Poly-HO!

COS 326 David Walker

polymorphic, higher-order programming

Princeton University

slides copyright 2013-2015 David Walker and Andrew W. Appel permission granted to reuse these slides for non-commercial educational purposes

Some Design \& Coding Rules

Some Design \& Coding Rules

- Laziness can be a really good force in design.
- Never write the same code twice.
- factor out the common bits into a reusable procedure.
- better, use someone else's (well-tested, well-documented, and well-maintained) procedure.
- Why is this a good idea?
- why don't we just cut-and-paste snippets of code using the editor instead of abstracting them into procedures?

Some Design \& Coding Rules

- Laziness can be a really good force in design.
- Never write the same code twice.
- factor out the common bits into a reusable procedure.
- better, use someone else's (well-tested, well-documented, and well-maintained) procedure.
- Why is this a good idea?
- why don't we just cut-and-paste snippets of code using the editor instead of abstracting them into procedures?
- find and fix a bug in one copy, have to fix in all of them.
- decide to change the functionality, have to track down all of the places where it gets used.

Factoring Code in OCaml

Consider these definitions:

```
let rec inc all (xs:int list) : int list =
    match xs with
    | [] -> []
    | hd::tl -> (hd+1)::(inc_all tl)
```

```
let rec square_all (xs:int list) : int list =
    match xs with
    | [] -> []
    | hd::tl -> (hd*hd)::(square_all tl)
```


Factoring Code in OCaml

Consider these definitions:

```
let rec inc all (xs:int list) : int list =
    match xs with
    | [] -> []
    hd::tl -> (hd+1)::(inc_all tl)
```

```
let rec square all (xs:int list) : int list =
    match xs with
    | [] -> []
    hd::tl -> (hd*hd)::(square_all tl)
```

The code is almost identical - factor it out!

Factoring Code in OCaml

A higher-order function captures the recursion pattern:

```
let rec map (f:int->int) (xs:int list) : int list =
    match XS with
    | [] -> []
    hd::tl -> (f hd)::(map f tl);;
```


Factoring Code in OCaml

A higher-order function captures the recursion pattern:

```
let rec map (f:int->int) (xs:int list) : int list =
    match xS with
    | [] -> []
    hd::tl -> (f hd)::(map f tl);;
```

Uses of the function:

```
let inc x = x+1;;
let inc_all xs = map inc xs;;
```


Factoring Code in OCaml

A higher-order function captures the recursion pattern:

```
let rec map (f:int->int) (xs:int list) : int list =
    match xs with
    | [] -> []
    hd::tl -> (f hd)::(map f tl);;
```

Uses of the function:

```
let inc x = x+1;;
let inc_all xs = map inc xs;;
let square y = y*y;;
let square_all xs = map square xs;;
```


Factoring Code in OCaml

A higher-order function captures the recursion pattern:

```
let rec map (f:int->int) (xs:int list) : int list =
```

 match \(x S\) with
 | []\(\rightarrow>[]\)
 $\mid \mathrm{hd}::$ tl $\rightarrow>(\mathbf{f}$ hd $)::(\operatorname{map} \mathrm{f} t l$ We can use an
anonymous

Uses of the function:

Another example

```
let rec sum (xs:int list) : int =
    match xs with
    | [] -> 0
    | hd::tl -> hd + (sum tl)
;;
let rec prod (xs:int list) : int =
    match xs with
    | [] -> 1
        hd::tl -> hd * (prod tl)
;;
```

Goal: Create a function called reduce that when supplied with a few arguments can implement both sum and prod. Define sum 2 and prod2 using reduce.

Goal: If you finish early, use map and reduce together to find the sum of the squares of the elements of a list.

A generic reducer

```
let add x y = x + y;;
let mul x y = x * y; ;
let rec reduce (f:int->int->int) (u:int) (xs:int list) : int =
    match XS with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl);;
let sum xs = reduce add 0 xs ; ;
let prod xS = reduce mul 1 xs ; ;
```


Using Anonymous Functions

let rec reduce (f:int->int->int) (u:int) (xs:int list) : int = match xs with
| [] -> u
| hd::tl -> f hd (reduce f u tl); ;
let $\operatorname{sum} \mathrm{xs}=$ reduce (fun $\mathbf{x} \mathbf{y}->\mathbf{x + y}$) 0 xs ; ;
let prod $x s=r e d u c e ~(f u n ~ x ~ y ~->~ x * y) ~ 1 ~ x s ~ ; ~ ; ~ ; ~$

