Poly-HO!

COS 326 |
p9|ymorph|c,
David Walker higher-order

programming

Princeton University

slides copyright 2013-2015 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

Some Design & Coding Rules

Some Desigh & Coding Rules

* Laziness can be a really good force in design.
* Never write the same code twice.
— factor out the common bits into a reusable procedure.

— better, use someone else’s (well-tested, well-documented, and
well-maintained) procedure.

 Why is this a good idea?

— why don’t we just cut-and-paste snippets of code using the
editor instead of abstracting them into procedures?

Some Desigh & Coding Rules

* Laziness can be a really good force in design.
* Never write the same code twice.

— factor out the common bits into a reusable procedure.

— better, use someone else’s (well-tested, well-documented, and
well-maintained) procedure.

 Why is this a good idea?

— why don’t we just cut-and-paste snippets of code using the
editor instead of abstracting them into procedures?

— find and fix a bug in one copy, have to fix in all of them.

— decide to change the functionality, have to track down all of the
places where it gets used.

Factoring Code in OCaml

Consider these definitions:

let rec inc all (xs:int list) : int list =
match xs with
L] => 1]
| hd::tl -> (hd+l)::(inc all tl)

let rec square all (xs:int list) : int list =
match xs with
|] => [
| hd::tl -> (hd*hd) :: (square all tl)

Factoring Code in OCaml

Consider these definitions:

let rec inc all (xs:int list) : int list =
match xs with
L] => 1]
| hd::tl -> (hd+l)::(inc all tl)

let rec square all (xs:int list) : int list =
match xs with
|] => [
| hd::tl -> (hd*hd) :: (square all tl)

The code is almost identical — factor it out!

Factoring Code in OCaml

A higher-order function captures the recursion pattern:

match xs with

[=> T[]

| hd::tl1l -> (£ hd) ::

let rec map (f:int->int) (xs:int 1list)

(map £ tl);;

: 1nt list

Factoring Code in OCaml

A higher-order function captures the recursion pattern:

let rec map (f:int->int) (xs:int 1list) : int list =
match xs with
1 => []

| hd::tl -> (f hd):: (map £ tl);;

Uses of the function:

let inc x = x+1;;
let inc all xs = map inc Xs;;

Factoring Code in OCaml

A higher-order function captures the recursion pattern:

match xs with

[l => []
| hd::tl -> (£ hd):: (map £ tl);;

let rec map (f:int->int) (xs:int 1list) : int list

Uses of the function: o
Writing little

functions like inc

just so we call
map is a pain.

let inc x = x+1;;
let inc all xs = map inc Xs;;

let square y = vy*y;;
let square all xs = map square Xxs;;

Factoring Code in OCaml]

A higher-order function captures the recursion pattern:

let rec map (f:int->int) (xs:int 1list) : 1Int list =
match xs with

1 => []
| hd::tl -> (£ hd):: (map £ t@

anonymous
function
instead.

Originally,
Church wrote
this function

using A instead

Uses of the function:

y of fun:
let inc all xs = map (fun x -> x + 1) (Ax. x+1) or
(AX. x*x)

let square all xs = map (fun y ->y * y) xs;;

10

Another example

let rec sum (xs:int 1list)
match xs with
| [] -> 0

| hd::tl1l -> hd + (sum tl)

let rec prod (xs:int 1list)
match xs with
[l > 1

| hd::tl -> hd * (prod tl)

int =

int

Goal: Create a function called reduce that
when supplied with a few arguments

can implement both sum and prod.
Define sum2 and prod2 using reduce.

(Try it)

Goal: If you finish early, use
map and reduce together to
find the sum of the squares of
the elements of a list.

11

(Try it)

A generic reducer

let add x y =
let mul x y =

X+y,‘,‘
X*

let rec reduce
match xs with
[l =>u
| hd::tl1l -> £ hd

(f:int->int->int)

let sum xs = reduce add 0 xs ;;

let prod xs =

reduce mul 1 xs ;;

(u:int)

(reduce £ u tl);;

(xs:1nt list)

int

12

Using Anonymous Functions

let rec reduce (f:int->int->int) (u:int) (xs:int list) : int
match xs with
| [] -> u
| hd::tl -> £ hd (reduce £ u tl);;

let sum xs = reduce (fun x y -> x+y) 0 xs ;;
let prod xs = reduce (fun x y -> x*y) 1 xs ;;

