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Some	Design	&	Coding	Rules	
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Some	Design	&	Coding	Rules	
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•  Laziness	can	be	a	really	good	force	in	design.	
•  Never	write	the	same	code	twice.	

–  factor	out	the	common	bits	into	a	reusable	procedure.	
–  beOer,	use	someone	else’s	(well-tested,	well-documented,	and	
well-maintained)	procedure.	

•  Why	is	this	a	good	idea?		
–  why	don’t	we	just	cut-and-paste	snippets	of	code	using	the	
editor	instead	of	abstracJng	them	into	procedures?		
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•  Laziness	can	be	a	really	good	force	in	design.	
•  Never	write	the	same	code	twice.	

–  factor	out	the	common	bits	into	a	reusable	procedure.	
–  beOer,	use	someone	else’s	(well-tested,	well-documented,	and	
well-maintained)	procedure.	

•  Why	is	this	a	good	idea?		
–  why	don’t	we	just	cut-and-paste	snippets	of	code	using	the	
editor	instead	of	abstracJng	them	into	procedures?	

–  find	and	fix	a	bug	in	one	copy,	have	to	fix	in	all	of	them.	
–  decide	to	change	the	funcJonality,	have	to	track	down	all	of	the	
places	where	it	gets	used.				



Factoring	Code	in	OCaml	
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Consider	these	definiJons:	
	
	
	
	
	
	
	
	
	
	

let rec inc_all (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (hd+1)::(inc_all tl) 
 
 
let rec square_all (xs:int list) : int list = 
  match xs with 
  | [] -> [] 
  | hd::tl -> (hd*hd)::(square_all tl) 
 



Factoring	Code	in	OCaml	
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Consider	these	definiJons:	
	
	
	
	
	
	
	
	
	
The	code	is	almost	idenJcal	–	factor	it	out!	
	
	

let rec inc_all (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (hd+1)::(inc_all tl) 
 
 
let rec square_all (xs:int list) : int list = 
  match xs with 
  | [] -> [] 
  | hd::tl -> (hd*hd)::(square_all tl) 
 



Factoring	Code	in	OCaml	
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A	higher-order	funcJon	captures	the	recursion	paOern:	
	
	
	
	
	
	
	
	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl);; 
 
 



Factoring	Code	in	OCaml	
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A	higher-order	funcJon	captures	the	recursion	paOern:	
	
	
	
	
	
Uses	of	the	funcJon:	
	
	
	
	
	
	
	
	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl);; 
 
 

let inc x = x+1;; 
let inc_all xs = map inc xs;; 
 



Factoring	Code	in	OCaml	
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A	higher-order	funcJon	captures	the	recursion	paOern:	
	
	
	
	
	
Uses	of	the	funcJon:	
	
	
	
	
	
	
	
	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl);; 
 
 

let inc x = x+1;; 
let inc_all xs = map inc xs;; 
 
let square y = y*y;; 
let square_all xs = map square xs;; 
 

WriJng	liOle	
funcJons	like	inc	
just	so	we	call	
map	is	a	pain.	



Factoring	Code	in	OCaml	
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A	higher-order	funcJon	captures	the	recursion	paOern:	
	
	
	
	
	
Uses	of	the	funcJon:	
	
	
	
	
	
	
	
	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl);; 
 
 

 
let inc_all xs = map (fun x -> x + 1) xs;; 
 
 
let square_all xs = map (fun y -> y * y) xs;; 
 

We	can	use	an	
anonymous	
funcJon	
instead.	 Originally,	

Church	wrote	
this	funcJon	

using	λ instead	
of	fun:	

(λx.		x+1)	or		
(λx.	x*x)	



Another	example	

11	

let rec sum (xs:int list) : int =  
  match xs with  
  | [] -> 0 
  | hd::tl -> hd + (sum tl) 
;; 
 
let rec prod (xs:int list) : int =  
  match xs with  
  | [] -> 1 
  | hd::tl -> hd * (prod tl) 
;; 
 
 Goal:		Create	a	funcJon	called	reduce	that	

when	supplied	with	a	few	arguments	
can	implement	both	sum	and	prod.	
Define	sum2	and	prod2	using	reduce.	
	
(Try	it)	

Goal:		If	you	finish	early,	use	
map	and	reduce		together	to	
find	the	sum	of	the	squares	of	
the	elements	of	a	list.	
	