Using Anonymous Functions

let rec reduce (f:int->int->int) (u:int) (xs:int list) : int = match xs with

```
    | [] -> u
```

 | hd::tl -> f hd (reduce f u tl); ;
 let $\operatorname{sum} \mathrm{xs}=$ reduce (fun $\mathbf{x} \mathbf{y}->\mathrm{x}+\mathrm{y}$) 0 xs ; ;
let prod $x s=$ reduce (fun $\mathbf{x} \mathbf{y}->\mathbf{x}$ h) 1 xs ; ;
let sum_of_squares $x s=\operatorname{sum}(m a p(f u n x->x \not x) x s)$
let pairify $x s=\operatorname{map}(f u n x->(x, x))$ xs

More on Anonymous Functions

(nonrecursive) Function declarations are actually abbreviations:

```
let square x = x*x ; ;
let add x y = x+y ; ;
```

are syntactic sugar for:

```
let square = (fun x -> x*x) ; ;
let add = (fun x y }>>x+y) ; ;
```

So, functions are values we can bind to a variable, just like 3 or "moo" or true.

OCaml obeys the principle of orthogonal language design.

One argument, one result

Simplifying further:

```
let add = (fun x y -> x+y)
```

is shorthand for:

$$
\text { let add }=(f u n x->(f u n y ~ y+y))
$$

That is, add is a function which:

- when given a value x, returns a function (fun $y->x+y$) which:
- when given a value y, returns $x+y$.

Curried Functions

```
fun x -> (fun y -> x+y) (* curried *)
fun x y -> x + y (* curried *)
fun (x,y) -> x+y (* uncurried *)
```

Currying: encoding a multi-argument function using nested, higher-order functions.

Named after the logician Haskell B. Curry (1950s).

- was trying to find minimal logics that are powerful enough to encode traditional logics.
- much easier to prove something about a logic with 3 connectives than one with 20.
- the ideas translate directly to math (set \& category theory) as well as to computer science.
- (actually, Moses Schönfinkel did some of this in 1924)
- (thankfully, we don't have to talk about Schönfinkelled functions)

What is the type of add?

```
let add = (fun x -> (fun y -> x+y))
```

Add's type is:

```
int -> (int -> int)
```

which we can write as:

```
int -> int -> int
```

That is, the arrow type is right-associative.

What's so good about Currying?

In addition to simplifying the language (orthogonal design), currying functions so that they only take one argument leads to two major wins:

1. We can partially apply a function.
2. We can more easily compose functions.

Partial Application

```
let add = (fun x -> (fun y -> x+y)) ; ;
```

Curried functions allow defs of new, partially applied functions:

```
let inc = add 1;;
```

Equivalent to writing:

$$
\text { let inc }=(f u n \text { y }->1+y) \text {; ; }
$$

which is equivalent to writing:

$$
\text { let inc } y=1+y ;
$$

also:

$$
\begin{aligned}
& \text { let inc2 }=\text { add } 2 ; \text {; } \\
& \text { let inc3 }=\text { add } 3 ;
\end{aligned}
$$

SIMPLE REASONING ABOUT HIGHER-ORDER FUNCTIONS

Reasoning About Definitions

We can factor this program

```
let square_all ys =
    match ys with
    | [] -> []
    hd::tl -> (square hd)::(square_all tl)
; ;
```

into this program:

```
let rec map f xs =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl);;
let square_all = map square;;
```

a more concise and readable definition of square_all (assuming we already had defined map)

Reasoning About Definitions

```
let square_all ys =
    match ys with
    [] -> []
    hd::tl -> (square hd)::(square_all tl)
```

let square_all = map square; ;

Goal: Rewrite definitions so my program is simpler, easier to understand, more concise, ...

Question: What are the reasoning principles for rewriting programs without breaking them? For reasoning about the behavior of programs? About the equivalence of two programs?

I want some rules for doing so that never fail.

Simple Equational Reasoning

Rewrite 1 (Function de-sugaring):
let $\mathrm{f} x=$ body $==$ let $\mathrm{f}=($ fun $\mathrm{x}->$ body $)$
if arg is a value or, when executed, will always terminate without effect and produce a value
\square
roughly: all occurrences of x replaced by arg (though getting this exactly right is shockingly difficult)

```
let f x = (def) x
```

chose name x wisely so it does not shadow other names used in def

Eta-expansion is an example of Leibniz's law

Gottfried Wilhelm von Leibniz
German Philosopher
1646-1716

Leibniz's law:

If every predicate possessed by x is also possessed by y and vice versa, then entities x and y are identical. Frequently invoked in modern logic and philosophy.

