
A	Func'onal	
Evalua'on	Model	

COS	326	
David	Walker	

Princeton	University	
	
slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	

permission	granted	to	reuse	these	slides	for	non-commercial	educa'onal	purposes	
	

A	Func'onal	Evalua'on	Model	

2	

In	order	to	be	able	to	write	a	program,	you	have	to	have	a	solid	grasp	
of	how	a	programming	language	works.	

	
We	oNen	call	the	defini'on	of	“how	a	programming	language	works”	

its	seman&cs.	
	
There	are	many	kinds	of	programming	language	seman'cs.			
	
In	this	lecture,	we	will	look	at	O’Caml’s	call-by-value	evalua'on:	

–  First,	informally,	giving	program	rewrite	rules	by	example	
–  Second,	using	code,	by	specifying	an	OCaml	interpreter	in	OCaml	
–  Third,	more	formally,	using	logical	inference	rules	

In	each	case,	we	are	specifying	what	is	known	as	OCaml's	opera&onal	
seman&cs	

O’CAML	BASICS:	
CORE	EXPRESSION	EVALUATION	

Evalua'on	
•  Execu'on	of	an	OCaml	expression	

–  produces	a	value	
–  and	may	have	some	effect	(eg:	it	may	raise	an	excep'on,	print	a	
string,	read	a	file,	or	store	a	value	in	an	array)	

•  A	lot	of	OCaml	expressions	have	no	effect	
–  they	are	pure	
–  they	produce	a	value	and	do	nothing	more	
–  the	pure	expressions	are	the	easiest	kinds	of	expressions	to	
reason	about	

•  We	will	focus	on	evalua'on	of	pure	expressions	

Evalua'on	of	Pure	Expressions	
•  Given	an	expression	e,	we	write:	

						
					to	state	that	expression	e	evaluates	to	value	v	
	
•  Note	that	"e	-->	v"	is	not	itself	a	program	--	it	is	some	nota'on	

that	we	use	to	talk	about	how	programs	work	

e	-->	v	

Evalua'on	of	Pure	Expressions	
•  Given	an	expression	e,	we	write:	

						
					to	state	that	expression	e	evaluates	to	value	v	
•  Some	examples:	

e	-->	v	

Evalua'on	of	Pure	Expressions	
•  Given	an	expression	e,	we	write:	

						
					to	state	that	expression	e	evaluates	to	value	v	
•  Some	examples:	

	
1	+	2	

e	-->	v	

Evalua'on	of	Pure	Expressions	
•  Given	an	expression	e,	we	write:	

						
					to	state	that	expression	e	evaluates	to	value	v	
•  Some	examples:	

	
1	+	2	-->	3		

e	-->	v	

Evalua'on	of	Pure	Expressions	
•  Given	an	expression	e,	we	write:	

						
					to	state	that	expression	e	evaluates	to	value	v	
•  Some	examples:	

	
1	+	2	-->	3		
	
2	

e	-->	v	

Evalua'on	of	Pure	Expressions	
•  Given	an	expression	e,	we	write:	

						
					to	state	that	expression	e	evaluates	to	value	v	
•  Some	examples:	

	
1	+	2	-->	3		
	
2	-->	2	
	

e	-->	v	

values	step	to	values	

Evalua'on	of	Pure	Expressions	
•  Given	an	expression	e,	we	write:	

						
					to	state	that	expression	e	evaluates	to	value	v	
•  Some	examples:	

	
1	+	2	-->	3		
	
2	-->	2	
	
int_to_string	5	-->	"5"	

e	-->	v	

Evalua'on	of	Pure	Expressions	
More	generally,	we	say	expression	e	(partly)	evaluates	to	
expression	e’:	
	

	

e	-->	e’	

Evalua'on	of	Pure	Expressions	
More	generally,	we	say	expression	e	(partly)	evaluates	to	
expression	e’:	

	
Evalua'on	is	complete	when	e’	is	a	value	

–  In	general,	I’ll	use	the	le`er	“v”	to	represent	an	arbitrary	value	
–  The	le`er	“e”	represents	an	arbitrary	expression	
–  Concrete	numbers,	strings,	characters,	etc.	are	all	values,	as	are:	

