
OCaml	Datatypes	

COS	326	
David	Walker	

Princeton	University	
	
slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	

permission	granted	to	reuse	these	slides	for	non-commercial	educaGonal	purposes	
	

1	

OCaml	So	Far	
•  We	have	seen	a	number	of	basic	types:	

–  int	
–  float	
–  char	
–  string	
–  bool	

•  We	have	seen	a	few	structured	types:	
–  pairs	
–  tuples	
–  opGons	
–  lists	

•  In	this	lecture,	we	will	see	some	more	general	ways	to	define	
our	own	new	types	and	data	structures	

2	

Type	AbbreviaGons	
•  We	have	already	seen	some	type	abbreviaGons:	

type point = float * float

3	

Type	AbbreviaGons	
•  We	have	already	seen	some	type	abbreviaGons:	

•  These	abbreviaGons	can	be	helpful	documentaGon:	

•  But	they	add	nothing	of	substance	to	the	language	
–  they	are	equal	in	every	way	to	an	exisGng	type	

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

4	

Type	AbbreviaGons	
•  We	have	already	seen	some	type	abbreviaGons:	

•  As	far	as	OCaml	is	concerned,	you	could	have	wriTen:	

•  Since	the	types	are	equal,	you	can	subs)tute	the	definiGon	for	
the	name	wherever	you	want	
–  we	have	not	added	any	new	data	structures	

type point = float * float

let distance (p1:float*float)
 (p2:float*float) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

5	

DATA	TYPES	

6	

Data	types	
•  OCaml	provides	a	general	mechanism	called	a	data	type	for	

defining	new	data	structures	that	consist	of	many	alternaGves		

type my_bool = Tru | Fal

a	value	with	type	my_bool	
is	one	of	two	things:	
•  Tru,	or	
•  Fal	

read	the	"|"	as	"or"	

7	

Data	types	
•  OCaml	provides	a	general	mechanism	called	a	data	type	for	

defining	new	data	structures	that	consist	of	many	alternaGves		

type my_bool = Tru | Fal

a	value	with	type	my_bool	
is	one	of	two	things:	
•  Tru,	or	
•  Fal	

read	the	"|"	as	"or"	

Tru	and	Fal	are	called	
"constructors"	

8	

Data	types	
•  OCaml	provides	a	general	mechanism	called	a	data	type	for	

defining	new	data	structures	that	consist	of	many	alternaGves		

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

there's	no	need	to	stop	
at	2	cases;	define	as	many	
alternaGves	as	you	want	

9	

Data	types	
•  OCaml	provides	a	general	mechanism	called	a	data	type	for	

defining	new	data	structures	that	consist	of	many	alternaGves		

	
•  CreaGng	values:	

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

let b1 : my_bool = Tru
let b2 : my_bool = Fal
let c1 : color = Yellow
let c2 : color = Red

use	constructors	to	create	values	

10	

Data	types	

•  Using	data	type	values:	

	

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue ->
 | Yellow ->
 | Green ->
 | Red ->

use	paTern	matching	to	
determine	which	color	
you	have;	act	accordingly	

11	

Data	types	

•  Using	data	type	values:	

	

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Green -> print_string "green"
 | Red -> print_string "red"

12	

Data	types	

•  Using	data	type	values:	

	

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Green -> print_string "green"
 | Red -> print_string "red"

Why	not	just	use	strings	to	represent	colors	instead	of	defining	a	new	type?	

13	

Data	types	

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Red -> print_string "red"

Warning	8:	this	paTern-matching	is	not	exhausGve.	
Here	is	an	example	of	a	value	that	is	not	matched:	
Green	

			oops!:	

14	

Data	types	

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Red -> print_string "red"

Warning	8:	this	paTern-matching	is	not	exhausGve.	
Here	is	an	example	of	a	value	that	is	not	matched:	
Green	

			oops!:	

OCaml's	datatype	mechanism	allow	you	to	create	types		
that	contain	precisely	the	values	you	want!			

