	Proofs	on	any	datatype	

Proof:		By	inducDon	on	the	constructors	of	ty.	

Theorem:		For	all	ty		x,	property	of	x.	

cases	must	cover	all		the	constructors	of	the	datatype	

Case:		x	==	A(…):	
		...	
Case:		x	==	B(…):	
		...	
Case:		x	==	C(…):	
		...	
Case:		x	==	D:	
		...	

type	ty	=	A	of	…	|	B	of	…	|	C	of	…	|	D		;;	
	

93	

SUMMARY	

94	

Summary	
•  Proofs	about	programs	are	structured	similarly	to	the	

programs	themselves:	
–  types	tell	you	what	kinds	of	values	your	proofs/programs	
operate	over	

–  types	suggest	how	to	break	down	proofs/programs	in	to	cases	
–  when	programs	that	use	recursion	on	smaller	values,	their	
proofs	appeal	to	the	inducDve	hypothesis	on	smaller	values	

•  Key	proof	ideas:	
–  two	expressions	that	evaluate	to	the	same	value	are	equal	
–  subsDtute	equals	for	equals	
–  use	proof	by	inducDon	to	prove	correctness	of	recursive	
funcDons	

95	