•  tuples,	where	the	fields	are	values	
•  records,	where	the	fields	are	values	
•  datatype	constructors	applied	to	a	value	
•  func&ons	

e	-->	e’	

Evalua'on	of	Pure	Expressions	
•  Some	expressions	(all	the	interes'ng	ones!)	take	many	steps	

to	evaluate	them:	

	

	

(2	*	3)	+	(7	*	5)	

Evalua'on	of	Pure	Expressions	
•  Some	expressions	(all	the	interes'ng	ones!)	take	many	steps	

to	evaluate	them:	

	

	

(2	*	3)	+	(7	*	5)	
-->	6	+	(7	*	5)	

Evalua'on	of	Pure	Expressions	
•  Some	expressions	(all	the	interes'ng	ones!)	take	many	steps	

to	evaluate	them:	

	

	

(2	*	3)	+	(7	*	5)	
-->	6	+	(7	*	5)	
-->	6	+	35	

Evalua'on	of	Pure	Expressions	
•  Some	expressions	(all	the	interes'ng	ones!)	take	many	steps	

to	evaluate	them:	

	

	

(2	*	3)	+	(7	*	5)	
-->	6	+	(7	*	5)	
-->	6	+	35	
-->	41	

Evalua'on	of	Pure	Expressions	
•  Some	expressions	do	not	compute	a	value	and	it	is	not	

obvious	how	to	proceed:	

•  A	strongly	typed	language	rules	out	a	lot	of	nonsensical	
expressions	that	compute	no	value,	like	the	one	above	

•  Other	expressions	compute	no	value	but	raise	an	excep'on:	

•  S'll	others	simply	fail	to	terminate	…	
	

"hello"	+	1	-->			????	

7	/	0	-->	raise	Divide_by_zero	

let x = 30 in
let y = 12 in
x+y

let y = 12 in
30 + y

30 + 12

42

Let	Expressions:		Evaluate	using	Subs'tu'on	

19	

-->	

-->	

This	must	be	
already	a	value	

-->	

let x = 30 in
let y = 12 in
x+y

Let	Expressions:		Evaluate	using	Subs'tu'on	

20	

-->	

This	must	be	
already	a	value	

let x = 30 in
let y = 12 in
x+y

let x = 15*2 in
let y = 12 in
x+y

otherwise,	
first	evaluate	
inside	the	
bound	expression	

Informal	Evalua'on	Model	
To	evaluate	a	func'on	call	“f a”	
•  first	evaluate	f	un'l	we	get	a	func'on	value	(fun x -> e)	
•  then	evaluate	a	un'l	we	get	an	argument	value	v	
•  then	subs'tute	v for	x in	e,	the	func'on	body	
•  then	evaluate	the	resul'ng	expression.		

this	is	why	we	say		
O’Caml	is	“call	by	value”	

(let f = (fun x -> x + 1) in f) (30+11)

(fun x -> x + 1) (30 + 11)

(fun x -> x + 1) 41

41 + 1

-->	

-->	

-->	

-->	 42

Informal	Evalua'on	Model	

22	

Another	example:	

let add x y = x+y in
let inc = add 1 in
let dec = add (-1) in
dec(inc 42)

Informal	Evalua'on	Model	

23	

Recall	the	syntac'c	sugar:	

let add = fun x -> (fun y -> x+y) in
let inc = add 1 in
let dec = add (-1) in
dec(inc 42)

Informal	Evalua'on	Model	

24	

Then	we	use	the	let	rule	–	we	subs'tute	the	value for	add:	

let add = fun x -> (fun y -> x+y) in
let inc = add 1 in
let dec = add (-1) in
dec(inc 42)

-->

let inc = (fun x -> (fun y -> x+y)) 1 in
let dec = (fun x -> (fun y -> x+y)) -1 in
dec(inc 42)

func'ons	are	values	

Informal	Evalua'on	Model	

25	

	
	

let inc = (fun x -> (fun y -> x+y)) 1 in
let dec = (fun x -> (fun y -> x+y)) (-1) in
dec(inc 42)

