A Functional Evaluation Model

COS 326
 David Walker
 Princeton University

slides copyright 2013-2015 David Walker and Andrew W. Appel permission granted to reuse these slides for non-commercial educational purposes

A Functional Evaluation Model

In order to be able to write a program, you have to have a solid grasp of how a programming language works.

We often call the definition of "how a programming language works" its semantics.

There are many kinds of programming language semantics.

In this lecture, we will look at O'Caml's call-by-value evaluation:

- First, informally, giving program rewrite rules by example
- Second, using code, by specifying an OCaml interpreter in OCaml
- Third, more formally, using logical inference rules

In each case, we are specifying what is known as OCaml's operational semantics

O'CAML BASICS:
CORE EXPRESSION EVALUATION

Evaluation

- Execution of an OCaml expression
- produces a value
- and may have some effect (eg: it may raise an exception, print a string, read a file, or store a value in an array)
- A lot of OCaml expressions have no effect
- they are pure
- they produce a value and do nothing more
- the pure expressions are the easiest kinds of expressions to reason about
- We will focus on evaluation of pure expressions

Evaluation of Pure Expressions

- Given an expression e, we write:
e --> v
to state that expression e evaluates to value v
- Note that "e --> v" is not itself a program -- it is some notation that we use to talk about how programs work

Evaluation of Pure Expressions

- Given an expression e, we write:
e --> v
to state that expression e evaluates to value v
- Some examples:

Evaluation of Pure Expressions

- Given an expression e, we write:
e --> v
to state that expression e evaluates to value v
- Some examples:
$1+2$

Evaluation of Pure Expressions

- Given an expression e, we write:
e --> v
to state that expression e evaluates to value v
- Some examples:
$1+2$--> 3

Evaluation of Pure Expressions

- Given an expression e, we write:
e --> v
to state that expression e evaluates to value v
- Some examples:
$1+2$--> 3

2

Evaluation of Pure Expressions

- Given an expression e, we write:
e --> v
to state that expression e evaluates to value v
- Some examples:
$1+2$--> 3

2 --> 2

Evaluation of Pure Expressions

- Given an expression e, we write:
e --> v
to state that expression e evaluates to value v
- Some examples:
$1+2$--> 3

2 --> 2
int_to_string 5 --> "5"

Evaluation of Pure Expressions

More generally, we say expression e (partly) evaluates to expression e':
e --> e^{\prime}

Evaluation of Pure Expressions

More generally, we say expression e (partly) evaluates to expression e':
e --> e'

Evaluation is complete when e^{\prime} is a value

- In general, I'll use the letter "v" to represent an arbitrary value
- The letter "e" represents an arbitrary expression
- Concrete numbers, strings, characters, etc. are all values, as are:
- tuples, where the fields are values
- records, where the fields are values
- datatype constructors applied to a value
- functions

Evaluation of Pure Expressions

- Some expressions (all the interesting ones!) take many steps to evaluate them:

$$
(2 * 3)+(7 * 5)
$$

Evaluation of Pure Expressions

- Some expressions (all the interesting ones!) take many steps to evaluate them:

$$
\begin{aligned}
& (2 * 3)+(7 * 5) \\
& -->6+(7 * 5)
\end{aligned}
$$

Evaluation of Pure Expressions

- Some expressions (all the interesting ones!) take many steps to evaluate them:

$$
\begin{aligned}
& (2 * 3)+(7 * 5) \\
& -->6+(7 * 5) \\
& -->6+35
\end{aligned}
$$

Evaluation of Pure Expressions

- Some expressions (all the interesting ones!) take many steps to evaluate them:

$$
\begin{aligned}
& (2 * 3)+(7 * 5) \\
& -->6+(7 * 5) \\
& -->6+35 \\
& -->41
\end{aligned}
$$

Evaluation of Pure Expressions

- Some expressions do not compute a value and it is not obvious how to proceed:

```
"hello" + 1 --> ????
```

- A strongly typed language rules out a lot of nonsensical expressions that compute no value, like the one above
- Other expressions compute no value but raise an exception:

$$
7 \text { / } 0 \text {--> raise Divide_by_zero }
$$

- Still others simply fail to terminate ...