Rewrite 3 (Eta-expansion):

let $\mathrm{f}=\mathrm{def}$

==

```
let f = fun x -> (def)x
```

chose name x wisely so it does not shadow other names used in def

Eliminating the Sugar in Map

let rec map f xs $=$
match $x s$ with

```
| [] -> []
    | hd::tl -> (f hd)::(map f tl);;
```


Eliminating the Sugar in Map

let rec map $f \mathrm{xs}=$
match xs with

```
| [] -> []
| hd::tl -> (f hd)::(map f tl);;
```

let rec map =

```
(fun f ->
    (fun xs ->
        match xs with
        | [] -> []
        | hd::tl -> (f hd)::(map f tl)));;
```


Consider square_all

let rec map $=$

$$
\begin{aligned}
& \text { (fun } f-> \\
& \quad(\text { fun } x S-> \\
& \quad \text { match } x s \text { with } \\
& \quad \mid \quad[]->[] \\
& \quad \mid \quad \text { hd: :tl }->(f \text { hd) }::(m a p f t l))) ; ;
\end{aligned}
$$

let square_all = map square ; ;

Substitute map definition into square_all

let rec map $=$

```
(fun f ->
    (fun xs ->
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)));;
```

let square_all =

```
    (fun f ->
```

(fun xs ->
match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl)
)
) square ; ;

Substitute map definition into square_all

let rec map $=$

```
(fun f ->
    (fun xs ->
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)));;
```

let square_all =

Substitute map definition into square_all

let rec map $=$

```
(fun f ->
    (fun xs ->
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)));;
```

let square_all =

Substitute Square

let rec map =

```
(fun f ->
    (fun xs ->
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)));;
```

let square_all = argument square substituted for parameter f

```
(fun xs ->
```

 match \(x s\) with
 | [] -> []
 | hd::tl -> (square hd)::(map square tl)
)

Expanding map square

let rec map $=$

```
(fun f ->
    (fun xS ->
    match xs with
        | [] -> []
        | hd::tl -> (f hd)::(map f tl)));;
```

let square_all vs $=$
add argument

| [] -> []
| hd::tl -> (square hd)::(map square tl)
; ;

Expanding map square

let rec map =

```
(fun f ->
    (fun XS ->
    match xs with
        | [] -> []
        | hd::tl -> (f hd)::(map f tl)));;
```

let square_all ys =
substitute again (argument ys for parameter xs)
match ys with
| [] -> []
| hd::tl -> (square hd)::(map square tl)
; ;

So Far

```
let rec map f xs =
        match xs with
        | [] -> []
        | hd::tl -> (f hd)::(map f tl);;
let square_all xs = map square xs
let square_all ys =
    match ys with
        | [] -> []
        hd::tl -> (square hd)::(map square tl)
;;
```


Next Step

let rec map $f \mathrm{xs}=$ match xs with
| [] -> [] | hd::tl -> (f hd)::(map f tl); ;
let square_all xs = map square $x s$
let square_all ys = match ys with
| [] -> []
hd::tl -> (square hd)::(map square tl)
; ;
let square_all vs = match ys with

$$
\begin{aligned}
& \text { | [] -> [] } \\
& \text { | hd::tl -> (square hd)::(square_all tl) }
\end{aligned}
$$

proof by simple rewriting unrolls definition once
proof by induction eliminates recursive function map

Summary

We saw this:

```
let rec map f xs =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl);;
let square_all ys = map square
```

Is equivalent to this:

```
let square_all ys =
    match ys with
    | hd::tl -> (square hd)::(map square tl)
;;
```

Moral of the story

- (1) OCaml's HOT (higher-order, typed) functions capture recursion patterns
- (2) we can figure out what is going on by equational reasoning.
- (3) ... but we typically need to do proofs by induction to reason about recursive (inductive) functions

Here's an annoying thing

```
let rec map (f:int->int) (xs:int list) : int list =
match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl);;
```

What if I want to increment a list of floats?
Alas, I can't just call this map. It works on ints!

Here's an annoying thing

```
let rec map (f:int->int) (xs:int list) : int list =
match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl);;
```

What if I want to increment a list of floats?
Alas, I can't just call this map. It works on ints!