-->

let inc = fun y -> 1+y in
let dec = (fun x -> (fun y -> x+y)) (-1) in
dec(inc 42)

	

not	a	value;	must	reduce	
before	subs'tu'ng	for	inc	

Informal	Evalua'on	Model	

26	

	
	

let inc = fun y -> 1+y in
let dec = (fun x -> (fun y -> x+y)) (-1) in
dec(inc 42)

-->

let dec = (fun x -> (fun y -> x+y)) (-1) in
dec((fun y -> 1+y) 42)

now	a	value	

Informal	Evalua'on	Model	

27	

Next:	simplify	dec’s	defini'on	using	the	func'on-call	rule.	

let dec = (fun x -> (fun y -> x+y)) (-1) in
dec((fun y -> 1+y) 42)

-->

let dec = fun y -> -1+y in
dec((fun y -> 1+y) 42)

now	a	value	

Informal	Evalua'on	Model	

28	

And	we	can	use	the	let-rule	now	to	subs'tute	dec:	

let dec = fun y -> -1+y in
dec((fun y -> 1+y) 42) -->

(fun y -> -1+y) ((fun y -> 1+y) 42)

Informal	Evalua'on	Model	

29	

Now	we	can’t	yet	apply	the	first	func'on	because	the	argument	
is	not	yet	a	value	–	it’s	a	func'on	call.		So	we	need	to	use	the	
func'on-call	rule	to	simplify	it	to	a	value:	

(fun y -> -1+y) ((fun y -> 1+y) 42) -->

(fun y -> -1+y) (1+42) -->

(fun y -> -1+y) 43 -->

-1+43 -->

42

Variable	Renaming	

30	

Consider	the	following	OCaml	code:	

let x = 30 in
let y = 12 in
x+y;;

Does	this	evaluate	any	differently	than	the	following?	
	

let a = 30 in
let b = 12 in
a+b;;

	

Renaming	

31	

A	basic	principle	of	programs	is	that	systema'cally	changing	the	
names	of	variables	shouldn’t	cause	the	program	to	behave	
any	differently	–	it	should	evaluate	to	the	same	thing.	

let x = 30 in
let y = 12 in
x+y;;

But	we	do	have	to	be	careful	about	systema&c	change.	
	

let a = 30 in
let a = 12 in
a+a;;

	

	
	Systema'c	change	of	variable	names	is	called	alpha-conversion.	

Subs'tu'on	

32	

Wait	a	minute,	how	do	we	evaluate	this	using	the	let-
rule?		If	we	subs'tute	30	for	“a”	naively,	then	we	get:	

	
let a = 30 in
let a = 12 in
a+a -->

let 30 = 12 in
30+30
	

Which	makes	no	sense	at	all!		
Besides,	Ocaml	returns	24	not	60.	
What	went	wrong	with	our	informal	model?	

Scope	and	Modularity	

33	

•  Lexically	scoped	(a.k.a.	sta'cally	scoped)	variables	have	a	
simple	rule:		the	nearest	enclosing	“let”	in	the	code	defines	
the	variable.			

•  So	when	we	write:	
let a = 30 in

let a = 12 in

a+a;;
•  we	know	that	the	“a+a”	corresponds	to	“12+12”	as	opposed	

to	“30+30”	or	even	weirder	“30+12”.	

	

A	Revised	Let-Rule:	

34	

•  To	evaluate	“let x = e1 in e2”:	
–  First,	evaluate	e1 to	a	value	v.	
–  Then	subs'tute	v for	the	corresponding	uses	of	x in	e2.	
–  Then	evaluate	the	resul'ng	expression.	

let a = 30 in
let a = 12 in
a+a
-->
let a = 12 in
a+a
-->
12+12
-->
24	

	

This	“a”	doesn’t	
correspond	to	the	
uses	of	“a”	below.	

So	when	we	
subs'tute	30	for	it,	it	

doesn’t	change	
anything.	

Scope	and	Modularity	

35	

•  But	what	does	“corresponding	uses”	mean?	