Let Expressions: Evaluate using Substitution

This must be
already a value

$$
\begin{aligned}
& \text { let } y=12 \text { in } \\
& 30+y
\end{aligned}
$$

```
30+12
```

 -->

Let Expressions: Evaluate using Substitution

Informal Evaluation Model

To evaluate a function call " $£ \mathrm{a}$ "

- first evaluate f until we get a function value (fun $x \rightarrow e$)
- then evaluate a until we get an argument value v_{r}
- then substitute v for x in e, the function body
- then evaluate the resulting expression.
this is why we say
O'Caml is "call by value"

Informal Evaluation Model

Another example:

```
let add x y = x+y in
let inc = add 1 in
let dec = add (-1) in
dec(inc 42)
```


Informal Evaluation Model

Recall the syntactic sugar:

```
let add = fun x -> (fun y -> x+y) in
let inc = add 1 in
let dec = add (-1) in
dec(inc 42)
```


Informal Evaluation Model

Then we use the let rule - we substitute the value for add:

Informal Evaluation Model

```
let inc = (fun x -> (fun y -> x+y)) 1 in
let dec = (fun x -> (fun y -> x+y))^ (-1) in
dec(inc 42)
not a value; must reduce
before substituting for inc
let inc = fun y -> 1+y in
let dec = (fun x -> (fun y -> x+y)) (-1) in
dec(inc 42)
```


Informal Evaluation Model

now a value
let inc $=$ fun $y->1+y$ in
 dec(inc 42)
-->
let $\operatorname{dec}=($ fun $x->($ fun $y->x+y))(-1)$ in $\operatorname{dec}($ (fun $y ~->1+y) 42)$

Informal Evaluation Model

Next: simplify dec's definition using the function-call rule.

```
let dec = (fun x -> (fun y -> x+y)) (-1) in
dec((fun y -> 1+y) 42)
--> now a value
let dec = fun y -> -1+y in
dec((fun y -> 1+y) 42)
```


Informal Evaluation Model

And we can use the let-rule now to substitute dec:

```
let dec = fun y -> -1+y in
dec((fun y -> 1+y) 42)
(fun y -> -1+y) ((fun y -> 1+y) 42)
```


Informal Evaluation Model

Now we can't yet apply the first function because the argument is not yet a value - it's a function call. So we need to use the function-call rule to simplify it to a value:

```
(fun y -> -1+y) ((fun y -> 1+y) 42) -->
(fun y -> -1+y) (1+42) -->
(fun y -> -1+y) 43 -->
-1+43 -->
4 2
```


Variable Renaming

Consider the following OCaml code:

```
let x = 30 in
let y = 12 in
x+y;;
```

Does this evaluate any differently than the following?

```
let a = 30 in
let b = 12 in
a+b;;
```


Renaming

A basic principle of programs is that systematically changing the names of variables shouldn't cause the program to behave any differently - it should evaluate to the same thing.

```
let x = 30 in
let y = 12 in
x+y;;
```

But we do have to be careful about systematic change.

```
let a = 30 in
let a = 12 in
a+a;;
```

Systematic change of variable names is called alpha-conversion.

Substitution

Wait a minute, how do we evaluate this using the letrule? If we substitute 30 for "a" naively, then we get:

```
let a = 30 in
let a = 12 in
a+a
```

let $30=12$ in
$30+30$

Which makes no sense at all!
Besides, Ocaml returns 24 not 60.
What went wrong with our informal model?

Scope and Modularity

- Lexically scoped (a.k.a. statically scoped) variables have a simple rule: the nearest enclosing "let" in the code defines the variable.
- So when we write:

```
let a = 30 in
let a = 12 in
a+a;;
```

- we know that the "a+a" corresponds to " $12+12$ " as opposed to " $30+30$ " or even weirder " $30+12$ ".

A Revised Let-Rule:

- To evaluate "let $x=e_{1}$ in e_{2} ":
- First, evaluate e_{1} to a value v.
- Then substitute v for the corresponding uses of x in e_{2}.
- Then evaluate the resulting expression.