Turns out

let rec map f xs = match xs with
| [] -> []
| hd::tl -> (f hd)::(map f tl); ;

map (fun x -> x + 1) [1; 2; 3; 4] ; ;
map (fun x -> x +. 2.0) [3.1415; 2.718; 42.0] ; ;
map String.uppercase ["greg"; "victor"; "joe"] ; ;

Type of the undecorated map?

```
let rec map f xs =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)
; ;
map : ('a -> 'b) -> 'a list -> 'b list
```


Type of the undecorated map?

```
let rec map f xs =
    match xs with
    | [] -> []
    hd::tl -> (f hd)::(map f tl)
;;
map : ('a -> 'b) -> 'a list -> 'b
```

We often use greek letters like α or β to represent type variables.

Read as: for any types 'a and 'b, if you give map a function from 'a to 'b, it will return a function which when given a list of 'a values, returns a list of 'b values.

We can say this explicitly

```
let rec map (f:'a -> 'b) (xs:'a list) : 'b list =
    match xs with
    | [] -> []
    | hd::tl -> (f hd)::(map f tl)
```

; i
map : (`a -> 'b) -> 'a list -> 'b list

The OCaml compiler is smart enough to figure out that this is the most general type that you can assign to the code.

We say map is polymorphic in the types 'a and 'b-just a fancy way to say map can be used on any types 'a and 'b.

Java generics derived from ML-style polymorphism (but added after the fact and more complicated due to subtyping)

More realistic polymorphic functions

```
let rec merge (lt:'a->'a->bool) (xs:'a list) (ys:'a list)
                : 'a list =
    match (xs,ys) with
    | ([],_) -> ys
    | (_,[]) -> xs
    | (x::xst, y::yst) ->
        if lt x y then x::(merge lt xst ys)
        else y::(merge lt xs yst) ; ;
let rec split (xs:'a list) (ys:'a list) (zs:'a list)
        : 'a list * 'a list =
    match xs with
    | [] -> (ys, zs)
    | x::rest -> split rest zs (x::ys) ;;
let rec mergesort (lt:'a->'a->bool) (xs:'a list) : 'a list =
    match xs with
    | ([] | _::[]) -> xs
        -> let (first, second) = split xs [] [] in
        merge lt (mergesort lt first) (mergesort lt second) ; ;
```


More realistic polymorphic functions

```
mergesort : ('a->'a->bool) -> 'a list -> 'a list
mergesort (<) [3;2;7;1]
    == [1;2;3;7]
mergesort (>) [2.718; 3.1415; 42.0]
    == [42.0 ; 3.1415; 2.718]
mergesort (fun x y -> String.compare x y < 0) ["Hi"; "Bi"]
    == ["Bi"; "Hi"]
let int_sort = mergesort (<) ;;
let int_sort_down = mergesort (>) ; ;
let str_sort =
    mergesort (fun x y -> String.compare x y < 0) ;;
```


Another Interesting Function

```
let comp f g x = f (g x) ;;
let mystery = comp (add 1) square ;;
let comp = fun f -> (fun g -> (fun x -> f (g x))) ;;
let mystery = comp (add 1) square ;;
```


let mystery $x=$ add 1 (square x) ; ;

Optimization

What does this program do?

$$
\operatorname{map} f(\operatorname{map} g[x 1 ; x 2 ; \ldots ; x n])
$$

For each element of the list $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3 \ldots \mathrm{xn}$, it executes g , creating:

```
map f ([g x1; g x2; ...; g xn])
```

Then for each element of the list $[\mathrm{g} \times 1, \mathrm{~g} \times 2, \mathrm{~g} \times 3 \ldots \mathrm{~g} \times \mathrm{n}]$, it executes f , creating:

$$
[f(g x 1) ; f(g x 2) ; \ldots ; f(g x n)]
$$

Is there a faster way? Yes! (And query optimizers for SQL do it for you.)
map (comp f g) [x1; x2; ...; xn]

Deforestation

```
map f (map g [x1; x2; ...; xn])
```


This kind of optimization has a name:

deforestation

(because it eliminates intermediate lists and, um, trees...)

```
map (comp f g) [x1; x2; ...; xn]
```


What is the type of comp?

let comp $\mathrm{f} \mathrm{g} \mathrm{x}=\mathrm{f}(\mathrm{g} \mathrm{x})$; ;

What is the type of comp?

let comp f g x $=\mathrm{f}(\mathrm{g} \mathrm{x})$; ;

$$
\begin{aligned}
\text { comp : } & (' b->~ ' c) ~->~ \\
& (' a ~->~ ' b) ~->~ \\
& (' a ~->~ ' c) ~
\end{aligned}
$$

How about reduce?

```
let rec reduce f u xs =
    match XS with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl);;
```

What's the most general type of reduce?