15	

Data	Types	Can	Carry	AddiGonal	Values	
•  Data	types	are	more	than	just	enumeraGons	of	constants:	

•  Read	as:		a	simple_shape	is	either:	
–  a	Circle,	which	contains	a	pair	of	a	point	and	float,	or	
–  a	Square,	which	contains	a	pair	of	a	point	and	float	

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

(x,y)	
s	 (x,y)	

r	

16	

Data	Types	Can	Carry	AddiGonal	Values	
•  Data	types	are	more	than	just	enumeraGons	of	constants:	

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let origin : point = (0.0, 0.0)

let circ1 : simple_shape = Circle (origin, 1.0)
let circ2 : simple_shape = Circle ((1.0, 1.0), 5.0)
let square : simple_shape = Square (origin, 2.3)

17	

Data	Types	Can	Carry	AddiGonal	Values	
•  Data	types	are	more	than	just	enumeraGons	of	constants:	

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let simple_area (s:simple_shape) : float =
 match s with
 | Circle (_, radius) -> 3.14 *. radius *. radius
 | Square (_, side) -> side *. side

18	

Compare	
•  Data	types	are	more	than	just	enumeraGons	of	constants:	

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let simple_area (s:simple_shape) : float =
 match s with
 | Circle (_, radius) -> 3.14 *. radius *. radius
 | Square (_, side) -> side *. side

type my_shape = point * float

let simple_area (s:my_shape) : float =
 (3.14 *. radius *. radius) ?? or ?? (side *. side)

19	

More	General	Shapes	

r1	
r2	

Square	s	=	

Ellipse	(r1,	r2)	=	

s2	
s1	RtTriangle	(s1,	s2)	=	

v2	
v1	 v3	

v4	v5	

	
Polygon		[v1;	...;v5]	=	

type point = float * float

type shape =
 Square of float
 | Ellipse of float * float
 | RtTriangle of float * float
 | Polygon of point list

s	

20	

More	General	Shapes	

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

Type	abbreviaGons	can	
aid	readability	

r1	
r2	

Square	s	=	

Ellipse	(r1,	r2)	=	

s2	
s1	RtTriangle	(s1,	s2)	=	

v2	
v1	 v3	

v4	v5	

	
RtTriangle		[v1;	...;v5]	=	

s	

21	

More	General	Shapes	

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let sq : shape = Square 17.0
let ell : shape = Ellipse (1.0, 2.0)
let rt : shape = RtTriangle (1.0, 1.0)
let poly : shape = Polygon [(0., 0.); (1., 0.); (0.; 1.)]

they	are	all	shapes;	
they	are	constructed	in		
		different	ways	

Polygon	builds	a	shape	
from	a	list	of	points	
(where	each	point	is	itself	a	pair)	

Square	builds	a	shape	
from	a	single	side	

RtTriangle	builds	a	shape	
from	a	pair	of	sides	

22	

More	General	Shapes	

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let area (s : shape) : float =
 match s with
 | Square s ->
 | Ellipse (r1, r2)->
 | RtTriangle (s1, s2) ->
 | Polygon ps ->

a	data	type	also	defines	
a	paTern	for	matching	

23	

More	General	Shapes	

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let area (s : shape) : float =
 match s with
 | Square s ->
 | Ellipse (r1, r2)->
 | RtTriangle (s1, s2) ->
 | Polygon ps ->

Square	carries	a	value	
with	type	float	so	s	is	
a	paTern	for	float	values	

RtTriangle	carries	a	value	
with	type	float	*	float	
so	(s1,	s2)	is	a	paTern	
for	that	type	

a	data	type	also	defines	
a	paTern	for	matching	

24	

More	General	Shapes	

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> pi *. r1 *. r2
 | RtTriangle (s1, s2) -> s1	*.	s2	/.	2.
 | Polygon ps -> ???

a	data	type	also	defines	
a	paTern	for	matching	

25	

CompuGng	Area	
•  How	do	we	compute	polygon	area?	
•  For	convex	polygons:	

–  Case:	the	polygon	has	fewer	than	3	points:	
•  it	has	0	area!		(it	is	a	line	or	a	point	or	nothing	at	all)	

–  Case:	the	polygon	has	3	or	more	points:	
•  Compute	the	area	of	the	triangle	formed	by	the	first	3	verGces	
•  Delete	the	second	vertex	to	form	a	new	polygon	
•  Sum	the	area	of	the	triangle	and	the	new	polygon	

v2	
v1	 v3	

v4	v5	
=	 +	

26	

CompuGng	Area	
•  How	do	we	compute	polygon	area?	
•  For	convex	polygons:	

–  Case:	the	polygon	has	fewer	than	3	points:	
•  it	has	0	area!		(it	is	a	line	or	a	point	or	nothing	at	all)	

–  Case:	the	polygon	has	3	or	more	points:	
•  Compute	the	area	of	the	triangle	formed	by	the	first	3	verGces	
•  Delete	the	second	vertex	to	form	a	new	polygon	
•  Sum	the	area	of	the	triangle	and	the	new	polygon	

•  Note:		This	is	a	beauGful	inducGve	algorithm:	
–  the	area	of	a	polygon	with	n	points	is	computed	in	terms	of	a	
smaller	polygon	with	only	n-1	points!	

v2	
v1	 v3	

v4	v5	
=	 +	

27	

CompuGng	Area	

v2	
v1	 v3	

v4	v5	
=	

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> r1 *. r2
 | RtTriangle (s1, s2) -> s1	*.	s2	/.	2.
 | Polygon ps -> poly_area ps

let poly_area (ps : point list) : float =
 match ps with
 | p1 :: p2 :: p3 :: tail ->
 tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
 | _ -> 0.