13

Using Anonymous Functions

let rec reduce (f:int->int->int) (u:int) (xs:int list)
match xs with
| [] -> u
| hd::tl -> £ hd (reduce £ u tl);;

let sum xs = reduce (fun x y -> x+y) 0 xs ;;
let prod xs = reduce (fun x y -> x*y) 1 xs ;;

let sum of squares xs = sum (map (fun x -> X * X) Xxs3)
let pairify xs = map (fun x -> (x,X)) XS

int

14

More on Anonymous Functions

(nonrecursive) Function declarations are actually abbreviations:

let square x = x*x ;;

let add x y = x+y ;;

are syntactic sugar for:

let square = (fun x -> xX*x) ;;

let add = (fun x y -> x+ty) ;;

So, functions are values we can bind to a variable,
just like 3 or “moo” or true.

OCaml obeys the principle of orthogonal language design. 1

5

One argument, one result

Simplifying further:

let add = (fun x y —-> x+ty)

is shorthand for:

let add = (fun x -> (fun y -> x+y))

That is, add is a function which:

— when given a value x, returns a function (funy -> x+y) which:
* when given a value vy, returns x+y.

16

Curried Functions

fun x -> (fun y -> x+tvy) (* curried *)
fun x y -> x + vy (* curried ¥*)
fun (x,y) —-> x+y (* uncurried *)

Currying: encoding a multi-argument
function using nested, higher-order
functions.

Named after the logician Haskell B. Curry (1950s).

— was trying to find minimal logics that are powerful enough to encode
traditional logics.

— much easier to prove something about a logic with 3 connectives than
one with 20.

— the ideas translate directly to math (set & category theory) as well as to
computer science.

— (actually, Moses Schonfinkel did some of this in 1924)
— (thankfully, we don't have to
talk about Schéonfinkelled functions)

17

What is the type of add?

let add = (fun x -> (fun y -> x+tvy))

Add’s type is:

int -> (int -> int)

which we can write as:

int -> int -> 1int

That is, the arrow type is right-associative.

18

What’s so good about Currying?

In addition to simplifying the language (orthogonal design),
currying functions so that they only take one argument leads
to two major wins:

1. We can partially apply a function.
2. We can more easily compose functions.

why u not curry that funkshun2

19

[Partial Application

let add = (fun x -> (fun y -> x+tvy))

o o
r 7

Curried functions allow defs of new, partially applied functions:

let inc = add 1;;

Equivalent to writing:

let inc = (fun y -> 1+vy);;

which is equivalent to writing:

let inc y = 1+y;;

also:

let inc2 = add 2;;
let inc3 = add 3;;

SIMPLE REASONING ABOUT
HIGHER-ORDER FUNCTIONS

Reasoning About Definitions

We can factor this program

let square all ys =
match ys with
1 => T[]

| hd::tl -> (square hd) ::(square_all tl)

into this program:

let rec map £ xs =
match xs with
[=> []
| hd::tl -> (£ hd):: (map £ tl);;

let square all = map square;;

a more concise and readable definition of square_all
(assuming we already had defined map)

22

Reasoning About Definitions

let square all ys =
match ys with
1 => [

| hd::tl -> (square hd)::(square all tl)

let square all = map square;;

Goal: Rewrite definitions so my program is simpler, easier to

understand, more concise, ...

Question: What are the reasoning principles for rewriting programs
without breaking them? For reasoning about the behavior of

programs? About the equivalence of two programs?

| want some rules for doing so that never fail.

Simple Equational Reasoning]

Rewrite 1 (Function de-sugaring):

let £ x = body == let £ = (fun x -> body)

if arg is a value or, when executed,
will always terminate without effect and

Rewrite 2 (Substitution):
produce a value

(fun x -> ... X ...) arg
R
roughly: all occurrences of x replaced
. . by arg (though getting this exactly
Rewrite 3 (Eta-expansion): right is shockingly difficult)
let £ = def == let £ x = (def) x

N N

if f has a function type chose name x wisely so it does not
shadow other names used in def

Eta-expansion is an example of Leibniz’s law]

Gottfried Wilhelm von Leibniz
German Philosopher
1646 - 1716

Leibniz’s law:

If every predicate possessed by x is also
possessed by y and vice versa, then entities x
and vy are identical. Frequently invoked in
modern logic and philosophy.

