OCaml Datatypes

COS 326
David Walker
Princeton University

slides copyright 2013-2015 David Walker and Andrew W, Appel
permission granted to reuse these slides for non-commercial educational purposes

OCaml So Far

We have seen a number of basic types:
— int

— float

— char

— string

— bool

We have seen a few structured types:
— pairs

— tuples

— options

— lists

In this lecture, we will see some more general ways to define
our own new types and data structures

Type Abbreviations

* We have already seen some type abbreviations:

type point = float * float

Type Abbreviations

* We have already seen some type abbreviations:

type point = float * float

 These abbreviations can be helpful documentation:

let distance (pl:point) (p2:point) : float
let square x = x *. X 1n
let (x1,yl) = pl in
let (x2,y2) = p2 1in
sgqrt (square (x2 -. x1) +. square (y2 -.

v1))

e But they add nothing of substance to the language
— they are equal in every way to an existing type

Type Abbreviations

* We have already seen some type abbreviations:

type point = float * float

* Asfar as OCamlis concerned, you could have written:

(pl:float*float)
(p2:float*float) : float =
X = X *., X 1in

let distance

let square

let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
sgqrt (square (x2 -. x1) +. square (y2 —-. yl))

e Since the types are equal, you can substitute the definition for
the name wherever you want
— we have not added any new data structures

DATA TYPES

Data types

 OCaml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

a value with type my bool
is one of two things:

* Tru,or

* Fal

read the "|" as "or"

Data types

 OCaml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

Tru and Fal are called a value with type my_bool
"constructors" is one of two things:

* Tru,or

 Fal

read the "|" as "or"

Data types

OCaml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

type color = Blue | Yellow | Green | Red

there's no need to stop
at 2 cases; define as many
alternatives as you want

Data types

OCaml provides a general mechanism called a data type for
defining new data structures that consist of many alternatives

type my bool = Tru | Fal

type color = Blue | Yellow | Green | Red
Creating values:

let bl my bool = Tru

let b2 my bool = Fal

let cl color = Yellow

let c2 color = Red « '

- use constructors to create values

10

Data types

type color = Blue | Yellow | Green

let ¢l : color = Yellow
let ¢c2 : color = Red

Red

Using data type values:

let print color (c:color) : unit =

match ¢ with
| Blue ->

| Yellow ->
| Green ->
|

Red ->
R

use pattern matching to
determine which color
you have; act accordingly

11

Data types

type color = Blue | Yellow | Green | Red

let ¢l : color = Yellow
let ¢c2 : color = Red

Using data type values:

let print color (c:color) : unit =
match ¢ with
| Blue -> print string "blue"
| Yellow -> print string "yellow"
| Green -> print string "green"
| Red -> print string "red"

12

Data types

type color = Blue | Yellow | Green | Red

let ¢l : color = Yellow
let ¢c2 : color = Red

Using data type values:

let print color (c:color) : unit =
match ¢ with
| Blue -> print string "blue"
| Yellow -> print string "yellow"
| Green -> print string "green"
| Red -> print string "red"

Why not just use strings to represent colors instead of defining a new type?

13

Data types

type color = Blue | Yellow | Green | Red

oops!:

let print color (c:color) : unit =
match ¢ with
| Blue -> print string "blue"
| Yellow -> print string "yellow"
| Red -> print string "red"
LN

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Green

14

Data types

type color = Blue | Yellow | Green |

oops!:

let print color (c:color) : unit =
match ¢ with
| Blue -> print string "blue"
| Yellow -> print string "yellow"
| Red -> print string "red"
LN

Green

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

OCaml's datatype mechanism allow you to create types
that contain precisely the values you want!

15

Data Types Can Carry Additional Values

» Data types are more than just enumerations of constants:

type point = float * float

type simple shape =
Circle of point * float
| Square of point *

float

 Read as: asimple shape is either:

— a Circle, which contains a pair of a point and float, or

— a Square, which contains a pair of a point and float

(x,y)

s

16

Data Types Can Carry Additional Values

» Data types are more than just enumerations of constants:

type point

float * float

type simple shape =
Circle of point * float
*

| Square of point

let origin

let circl
let circ?
let square

float
point = (0.0, 0.0)
simple shape = Circle
simple shape = Circle
simple shape = Square

(origin,

1.0)

((1.0, 1.0),

(origin,

2.3)

5.

