A Functional
Evaluation Model

COS 326
David Walker
Princeton University

slides copyright 2013-2015 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

A Functional Evaluation Model

In order to be able to write a program, you have to have a solid grasp
of how a programming language works.

We often call the definition of “how a programming language works”
its semantics.

There are many kinds of programming language semantics.

In this lecture, we will look at O’Caml’s call-by-value evaluation:
— First, informally, giving program rewrite rules by example
— Second, using code, by specifying an OCaml interpreter in OCaml

— Third, more formally, using logical inference rules

In each case, we are specifying what is known as OCaml's operational
semantics

O’CAML BASICS:
CORE EXPRESSION EVALUATION

Evaluation

* Execution of an OCaml expression
— produces a value

— and may have some effect (eg: it may raise an exception, print a
string, read a file, or store a value in an array)

* Alot of OCaml expressions have no effect
— they are pure
— they produce a value and do nothing more

— the pure expressions are the easiest kinds of expressions to
reason about

 We will focus on evaluation of pure expressions

Evaluation of Pure Expressions

Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

Note that "e --> v" is not itself a program -- it is some notation
that we use to talk about how programs work

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

1+2

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

1+2-->3

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

1+2-->3

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

1+2-->3

2-->2 \

values step to values

Evaluation of Pure Expressions

* @Given an expression e, we write:

e-->v

to state that expression e evaluates to value v

* Some examples:

1+2-->3

2 -->2

int_to_string 5 -->"5"

Evaluation of Pure Expressions

More generally, we say expression e (partly) evaluates to
expression e’:

Evaluation of Pure Expressions

More generally, we say expression e (partly) evaluates to
expression e’:

’

e-->e

Evaluation is complete when €’ is a value

— In general, I'll use the letter “v” to represent an arbitrary value
— The letter “e” represents an arbitrary expression
— Concrete numbers, strings, characters, etc. are all values, as are:
* tuples, where the fields are values
* records, where the fields are values
* datatype constructors applied to a value
* functions

Evaluation of Pure Expressions

* Some expressions (all the interesting ones!) take many steps
to evaluate them:

(2*3)+(7*5)

Evaluation of Pure Expressions

* Some expressions (all the interesting ones!) take many steps
to evaluate them:

(2*3)+(7*5)
->6+ (7 *5)

Evaluation of Pure Expressions

* Some expressions (all the interesting ones!) take many steps
to evaluate them:

(2*3)+(7*5)
->6+ (7 *5)
-->6+ 35

Evaluation of Pure Expressions

* Some expressions (all the interesting ones!) take many steps
to evaluate them:

(2*3)+(7*5)
->6+ (7 *5)
-->6+ 35
-->41

Evaluation of Pure Expressions

Some expressions do not compute a value and it is not
obvious how to proceed:

"hello" +1 --> ??7?

A strongly typed language rules out a lot of nonsensical
expressions that compute no value, like the one above

Other expressions compute no value but raise an exception:

7 / 0 --> raise Divide_by zero

Still others simply fail to terminate ...

Let Expressions: Evaluate using Substitution

This must be
already a value

let x = 30 1in
let y = 12 1in >

let y = 12 1in S

19

Let Expressions: Evaluate using Substitution

let x =

let vy

30 in
12 in

This must be
already a value

otherwise,

first evaluate
inside the

bound expression

let x 15*2 in
let vy 12 in
Xty

-->
let x 30 in
let vy 12 1in

20

Informal Evaluation Model

To evaluate a function call “£ a”

first evaluate f until we get a function value (fun x -> e)

then evaluate a until we get an argument value v

then substitute v for x in e, the function body

then evaluate the resulting expression.

this is why we say
O’Caml is “call by value”

(let £ = (fun x -> x + 1) in f) (30+11) >
(fun x -=> x + 1) (30 + 11)

(fun x -> x + 1) 41

41 + 1 --> 42

Informal Evaluation Model

Another example:

let add x vy
let inc = add 1 in
let dec = add (-1) in
dec (1nc 42)

X+y 1in

Informal Evaluation Model

Recall the syntactic sugar:

let add = fun x -> (fun y -> x+y) in
let inc = add 1 in

let dec = add (-1) in

dec (1nc 42)

Informal Evaluation Model

Then we use the let rule — we substitute the value for add:

let add
let inc
let dec

dec (1nc

-->

let inc

let dec

dec (1nc

functions are values

= |fun x -> (fun y -> x+y) [in

= add 1 in

= add (-1) in “\\\\\\\\\\

42)