(Try	it)	



A	generic	reducer	
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let add x y = x + y;;   
let mul x y = x * y;; 
 
let rec reduce (f:int->int->int) (u:int) (xs:int list) : int =  
  match xs with 
  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 
 
let sum xs = reduce add 0 xs ;; 
let prod xs = reduce mul 1 xs ;; 
 
 



Using	Anonymous	FuncJons	
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let rec reduce (f:int->int->int) (u:int) (xs:int list) : int =  
  match xs with 
  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 
 
let sum xs = reduce (fun x y -> x+y) 0 xs ;; 
let prod xs = reduce (fun x y -> x*y) 1 xs ;; 
 
 



Using	Anonymous	FuncJons	
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let rec reduce (f:int->int->int) (u:int) (xs:int list) : int =  
  match xs with 
  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 
 
let sum xs = reduce (fun x y -> x+y) 0 xs ;; 
let prod xs = reduce (fun x y -> x*y) 1 xs ;; 
 
let sum_of_squares xs = sum (map (fun x -> x * x) xs) 
let pairify xs = map (fun x -> (x,x)) xs 
 



More	on	Anonymous	FuncJons	

15	

(nonrecursive)	FuncJon	declaraJons	are	actually	abbreviaJons:	
	
	
	
are	syntac6c	sugar	for:	
	
	
	
So,	func6ons	are	values	we	can	bind	to	a	variable,		
				just	like	3	or	“moo”	or	true.			
	
OCaml	obeys	the	principle	of	orthogonal	language	design.	
 

 
 
 

 
 

let square x = x*x ;; 
 
let add x y = x+y ;; 

let square = (fun x -> x*x) ;; 
 
let add = (fun x y -> x+y) ;; 



One	argument,	one	result	
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Simplifying	further:	
	
	
	
is	shorthand	for:	
	
	
	
That	is,	add	is	a	funcJon	which:	

–  when	given	a	value	x,	returns	a	func6on	(fun	y	->	x+y)	which:	
•  when	given	a	value	y,	returns	x+y.	

	
 

	
	
	
	
	

let add = (fun x y -> x+y) 

let add = (fun x -> (fun y -> x+y)) 



Curried	FuncJons	
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fun x -> (fun y -> x+y)  (* curried *) 
fun x y -> x + y   (* curried *) 
fun (x,y) -> x+y   (* uncurried *) 
	
Currying:			encoding	a	mulJ-argument	

funcJon	using	nested,	higher-order		
funcJons.	

	
Named	ager	the	logician	Haskell	B.	Curry	(1950s).	

–  was	trying	to	find	minimal	logics	that	are	powerful	enough	to	encode	
tradiJonal	logics.	

–  much	easier	to	prove	something	about	a	logic	with	3	connecJves	than	
one	with	20.			

–  the	ideas	translate	directly	to	math	(set	&	category	theory)	as	well	as	to	
computer	science.		

–  (actually,	Moses	Schönfinkel	did	some	of	this	in	1924)	
–  (thankfully,	we	don't	have	to	
								talk	about	Schönfinkelled	funcJons)	



What	is	the	type	of	add?	
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Add’s	type	is:	
	
	
	
which	we	can	write	as:	
	
	
	
That	is,	the	arrow	type	is	right-associaJve.			

let add = (fun x -> (fun y -> x+y)) 

int -> (int -> int) 

int -> int -> int 



What’s	so	good	about	Currying?	

19	

In	addiJon	to	simplifying	the	language	(orthogonal	design),	
currying	funcJons	so	that	they	only	take	one	argument	leads	
to	two	major	wins:	

1.  We	can	par6ally	apply	a	funcJon.	
2.  We	can	more	easily	compose	funcJons.		
	

	



ParJal	ApplicaJon	

20	

   
 
Curried	funcJons	allow	defs	of	new,	parJally	applied	funcJons:			
	
	
Equivalent	to	wriJng:	
	
	
which	is	equivalent	to	wriJng:	
	
	
also:	
 
	

let add = (fun x -> (fun y -> x+y)) ;; 

let inc = add 1;; 

 let inc = (fun y -> 1+y);; 

 let inc y = 1+y;; 

let inc2 = add 2;; 
let inc3 = add 3;; 



SIMPLE	REASONING	ABOUT	
HIGHER-ORDER	FUNCTIONS	



Reasoning	About	DefiniJons	

22	

let rec map f xs =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl);; 
 
let square_all = map square;;  

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(square_all tl) 
;; 

We	can	factor	this	program	

into	this	program:	

	a	more	concise	and	readable	definiJon	of	square_all	
(assuming	we	already	had	defined	map)	



Reasoning	About	DefiniJons	
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Goal:		Rewrite	definiJons	so	my	program	is	simpler,	easier	to		
understand,	more	concise,	…		
	
Ques6on:		What	are	the	reasoning	principles	for	rewriJng	programs		
without	breaking	them?		For	reasoning	about	the	behavior	of		
programs?		About	the	equivalence	of		two	programs?	
	