 =	 +	

This	paTern	says	the	
list	has	at	least	3	items	

28	

CompuGng	Area	

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> pi *. r1 *. r2
 | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
 | Polygon ps -> poly_area ps

let tri_area (p1:point) (p2:point) (p3:point) : float =
 let a = distance p1 p2 in
 let b = distance p2 p3 in
 let c = distance p3 p1 in
 let s = 0.5 *. (a +. b +. c) in
 sqrt (s *. (s -. a) *. (s -. b) *. (s -. c))

let rec poly_area (ps : point list) : float =
 match ps with
 | p1 :: p2 :: p3 :: tail ->
 tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
 | _ -> 0.

29	

INDUCTIVE	DATA	TYPES	

30	

InducGve	data	types	
•  We	can	use	data	types	to	define	inducGve	data	
•  A	binary	tree	is:	

–  a	Leaf	containing	no	data	
–  a	Node	containing	a	key,	a	value,	a	leq	subtree	and	a	right	subtree	

31	

type key = string
type value = int

type tree =
 Leaf
| Node of key * value * tree * tree

InducGve	data	types	
•  We	can	use	data	types	to	define	inducGve	data	
•  A	binary	tree	is:	

–  a	Leaf	containing	no	data	
–  a	Node	containing	a	key,	a	value,	a	leq	subtree	and	a	right	subtree	

32	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducGve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =

33	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducGve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf ->
 | Node (k', v', left, right) ->

Again,	the	type	definiGon		
specifies	the	cases	you	must	
consider	

34	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducGve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->

35	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducGve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

36	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducGve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

37	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducGve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

Note	on	
memory	
use	

38	

InducGve	data	types:		Another	Example	
•  Recall,	we	used	the	type	"int"	to	represent	natural	numbers	

–  but	that	was	kind	of	broken:	it	also	contained	negaGve	numbers		
–  we	had	to	use	a	dynamic	test	to	guard	entry	to	a	funcGon:	

–  it	would	be	nice	if	there	was	a	way	to	define	the	natural	
numbers	exactly,	and	use	OCaml's	type	system	to	guarantee	no	
client	ever	aTempts	to	double	a	negaGve	number	

let double (n : int) : int =
 if n < 0 then
 raise (Failure "negative input!")
 else
 double_nat n

39	

InducGve	data	types	
•  Recall,	a	natural	number	n	is	either:	

–  zero,	or	
–  m	+	1	

•  We	use	a	data	type	to	represent	this	definiGon	exactly:	

40	

InducGve	data	types	
•  Recall,	a	natural	number	n	is	either:	

–  zero,	or	
–  m	+	1	

•  We	use	a	data	type	to	represent	this	definiGon	exactly:	

type nat = Zero | Succ of nat

41	

InducGve	data	types	
•  Recall,	a	natural	number	n	is	either:	

–  zero,	or	
–  m	+	1	

•  We	use	a	data	type	to	represent	this	definiGon	exactly:	

type nat = Zero | Succ of nat

let rec nat_to_int (n : nat) : int =
 match n with
 Zero -> 0
 | Succ n -> 1 + nat_to_int n

42	

InducGve	data	types	
•  Recall,	a	natural	number	n	is	either:	

–  zero,	or	
–  m	+	1	

•  We	use	a	data	type	to	represent	this	definiGon	exactly:	

type nat = Zero | Succ of nat

let rec nat_to_int (n : nat) : int =
 match n with
 Zero -> 0
 | Succ n -> 1 + nat_to_int n

let rec double_nat (n : nat) : nat =
 match n with
 | Zero -> Zero
 | Succ m -> Succ (Succ(double_nat m))

43	

Summary	
•  OCaml	data	types:	a	powerful	mechanism	for	defining	

complex	data	structures:	
–  They	are	precise		

•  contain	exactly	the	elements	you	want,	not	more	elements	
–  They	are	general	

•  recursive,	non-recursive	(mutually	recursive	and	polymorphic)	
–  The	type	checker	helps	you	detect	errors	

•  missing	cases	in	your	funcGons	

44	