= |(fun x -> (fun y -> x+y))| 1 in
= |(fun x -> (fun y -> x+y))| -1 1in

427

24

Informal Evaluation Model

let inc
let dec

dec (1nc

let inc
let dec

dec (1nc

= (fun x -> (fun y -> x+y)) 1 |in
= (fun x -> (fun y -> x+vy))" (-1) 1in
42)
not a value; must reduce
before substituting for inc
= fun v -> 1+y| in
= (fun x -> (fun y -> x+y)) (-1) in

42)

25

Informal Evaluation Model

/

now a value

&=

let inc = |[fun y -> 1+vy |in

let dec = (fun x ->
dec (inc 42)

let dec = (fun x ->
dec((fun y -> 1+y)

(fun v -> x+vy))

(fun v -> x+vy))

42)

(-1)

(=1)

in

in

26

Informal Evaluation Model

Next: simplify dec’s definition using the function-call rule.

let dec = |(fun x -> (fun y -> x+y))

(-1)

—=>

let dec = |[fun y > -1+y

dec((fun v -> 1+y) 42)

in

dec((fun y -> l+y) 42) “\\\\\\\\\

now a value

in

27

Informal Evaluation Model

And we can use the let-rule now to substitute dec:

let dec = fun v -> -1+y in
dec((fun v -> 1+y) 42) ——>

(fun v -> -1+y) ((fun y -> 1+y) 42)

28

Informal Evaluation Model

Now we can’t yet apply the first function because the argument
is not yet a value —it’s a function call. So we need to use the
function-call rule to simplify it to a value:

(fun v -> -1+y) ((fun y -> 1+y) 42) ——>

(fun y -> -1+y) (1+42) -->

(fun vy -> -1+y) 43 —-->

-1+43 -->

42

Variable Renaming

Consider the following OCaml code:

let x = 30 in
let v = 12 1in
XtVy;;

Does this evaluate any differently than the following?

let a = 30 in
let b = 12 in
at+b; ;

Renaming

A basic principle of programs is that systematically changing the
names of variables shouldn’t cause the program to behave
any differently — it should evaluate to the same thing.

let x = 30 in
let vy = 12 in
XtVy;;

But we do have to be careful about systematic change.

let a = 30 in
let a = 12 in
ata;;

Systematic change of variable names is called alpha-conversion.

31

Substitution

Wait a minute, how do we evaluate this using the let-
rule? If we substitute 30 for “a” naively, then we get:

let a = 30 in
let a = 12 1in
ata -_—>

let 30 = 12 in
30430

Which makes no sense at all!
Besides, Ocaml returns 24 not 60.
What went wrong with our informal model?

32

Scope and Modularity

* Lexically scoped (a.k.a. statically scoped) variables have a
simple rule: the nearest enclosing “let” in the code defines

the variable.
 So when we write:
let a = 30 1n
let a = 12 1in

ata, ;
 we know that the “a+a” corresponds to “12+12” as opposed
to “304+30” or even weirder “30+12”.

33

A Revised Let-Rule:

* Toevaluate “let x = e; in e,
— First, evaluate e; to avaluev.
— Then substitute v for the corresponding uses of x in e,.
— Then evaluate the resulting expression.

let a = 30 in I o ;

—— : This “a” doesn’t
let a = 12 1in correspond to the
a+a uses of “a” below.
-_>
let a = 12 in

\ So when we
ata substitute 30 for it, it
> doesn’t change
anything.

12+12
-_>
24

Scope and Modularity

* But what does “corresponding uses” mean?

e Consider:

let a = 30 1in
let a = (let a

ata,;

3 in a*4) in

[Abstract Syntax Trees

* We can view a program as a tree — the parentheses and
precedence rules of the language help determine the
structure of the tree.

/Iet a = 30 in \\ =
let a =
J.n(let a = 3 in a*4) B 30 let
a+a,, %\
- /
== C let
(/1et a = (30) in N /%)
(let a = a 3 -
(let a = (3) in (a*4))
i /\
(a+a))) ’ ’

)

[Binding Occurrences

An occurrence of a variable where we are defining it via let is said to
be a binding occurrence of the variable.

let

) a 30 let
let a = 30 1in
. (let a = 3 1n a*4) 5 let +
in
ata; ; ‘/% L N
a a
a 3 *

37

Free Occurrences

A non-binding occurrence of a variable is a use of a variable as
opposed to a definition.

let

. a 30 let
let a = 30 1in
. (let a = 3 1n a*4) = let N
in
ataj;; /% /\
a
a 3 -

Abstract Syntax Trees

Given a variable occurrence, we can find where it is bound by ...