Rewrite 3 (Eta-expansion):

let £ = def == let £ = fun x -> (def)x

N N\

if f has a function type chose name x wisely so it does not
shadow other names used in def

Eliminating the Sugar in Map

let rec map £ xs =
match xs with
[l => 1]
| hd::tl -> (£ hd):: (map £ tl);;

26

Eliminating the Sugar in Map

let rec map £ xs =
match xs with
[l => 1]
| hd::tl -> (£ hd):: (map £ tl);;

let rec map =
(fun £ ->
(fun xs —->
match xs with
Ll => 1]
| hd::tl -> (f hd)::(map £ tl1)));;

27

Consider square_all

let rec map =
(fun £ ->
(fun xs —->

match xs with

1 => 1]

| hd::tl1l -> (£ hd) ::

let square all =

map square ;;

(map £ tl)));;

28

Substitute map definition into square_all

let rec map =
(fun £ ->
(fun xs —->
match xs with
Ll => 1]
| hd::tl -> (f hd)::(map £ tl1)));;

let square all =
(fun £ —->
(fun xs ->
match xs with
L1 => 1]
| hd::tl -> (f hd):: (map £ tl)
)

) square ;;

29

Substitute map definition into square_all

let rec map =
(fun £ ->
(fun xs —->
match xs with
Ll => 1]
| hd::tl -> (f hd)::(map £ tl1)));;

let square all =
(fun £ —->
(ﬁhn Xs ->
match xs with
L1 => 1]
| hd::tl -> (f hd):: (map £ tl)
)

) square ;;

30

Substitute map definition into square_all

let rec map =
(fun £ ->
(fun xs —->
match xs with
Ll => 1]
| hd::tl -> (f hd)::(map £ tl1)));;

let square all =
(fun £ —->

| hd::tl -> (f hd):: (map £ tl)

) square ;;

31

Substitute Square

let rec map =
(fun £ ->
(fun xs —->
match xs with
Ll => 1]
| hd::tl -> (f hd)::(map £ tl1)));;

let square all = argument square substituted
(for parameter f

(fun xs ->

match xs with

[l => []
| hd::tl -> (square hd) :: (map square tl)

32

Expanding map square

let rec map =
(fun £ ->
(fun xs —->
match xs with
Ll => 1]
| hd::tl -> (f hd)::(map £ tl1)));;

let square all ys =

add argument
via eta-expansion

(fun xs ->

match xs with

[l =>
| hd:+tl -> (square hd) :: (map square tl)

33

Expanding map square

let rec map =
(fun £ ->
(fun xs ->
match xs with
Ll => 1]
| hd::tl -> (£ hd)::(map £ tl)));;

let square all ys =

substitute again

é/////,///////”/////— (argument ys for

match ys with parameter xs)

[l => []
| hd::tl -> (square hd) :: (map square tl)

.

So Far

let rec map £ xs =
match xs with

[-> []
| hd::tl -> (£ hd):: (map £ tl);;

let square all xs = map square Xs

let square all ys =
match ys with

[l => []
| hd::tl -> (square hd) :: (map square tl)

proof by
simple
rewriting
unrolls
definition
once

35

| hd::tl -> (s

quare hd) :: (square all tl)

Next Step]
let rec map £ xs =
match xs with
] => []
| hd::tl -> (£ hd)::(map £ tl);; proof by
simple
let square all xs = map square Xs rewriting
unrolls
let square all ys = definition
match ys with once
| [] => []
s —> s
5 | hd::tl (square hd) (map square tl) oroof
r 7 by
induction
let square all ys = eliminates
match ys with recursive
| [] => [] function

map
36

Summary

We saw this:

let rec map f xs =
match xs with

|] -> T[]
| hd::tl -> (f hd):: (map £ tl);;

let square all ys = map square

Is equivalent to this:

let square all ys =
match ys with

| [1 => []
| hd::tl -> (square hd) :: (map square tl)

Moral of the story
(1) OCaml’s HOT (higher-order, typed) functions capture recursion patterns
* (2) we can figure out what is going on by equational reasoning.

* (3)... but we typically need to do proofs by induction to reason about
recursive (inductive) functions

POLY-HO!

Here’s an annoying thing

let rec map (f:int->int) (xs:int list) : int list =
match xs with
[l => []

| hd::tl -> (£ hd):: (map £ tl);;

What if | want to increment a list of floats?
Alas, | can’t just call this map. It works on ints!