0)

17

Data Types Can Carry Additional Values

» Data types are more than just enumerations of constants:

type point = float * float

type simple shape =
Circle of point * float
| Square of point * float

let simple area (s:simple shape)
match s with

| Circle (, radius) -> 3.14 *.

| Square (, side) -> side *.

float =

radius *. radius
side

18

[Compare

» Data types are more than just enumerations of constants:

type point = float * float

type simple shape =
Circle of point * float
| Square of point * float

let simple area (s:simple shape) : float =
match s with
| Circle (, radius) -> 3.14 *. radius *. radius
| Square (, side) -> side *. side

type my shape = point * float

let simple area (s:my shape) : float =
(3.14 *. radius *. radius) ?? or ?? (side *. side)

19

20

, More General Shapes]

.

type point = float * float

type shape =
Square of float
| Ellipse of float * float
| RtTriangle of float * float
| Polygon of point list

Square s = } S RtTriangle (s1, s2) = s1

s2

v2

/_rz vl v3

Pol 1;...;v5] =
1 olygon [v V5]

Ellipse (r1, r2) =
v5 v4

21

More General Shapes

type shape =

type point = float * float
type radius = float<\\\\\\\\\\\\\\
type side = float <~‘§\\“ﬁ“‘%\\\§

Square of side é//////////;:::::/

| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point list

aid readability

Type abbreviations can

Square s = } S

—

Ellipse (r1, r2) = 1

r2

RtTriangle (s1, s2) =

RtTriangle [v1;...;v5] =

sl

s2

v2
vl v3

v5 v4

22

More General Shapes]

type point = float * float
type radius = float
type side = float

type

Square of side

shape = e from a single side

Ellipse of radius * radius
RtTriangle of side * side

Polygon of point 1list

Square builds a shape

RtTriangle builds a shape

let
let
let
let

sq : shape = Square 17.0

ell : shape = Ellipse (1.0, 2.0) e///////

rt : shape = RtTriangle (1.0, 1.0)

poly : shape = Polygon [(0., O0.); (1., 0.); (O0.; 1.)]

74 from a pair of sides

v

they are all shapes;
they are constructed in
different ways

=~

Polygon builds a shape
from a list of points
(where each point is itself a pair)

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side
| Ellipse of radius * radius
| RtTriangle of side * side
| Polygon of point 1list

a data type also defines
a pattern for matching

let area (s : shape) : float
match s with
| Square s ->
| Ellipse (rl, r2)->
| RtTriangle (sl, s2) ->
| Polygon ps ->

23

24

More General Shapes]

type
type
type

type

point = float * float
radius = float

side = float

shape =

Square of side

Ellipse of radius * radius
RtTriangle of side * side
Polygon of point 1list

a data type also defines
a pattern for matching

let

match s with

shape) float

PR—

area (s

Square s —->

Square carries a value
with type float so s is
a pattern for float values

Ellipse (rl,
RtTriangle (sl1,
Polygon ps ->

r2)->
s2) ->

\

RtTriangle carries a value

with type float * float
so (s1, s2) is a pattern
for that type

More General Shapes

type point = float * float
type radius = float
type side = float

type shape =
Square of side

| Ellipse of radius * radius

| RtTriangle of side * side
| Polygon of point 1list

a data type also defines
a pattern for matching

let area (s : shape) : float
match s with
| Square s -> s *. s
Ellipse (rl, r2)-> pi *.

|
| RtTriangle (sl, s2) —-> sl1*.s2/. 2.
|

Polygon ps -> 7?2727

Tl

r2

25

Computing Area

* How do we compute polygon area?
* For convex polygons:
— Case: the polygon has fewer than 3 points:
* it has 0 area! (itis aline or a point or nothing at all)
— Case: the polygon has 3 or more points:
* Compute the area of the triangle formed by the first 3 vertices

* Delete the second vertex to form a new polygon
e Sum the area of the triangle and the new polygon

v2
vl v3

_ A*D

v5 v4

Computing Area

* How do we compute polygon area?
* For convex polygons:
— Case: the polygon has fewer than 3 points:
* it has 0 area! (itis aline or a point or nothing at all)
— Case: the polygon has 3 or more points:

* Compute the area of the triangle formed by the first 3 vertices
* Delete the second vertex to form a new polygon

e Sum the area of the triangle and the new polygon
* Note: This is a beautiful inductive algorithm:

— the area of a polygon with n points is computed in terms of a
smaller polygon with only n-1 points!