let a
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

39

Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

let a
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

40

Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

let a
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

let

let

41

Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

let a
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

let

let

42

Abstract Syntax Trees

and checking if the “let” binds the variable — if so, we’ve found
the nearest enclosing definition. If not, we keep going up.

let

: a 30 let
let a = 30 1in
let a =
. (let a = 3 1n a*4) = let +
in
ataj;; /% /\
a
a 3 *

Abstract Syntax Trees

Now we can also systematically rename the variables so that it’s
not so confusing. Systematic renaming is called alpha-conversion

let a
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

44

Abstract Syntax Trees

Start with a let, and pick a fresh variable name, say “x”

let

let a
let a
(let a = 3 in a*4)

in

Abstract Syntax Trees

Rename the binding occurrence from

ou_n

a’ to “x".

o _”n

let x
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

let

let

46

Abstract Syntax Trees

Then rename all of the occurrences of the variables that this let
binds.

let

X 30 let
let x = 30 in
let a = %\
in(let a = 3 1n a*4) B let +
at+a;; ‘/% /\
a
a 3 *

Abstract Syntax Trees

There are none in this case!

These a’s are
bound by
this let.

let

let x = 30 in :
let a =
(let a = 3 in a*4)
in
ataj;;
a a

48

Abstract Syntax Trees]

There are none in this case!

This a is
bound by
let this let

30 in

X 30 let
let x //
let a

(let a = 3 in a*4) = let ; +

in
ata;; z/r\\\\s

49

Abstract Syntax Trees

Let’s do another let, renaming

ou_n”n

a” to “y”.

o, .7

let x
let a

(let a

in
ataj;;

30 in

= 3 in a*4)

30

let

let

let

50

Abstract Syntax Trees

Let’s do another let, renaming

ou_n”n

a” to “y”.

o, .7

let x
let vy

(let a

in
ytyii

30 in

= 3 in a*4)

30

let

let

let

51

Abstract Syntax Trees

“u_n,
Z .

And if we rename the other let to

let

X 30 let
let x = 30 in
let v =
.n(let z = 3 1n z*4) y lot
i
ytyii
a 3 *

Abstract Syntax Trees

“u_n,
Z .

And if we rename the other let to

let

X 30 let
let x = 30 in
let v =
.n(let z = 3 1n z*4) y lot
i
ytyii
Z 3 *

AN OCAML DEFINITION
OF OCAML EVALUATION

Implementing an Interpreter]

text file containing program
as a sequence of characters

let x =3 in
X + X

N\

Parsing

data structure representing program

data structure representing

result of evaluation

Num

Let (”X”,
Num 3,

Binop(Plus, Var “x”, Var “x”))

the data type
//and evaluator
/ Evaluation tell us a lot
6 \

about program
semantics

Pretty [

Printing

text file/stdout
containing with formatted output

Making These Ideas Precise

We can define a datatype for simple OCaml expressions:

type variable = string ;;
type op = Plus | Minus | Times | .. ;;
type exp =

| Int e of int

| Op e of exp * op * exp

| Var e of variable

| Let e of variable * exp * exp ;;

56

Making These Ideas Precise

We can define a datatype for simple OCaml expressions:

type variable = string ;;
type op = Plus | Minus | Times | .. ;;
type exp =

| Int e of int

| Op e of exp * op * exp

| Var e of variable

| Let e of variable * exp * exp ;;

let three = Int e 3 ;;
let three plus one =
Op e (Int e 1, Plus, Int e 3) ;;

|

Making These Ideas Precise

We can represent the OCaml program:

let x = 30 in
let y =
(let z = 3 1n
z*4)
in
vty

as an exp value:

Let e(“x”, Int e 30,
Let_e (\\y//,
Let e(Vz”,

Op e (Var e

Op e(Var e “y”,

Int e 3,

Plus,

\ 144

Z
Var_e

Times,
\\y//)

Int e 4)),

58

Making These Ideas Precise

Notice how this reflects the “tree”:

Let e(“x”,Int e 30,

Let e(Vy”,Let e

(“z”,Int e 3,

Op e(Var e “z”, Times, Int e 4)),
Op e (Var e “y”, Plus, Var e “y”)
let
X 30 let
y let +
V4 V4
z 3 *

59

Free versus Bound Variables]

type exp =
Int e of int This is a free occurrence of

Op e of exp * op * exp a variable

Var e of variable
Let e of variable * exp * exp

60

Free versus Bound Variables]

type exp =
Int e of int This is a free occurrence of

Op e of exp * op * exp a variable

Var e of variable
Let e of variable * exp * exp

S

This is a binding occurrence
of a variable

61