Here’s an annoying thing

let rec map (f:int->int) (xs:int list) : int list =
match xs with
[l => []

| hd::tl -> (£ hd):: (map £ tl);;

What if | want to increment a list of floats?
Alas, | can’t just call this map. It works on ints!

let rec mapfloat (f:float->float) (xs:float list)
float list =

match xs with

[l => []
| hd::tl -> (£ hd) :: (mapfloat £ tl);;

40

Turns out

let rec map £ xs =
match xs with

[=> []
| hd::tl -> (£ hd):: (map £ tl);;

map (fun x -> x + 1) [1; 2; 3; 4] ;;

map (fun x -> x +. 2.0) [3.1415; 2.718;

map String.uppercase [“greg”; “victor”;

42.0]

\\joell]

°
14

°
14

°
14

°
14

41

Type of the undecorated map?

let rec map £ xs =
match xs with

[-> []
| hd::tl -> (£ hd):: (map £ tl)

map : ('a -> 'b) -> 'a list -> 'b list

42

Type of the undecorated map?]

let rec map f xs =
match xs with

[-> []
| hd::tl -> (£ hd):: (map £ tl)

We often use
greek letters
like a. or to
represent type

map : ('a -> 'b) -> 'a list -> 'b variables

Read as: for any types 'a and 'b, if you give map a
function from 'a to 'b, it will return a function which
when given a list of 'a values, returns a list of 'b
values.

43

We can say this explicitly

let rec map (f:'a -> 'b) (xs:'a list) : 'b list =
match xs with
[l > []

| hd::tl -> (£ hd):: (map £ tl)

e o
r 7

map : (‘a -> ‘b) -> ‘a list -> ‘b list

The OCaml compiler is smart enough to figure out that this is the
most general type that you can assign to the code.

We say map is polymorphic in the types 'a and 'b — just a fancy
way to say map can be used on any types 'a and 'b.

Java generics derived from ML-style polymorphism (but added
after the fact and more complicated due to subtyping)

44

More realistic polymorphic functions

let rec merge (lt:'a->'a->bool) (xs:'a list) (ys:'a list)
'a list =
match (xs,ys) with
- ([1,_) —> ys
(., []) —-> xs
| (x::xst, y::yst) ->
if 1t x y then x:: (merge 1t xst ys)
else y:: (merge 1lt xs yst) ;;

let rec split (xs:'a 1list) (ys:'a list) (zs:'a list)
'a list * 'a list =
match xs with
| [1 => (ys, zs)
| x::rest -> split rest zs (x::ys) ;;

let rec mergesort (lt:'a->'a->bool) (xs:'a list) : 'a list =
match xs with
(01 I _::[1) => xs
| —-> let (first,second) = split xs [] [] in

merge lt (mergesort 1t first) (mergesort 1t second) ;;

More realistic polymorphic functions

mergesort : ('a->'a->bool) -> 'a list -> 'a list

mergesort (<) [3;2;7;1]
== [1;2;3;7]

mergesort (>) [2.718; 3.1415; 42.0]
== [42.0 ; 3.1415; 2.718]

mergesort (fun x y -> String.compare x y < 0) [“Hi”; “Bi”]
—— [\\Bill; \\Hi//]
let int sort = mergesort (L) ;;

let int sort down = mergesort (>) ;;
let str sort =

mergesort (fun x y -> String.compare x y < 0) ;;

Another Interesting Function

let comp £ g x = £ (g x) ;;

let mystery = comp (add 1) square ;;

—)

let comp = fun £ -> (fun g -> (fun x -> £ (g x)))

let mystery = comp (add 1) square ;;

——)
e
let mystg///\‘\k
(fun f -> (fun g -> (fun x -> f (g (add 1) 'square' ;;
\\
let mystery = fun x -> add 1 square X) ;s
——)

let mystery x = add 1 (square x) ;;

Optimization

What does this program do?

map £ (map g [x1; x2; ..; xXn])

For each element of the list x1, x2, x3 ... xn, it executes g, creating:

map £ ([g x1; g x2; ..; g xXnj)

Then for each element of the list [g x1, g x2, g X3 ... g xn], it executes f, creating:

[f (g x1); £ (g x2); ..; £ (g xn)]

Is there a faster way? Yes! (And query optimizers for SQL do it for you.)

map (comp f g) [x1; x2; ...; xnj

48

Deforestation

map f (map g [x1;

X2 ;

ey XnJ)

) 4

This kind of optimization has a name:
deforestation

(because it eliminates intermediate
lists and, um, trees...)

map

(comp f qg)

[x1;

X2 ;

., Xnj

49

What is the type of comp?

let comp £f g x = £

(g x) 7

50

What is the type of comp?

comp : ('b -> 'c) ->

51

How about reduce?

let rec reduce f u xs =
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

What's the most general type of reduce?