•  Consider:	
let a = 30 in
let a = (let a = 3 in a*4) in
a+a;;

	

Abstract	Syntax	Trees	

36	

•  We	can	view	a	program	as	a	tree	–	the	parentheses	and	
precedence	rules	of	the	language	help	determine	the	
structure	of	the	tree.	

let	

a	 30	 let	

a	 let	 +	

a	 3	 *	

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

==

(let a = (30) in
 (let a =
 (let a = (3) in (a*4))
 in
 (a+a)))

	

a	 a	

a	 4	

Binding	Occurrences	

37	

An	occurrence	of	a	variable	where	we	are	defining	it	via	let	is	said	to	
be	a	binding	occurrence	of	the	variable.	
	

let	

a	 30	 let	

a	 let	 +	

a	 3	 *	

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

a	 a	

a	 4	

Free	Occurrences	

38	

A	non-binding	occurrence	of	a	variable	is	a	use	of	a	variable	as	
opposed	to	a	defini'on.		
	
	 let	

a	 30	 let	

a	 let	 +	

a	 3	 *	

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

a	 a	

a	 4	

Abstract	Syntax	Trees	

39	

Given	a	variable	occurrence,	we	can	find	where	it	is	bound	by	…	

let	

a	 30	 let	

a	 let	 +	

a	 3	 *	

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

a	 a	

a	 4	

Abstract	Syntax	Trees	

40	

crawling	up	the	tree	to	the	nearest	enclosing	let…	

let	

a	 30	 let	

a	 let	 +	

a	 3	 *	
a	 a	

a	 4	

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

Abstract	Syntax	Trees	

41	

crawling	up	the	tree	to	the	nearest	enclosing	let…	

let	

a	 30	 let	

a	 let	 +	

a	 3	 *	
a	 a	

a	 4	

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

Abstract	Syntax	Trees	

42	

crawling	up	the	tree	to	the	nearest	enclosing	let…	

let	

a	 30	 let	

a	 let	 +	

a	 3	 *	
a	 a	

a	 4	

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

Abstract	Syntax	Trees	

43	

and	checking	if	the	“let”	binds	the	variable	–	if	so,	we’ve	found	
the	nearest	enclosing	defini'on.		If	not,	we	keep	going	up.	

let	

a	 30	 let	

a	 let	 +	

a	 3	 *	
a	 a	

a	 4	

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

Abstract	Syntax	Trees	

44	

Now	we	can	also	systema'cally	rename	the	variables	so	that	it’s	
not	so	confusing.		Systema'c	renaming	is	called	alpha-conversion	

let	

a	 30	 let	

a	 let	 +	

a	 3	 *	
a	 a	

a	 4	

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

Abstract	Syntax	Trees	

45	

Start	with	a	let,	and	pick	a	fresh	variable	name,	say	“x”	

let	

a	 30	 let	

a	 let	 +	

a	 3	 *	
a	 a	

a	 4	

let a = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

Abstract	Syntax	Trees	

46	

Rename	the	binding	occurrence	from	“a”	to	“x”.	

let	

x	 30	 let	

a	 let	 +	

a	 3	 *	
a	 a	

a	 4	

let x = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

Abstract	Syntax	Trees	

47	

Then	rename	all	of	the	occurrences	of	the	variables	that	this	let	
binds.	

let	

x	 30	 let	

a	 let	 +	

a	 3	 *	
a	 a	

a	 4	

let x = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

Abstract	Syntax	Trees	

48	

There	are	none	in	this	case!	

let	

x	 30	 let	

a	 let	 +	

a	 3	 *	
a	 a	

a	 4	

These	a’s	are	
bound	by	
this	let.	

let x = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

Abstract	Syntax	Trees	

49	

There	are	none	in	this	case!	

let	

x	 30	 let	

a	 let	 +	

a	 3	 *	
a	 a	

a	 4	

This	a	is	
bound	by	
this	let	

let x = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

Abstract	Syntax	Trees	

50	

Let’s	do	another	let,	renaming	“a”	to	“y”.	