v2
vl v3

r - a g

Computing Area

let area (s : shape)

match s with

| Square s -> s *.
Ellipse (rl,

|
| RtTriangle
|

Polygon ps -> poly area ps

(sl,

S

f

r2)-> rl *. r2

s2)

loat =

28

-> s1*.s2/.2.
s1%.s2/ This pattern says the

list has at least 3 items

let poly area (ps

match ps with

: point list) = oat =

| pl :: p2 p3 tail ->
tri area pl p2 p3 +. poly area (pl::p3::tail)
| =-> 0.
V2
vl v3

v5 v4

Al

[Computing Area

let tri area (pl:point) (p2:point) (p3:point) : float =
let a = distance pl pZ2 in
let b = distance p2 p3 1in
let ¢ = distance p3 pl in
let s = 0.5 *. (a +. b +. ¢c) 1in

sqrt (s *. (s -. a) *. (s -. b) *. (s —-. C))
let rec poly area (ps : point list) : float =
match ps with
| pl :: p2 :: p3 :: tail ->
tri area pl p2 p3 +. poly area (pl::p3::tail)
| => 0.
let area (s : shape) : float =

match s with

| Square s -> s *. s

| Ellipse (rl, r2)-> pi *. rl *. r2

| RtTriangle (sl, s2) -> sl *. s2 /. 2.
| Polygon ps -> poly area ps

INDUCTIVE DATA TYPES

Inductive data types]

 We can use data types to define inductive data
 Abinary tree is:
— a Leaf containing no data
— a Node containing a key, a value, a left subtree and a right subtree

31

Inductive data types]

 We can use data types to define inductive data
 Abinary tree is:
— a Leaf containing no data
— a Node containing a key, a value, a left subtree and a right subtree

type key = string
type value = int

type tree =
Leaf
| Node of key * value * tree * tree

32

Inductive data types

type key = int
type value = string

type tree =
Leaf
| Node of key * value * tree * tree

let rec insert (t:tree) (k:key) (v:value)

Lree

33

Inductive data types

type key = int
type value = string

type tree =
Leaf
| Node of key * value * tree * tree

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf ->
| Node (k', v', left, right) ->

Again, the type definition
specifies the cases you must
consider

Inductive data types

type key = int
type value = string

type tree =
Leaf
| Node of key * value * tree * tree

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->

35

Inductive data types

type key = 1int
type value = string

type tree =
Leaf
| Node of key * value * tree * tree

let rec insert (t:tree) (k:key) (v:value) : tree
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->
1if k < k' then
Node (k', v', insert left k v, right)
else 1if k > k' then
Node (k', v', left, insert right k v)
else
Node (k, v, left, right)

36

Inductive data types

type key = 1int
type value = string

type tree =
Leaf
| Node of key * value * tree * tree

let rec insert (t:tree) (k:key) (v:value) : tree
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->
1if k < k' then
Node (k', v', insert left k v, right)
else 1if k > k' then
Node (k', v', left, insert right k v)
else
Node (k, v, left, right)

37

38

Inductive data types]

type key = 1int

type value = string

. . 3 Note on
ype tree = memory
Leaf

| Node of key * value * tree * tree

let rec insert (t:tree) (k:key) (v:value) : tree =
match t with
| Leaf -> Node (k, v, Leaf, Leaf)
| Node (k', v', left, right) ->
1if k < k' then
Node (k', v', insert left k v, right)
else 1if k > k' then
Node (k', v', left, insert right k v)
else
Node (k, v, left, right)

Inductive data types: Another Example

Recall, we used the type "int" to represent natural numbers
— but that was kind of broken: it also contained negative numbers
— we had to use a dynamic test to guard entry to a function:

let double (n : int) : int =
1f n < 0 then
ralise (Failure "negative input!")
else
double nat n

— it would be nice if there was a way to define the natural
numbers exactly, and use OCaml's type system to guarantee no
client ever attempts to double a negative number

39

Inductive data types

 Recall, a natural number n is either:
— zero, or
—m+1

 We use a data type to represent this definition exactly:

40

Inductive data types

 Recall, a natural number n is either:
— zero, or
—m+1

 We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

Inductive data types

 Recall, a natural number n is either:
— zero, or
—m+1

 We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

let rec nat to int (n : nat) : int =
match n with
zero —-> 0
| Succ n -> 1 + nat to int n

Inductive data types

 Recall, a natural number n is either:
— zero, or
—m+1

 We use a data type to represent this definition exactly:

type nat = Zero | Succ of nat

let rec nat to int (n : nat) : int =
match n with
zero —> 0
| Succ n -> 1 + nat to int n

let rec double nat (n : nat) : nat =
match n with
| Zero —-> Zero
| Succ m —-> Succ (Succ(double nat m))

Summary

OCaml data types: a powerful mechanism for defining
complex data structures:
— They are precise
e contain exactly the elements you want, not more elements
— They are general
* recursive, non-recursive (mutually recursive and polymorphic)
— The type checker helps you detect errors

* missing cases in your functions

44