52

How about reduce?

let rec reduce f u xs =
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

Based on the
patterns, we
know xs must be
a ('a list) for
some type 'a.

What's the most genére

53

How about reduce?

let rec reduce f u (xs: 'a list) =
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

What's the most general type of reduce?

54

How about reduce?

let rec reduce f u (xs: 'a list) =
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

What's the most genera

fis called so it
must be a

function of two

arguments.

55

How about reduce?

let rec reduce (f:? -> 2?2 -> ?) u (xs: 'a list) =
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

What's the most general type of reduce?

How about reduce?

let rec reduce (f:? -> 2?2 -> ?) u (xs:
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

What's the most general type of reduce?

'a list) =

Furthermore, hd
came from xs, so
f must take an 'a
value as its first
argument.

57

How about reduce?

let rec reduce (f:'a -> 2?2 -> ?) u (xs: 'a list) =
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

What's the most general type of reduce?

How about reduce?

let rec reduce (f:'a -> ? -> ?) u (xs: 'a list) =
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

What's the most general type o

The second
argument to f
must have the

same type as the
result of reduce.

Let’s call it 'b.

How about reduce?

let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

What's the most gener.type of reduce?

The result of f
must have the
same type as the
result of reduce
overall: 'b.

60

How about reduce?

let rec reduce (f:'a -> 'b -> 'b) u (xs:
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

What's the most general type of reduce?

'a list)

'b

61

How about reduce?

let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b
match xs with
[l => u
| hd::tl1 ->

d (reduce £ u tl);;

What’s the most general ty, ~of reduce?

If xs is empty,
then reduce
returns u. So u’s
type must be 'b.

62

How about reduce?

let rec reduce (f:'a -> 'b -> 'b) (u:'b)
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

What's the most general type of reduce?

(xs:

'a list)

'b

63

How about reduce?

let rec reduce (f:'a -> 'b -> 'b) (u:'b)
match xs with
[l =>u
| hd::tl -> £ hd (reduce £ u tl);;

What's the most general type of reduce?

('a => 'b -> '"b) -> 'b -> 'a list -> 'Db

(xs:

'a list)

'b

64

The List Library

NB: map and reduce are already defined in the List library.
— However, reduce is called “fold_right”.
— (Good bet there’s a “fold_left” too.)

I’ll use reduce instead of fold_right, for 3 reasons:
— Analogy with Google’s Map/Reduce
— The library’s arguments to fold _right are in the "wrong" order
— Makes the example fit on a slide.

65

Summary

Map and reduce are two higher-order functions that capture
Very, very common recursion patterns

Reduce is especially powerful:
— related to the “visitor pattern” of OO languages like Java.

— can implement most list-processing functions using it, including
things like copy, append, filter, reverse, map, etc.

We can write clear, terse, reusable code by exploiting:
— higher-order functions

— anonymous functions

— first-class functions

— polymorphism

66

Practice Problems

Using map, write a function that takes a list of pairs of integers, and produces
a list of the sums of the pairs.

— e.g, list_add [(1,3); (4,2); (3,0)] = [4; 6; 3]
— Write list_add directly using reduce.

Using map, write a function that takes a list of pairs of integers, and produces
their quotient if it exists.

— e.g., list_div [(1,3); (4,2); (3,0)] = [Some 0; Some 2; None]
— Write list_div directly using reduce.

Using reduce, write a function that takes a list of optional integers, and filters
out all of the None’s.

— e.g., filter_none [Some 0; Some 2; None; Some 1] =[0;2;1]

— Why can’t we directly use filter? How would you generalize filter so that
you can compute filter_none? Alternatively, rig up a solution using filter + map.

Using reduce, write a function to compute the sum of squares of a list of
numbers.

— e.g., sum_squares = [3,5,2] = 38