Scope and Modularity

- But what does "corresponding uses" mean?
- Consider:

$$
\begin{aligned}
& \text { let } a=30 \text { in } \\
& \text { let } a=(\text { let } a=3 \text { in } a * 4) \text { in } \\
& a+a ;
\end{aligned}
$$

Abstract Syntax Trees

- We can view a program as a tree - the parentheses and precedence rules of the language help determine the structure of the tree.

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
==
(let a = (30) in
    (let a =
    (let a = (3) in (a*4))
    in
    (a+a)))
```


Binding Occurrences

An occurrence of a variable where we are defining it via let is said to be a binding occurrence of the variable.

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Free Occurrences

A non-binding occurrence of a variable is a use of a variable as opposed to a definition.

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

Given a variable occurrence, we can find where it is bound by ...

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

and checking if the "let" binds the variable - if so, we've found the nearest enclosing definition. If not, we keep going up.

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

Now we can also systematically rename the variables so that it's not so confusing. Systematic renaming is called alpha-conversion

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

Start with a let, and pick a fresh variable name, say " x "

```
let a = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

Rename the binding occurrence from " a " to " x ".

```
let x = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

Then rename all of the occurrences of the variables that this let binds.

```
let x = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

There are none in this case!

```
let x = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

There are none in this case!

```
let x = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

Let's do another let, renaming " a " to " y ".

```
let x = 30 in
let a =
    (let a = 3 in a*4)
in
a+a;;
```


Abstract Syntax Trees

Let's do another let, renaming " a " to " y ".

```
let x = 30 in
let y =
    (let a = 3 in a*4)
in
y+y;;
```


Abstract Syntax Trees

And if we rename the other let to " z ":

```
let x = 30 in
let }y
    (let z = 3 in z*4)
in
y+y;;
```


Abstract Syntax Trees

And if we rename the other let to " z ":

```
let x = 30 in
let }y
    (let z = 3 in z*4)
in
y+y;;
```


AN OCAML DEFINITION OF OCAML EVALUATION

Implementing an Interpreter

text file containing program as a sequence of characters

$$
\text { let } x=3 \text { in }
$$

$\mathrm{x}+\mathrm{x}$

the data type and evaluator tell us a lot about program semantics

\section*{| Pretty |
| :--- |
| Printing |}

text file/stdout containing with formatted output

Making These Ideas Precise

We can define a datatype for simple OCaml expressions:

```
type variable = string ;;
type op = Plus | Minus | Times | ... ;;
type exp =
    | Int_e of int
    Op_e of exp * op * exp
    | Var_e of variable
    | Let_e of variable * exp * exp ;;
```


Making These Ideas Precise

We can define a datatype for simple OCaml expressions:

```
type variable = string ;;
type op = Plus | Minus | Times | ... ;;
type exp =
    | Int_e of int
    | Op_e of exp * op * exp
    | Var_e of variable
    | Let_e of variable * exp * exp ;;
let three = Int_e 3 ;;
let three_plus_one =
    Op_e (Int_e 1, Plus, Int_e 3) ;;
```


Making These Ideas Precise

We can represent the OCaml program:

```
let x = 30 in
    let y =
        (let z = 3 in
        z*4)
    in
    y+y;;
```

as an exp value:

```
Let_e("x", Int_e 30,
    Let_e ("y",
        Let_e("z", Int_e 3,
                                Op_e(Var_e "z", Times, Int_e 4)),
    Op_e(Var_e "y", Plus, Var_e "y")
```


Making These Ideas Precise

Notice how this reflects the "tree":

$$
\begin{aligned}
& \text { Let_e("x", Int_e 30, } \\
& \text { Let_e("y", Let_e ("z", Int_e 3, } \\
& \\
& O_{\text {" }}{ }^{\text {Op_e(Var_e "z", Times, Int_e 4)) },}
\end{aligned}
$$

Free versus Bound Variables

type exp =

| Int_e of int
| Op_e of exp * op * exp
This is a free occurrence of a variable
| Var_e of variable
| Let_e of variable * exp * exp

Free versus Bound Variables

type exp =

| Int_e of int
| Op_e of exp * op * exp
| Var_e of variable
| Let_e of variable * exp * exp

This is a binding occurrence of a variable