How about reduce?

```
let rec reduce f u xs =
    match xS with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl);;
What's the most generar
Based on the patterns, we know xs must be a ('a list) for some type 'a.
```


How about reduce?

```
let rec reduce f u (xs: 'a list) =
    match xs with
    | [] -> u
    | hd::tl -> f hd (reduce f u tl);;
```

What's the most general type of reduce?

How about reduce?

let rec reduce $\mathrm{f} u$ (xs: 'a list) =
match xs with
| [] -> u
| hd::tl -> f hd (reduce f u tl); ;

What's the most general of reduce?
f is called so it must be a function of two arguments.

How about reduce?

let rec reduce (f:? -> ? -> ?) u (xs: 'a list) = match $x s$ with
| [] -> u
| hd::tl $->$ f hd (reduce f u tl); ;

What's the most general type of reduce?

How about reduce?

let rec reduce (f:? -> ? -> ?) u (xs: 'a list) = match xs with
| [] -> u
| hd::tl -> f hd (reduce f u tl); ;

What's the most general type of reduce?

How about reduce?

let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) = match XS with
| [] -> u
| hd::tl -> f hd (reduce f u tl); ;

What's the most general type of reduce?

How about reduce?

let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) = match $x s$ with
| [] -> u
| hd::tl -> f hd (reduce f u tl); ;

What's the most general type o reduce?

The second argument to f must have the same type as the result of reduce.

Let's call it 'b.

How about reduce?

let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b = match xs with
| [] -> u
| hd::tl -> f hd (reduce f u tl); ;

What's the most gener type of reduce?

How about reduce?

let rec reduce (f:'a $->$ 'b $\rightarrow>$ 'b) u (xs: 'a list) : 'b = match XS with
| [] -> u
| hd::tl -> f hd (reduce f u tl); ;

What's the most general type of reduce?

How about reduce?

let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b = match xs with
| [] -> u
| hd::tl -> Nhd (reduce f u tl); ;

What's the most general th of reduce?

If x s is empty, then reduce returns u. So u's type must be 'b.

How about reduce?

let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b = match $x S$ with
| [] -> u
| hd::tl $->$ f hd (reduce f u tl); ;

What's the most general type of reduce?

How about reduce?

let rec reduce (f:'a -> 'b ->'b) (u:'b) (xs: 'a list) : 'b = match $x S$ with
| [] -> u
| hd::tl $->$ f hd (reduce f u tl); ;

What's the most general type of reduce?
('a -> 'b -> 'b) -> 'b -> 'a list -> 'b

The List Library

NB: map and reduce are already defined in the List library.

- However, reduce is called "fold_right".
- (Good bet there's a "fold_left" too.)

I'll use reduce instead of fold_right, for 3 reasons:

- Analogy with Google's Map/Reduce
- The library's arguments to fold_right are in the "wrong" order
- Makes the example fit on a slide.

Summary

- Map and reduce are two higher-order functions that capture very, very common recursion patterns
- Reduce is especially powerful:
- related to the "visitor pattern" of OO languages like Java.
- can implement most list-processing functions using it, including things like copy, append, filter, reverse, map, etc.
- We can write clear, terse, reusable code by exploiting:
- higher-order functions
- anonymous functions
- first-class functions
- polymorphism

Practice Problems

Using map, write a function that takes a list of pairs of integers, and produces a list of the sums of the pairs.

- e.g., list_add $[(1,3) ;(4,2) ;(3,0)]=[4 ; 6 ; 3]$
- Write list_add directly using reduce.

Using map, write a function that takes a list of pairs of integers, and produces their quotient if it exists.

- e.g., list_div [(1,3); (4,2); (3,0)] = [Some 0; Some 2; None]
- Write list_div directly using reduce.

Using reduce, write a function that takes a list of optional integers, and filters out all of the None's.

- e.g., filter_none [Some 0; Some 2; None; Some 1] = [0;2;1]
- Why can't we directly use filter? How would you generalize filter so that you can compute filter_none? Alternatively, rig up a solution using filter + map.

Using reduce, write a function to compute the sum of squares of a list of numbers.

- e.g., sum_squares $=[3,5,2]=38$