let	

x	 30	 let	

a	 let	 +	

a	 3	 *	
a	 a	

a	 4	

let x = 30 in
let a =
 (let a = 3 in a*4)
in
a+a;;

Abstract	Syntax	Trees	

51	

Let’s	do	another	let,	renaming	“a”	to	“y”.	

let	

x	 30	 let	

y	 let	 +	

a	 3	 *	
y	 y	

a	 4	

let x = 30 in
let y =
 (let a = 3 in a*4)
in
y+y;;

Abstract	Syntax	Trees	

52	

And	if	we	rename	the	other	let	to	“z”:	

let	

x	 30	 let	

y	 let	 +	

a	 3	 *	
y	 y	

a	 4	

let x = 30 in
let y =
 (let z = 3 in z*4)
in
y+y;;

Abstract	Syntax	Trees	

53	

And	if	we	rename	the	other	let	to	“z”:	

let	

x	 30	 let	

y	 let	 +	

z	 3	 *	
y	 y	

z	 4	

let x = 30 in
let y =
 (let z = 3 in z*4)
in
y+y;;

AN	OCAML	DEFINITION	
OF	OCAML	EVALUATION	

Implemen'ng	an	Interpreter	

let	x	=	3	in	
x	+	x	

Let	(“x”,		
		Num	3,		
		Binop(Plus,	Var	“x”,	Var	“x”))	

	Num	6		

	6		

Parsing	

Evalua'on	

Pre`y	
Prin'ng	

text	file	containing	program	
as	a	sequence	of	characters	

data	structure	represen'ng	program	

data	structure	represen'ng		
result	of	evalua'on	

text	file/stdout	
containing	with	forma`ed	output	

the	data	type	
and	evaluator	
tell	us	a	lot	
about	program		
seman'cs	

type variable = string ;;
type op = Plus | Minus | Times | … ;;
type exp =
 | Int_e of int
 | Op_e of exp * op * exp
 | Var_e of variable
 | Let_e of variable * exp * exp ;;

Making	These	Ideas	Precise	

56	

	
We	can	define	a	datatype	for	simple	OCaml	expressions:		

	
	

Making	These	Ideas	Precise	

57	

	
We	can	define	a	datatype	for	simple	OCaml	expressions:	

	
	
	
	

type variable = string ;;
type op = Plus | Minus | Times | … ;;
type exp =
 | Int_e of int
 | Op_e of exp * op * exp
 | Var_e of variable
 | Let_e of variable * exp * exp ;;

let three = Int_e 3 ;;
let three_plus_one =
 Op_e (Int_e 1, Plus, Int_e 3) ;;

Making	These	Ideas	Precise	

58	

We	can	represent	the	OCaml	program:	
	

let x = 30 in
 let y =
 (let z = 3 in
 z*4)
 in
 y+y;;

as	an	exp	value:	

Let_e(“x”, Int_e 30,
 Let_e(“y”,
 Let_e(“z”, Int_e 3,
 Op_e(Var_e “z”, Times, Int_e 4)),
 Op_e(Var_e “y”, Plus, Var_e “y”)

	
	

Making	These	Ideas	Precise	

59	

No'ce	how	this	reflects	the	“tree”:
Let_e(“x”,Int_e 30,

 Let_e(“y”,Let_e(“z”,Int_e 3,

 Op_e(Var_e “z”, Times, Int_e 4)),

 Op_e(Var_e “y”, Plus, Var_e “y”)

	
	 let	

x	 30	 let	

y	 let	 +	

z	 3	 *	
y	 y	

z	 4	

Free	versus	Bound	Variables	

60	

type exp =
 | Int_e of int
 | Op_e of exp * op * exp
 | Var_e of variable
 | Let_e of variable * exp * exp

	
	
	

This	is	a	free	occurrence	of	
a	variable	

Free	versus	Bound	Variables	

61	

type exp =
 | Int_e of int
 | Op_e of exp * op * exp
 | Var_e of variable
 | Let_e of variable * exp * exp

	
	
	

This	is	a	binding	occurrence	
of	a	variable	

This	is	a	free	occurrence	of	
a	variable	