I	want	some	rules	for	doing	so	that	never	fail.	

let square_all = map square;;  

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(square_all tl) 
;; 



Simple	EquaJonal	Reasoning	

(fun x -> ... x ...) arg       ... arg ... 

let f = def let f x = (def) x 

chose	name	x	wisely	so	it	does	not	
shadow	other	names	used	in	def	

if	arg	is	a	value	or,	when	executed,	
will	always	terminate	without	effect	and		
produce	a	value	

Rewrite	2	(SubsJtuJon):	

Rewrite	3	(Eta-expansion):	

if	f	has	a	funcJon	type	

let f x = body let f = (fun x -> body) 

Rewrite	1	(FuncJon	de-sugaring):	

==	

==	

==	

roughly:		all	occurrences	of	x	replaced		
by	arg	(though	geong	this	exactly	
right	is	shockingly	difficult)	



Eta-expansion	is	an	example	of	Leibniz’s	law	

let f = def let f = fun x -> (def)x 

chose	name	x	wisely	so	it	does	not	
shadow	other	names	used	in	def	

Rewrite	3	(Eta-expansion):	

if	f	has	a	funcJon	type	

==	

Gotried	Wilhelm	von	Leibniz	
German	Philosopher	
1646	-	1716	

Leibniz’s	law:	
	
If	every	predicate	possessed	by	x	is	also	
possessed	by	y	and	vice	versa,	then	enJJes	x	
and	y	are	idenJcal.		Frequently	invoked	in	
modern	logic	and	philosophy.		



EliminaJng	the	Sugar	in	Map	

26	

let rec map f xs =  
  match xs with  
  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

 
	



EliminaJng	the	Sugar	in	Map	
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let rec map f xs =  
  match xs with  
  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl);; 

 
let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl)));; 

	



Consider	square_all	

28	

let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl)));; 

 
let square_all = 
   map square ;; 

	



SubsJtute	map	definiJon	into	square_all	
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let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl)));; 

 
let square_all = 
   (fun f -> 

       (fun xs ->  

       match xs with 
       | [] -> [] 
       | hd::tl -> (f hd)::(map f tl) 

       ) 

   ) square ;; 



SubsJtute	map	definiJon	into	square_all	

30	

let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl)));; 

 
let square_all = 
   (fun f -> 

       (fun xs ->  

       match xs with 
       | [] -> [] 
       | hd::tl -> (f hd)::(map f tl) 

       ) 

   ) square ;; 



SubsJtute	map	definiJon	into	square_all	

31	

let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl)));; 

 
let square_all = 
   (fun f -> 

       (fun xs ->  

       match xs with 
       | [] -> [] 
       | hd::tl -> (f hd)::(map f tl) 

       ) 

   ) square ;; 



SubsJtute	Square	

32	

let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl)));; 

 
let square_all = 
   ( 

       (fun xs ->  

       match xs with 
       | [] -> [] 
       | hd::tl -> (square hd)::(map square tl) 

       ) 

                  ;; 

argument	square	subsJtuted	
for	parameter	f	



Expanding	map	square	

33	

let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl)));; 

 
let square_all ys = 
    

       (fun xs ->  

       match xs with 
       | [] -> [] 
       | hd::tl -> (square hd)::(map square tl) 

       ) ys 

   ;; 

add	argument	
via	eta-expansion	



Expanding	map	square	

34	

let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl)));; 

 
let square_all ys = 
    

        

       match ys with 
       | [] -> [] 
       | hd::tl -> (square hd)::(map square tl) 

        

   ;; 

subsJtute	again		
(argument	ys	for		
	parameter	xs)	



So	Far	
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let rec map f xs =  
 match xs with 
 | [] -> [] 
 | hd::tl -> (f hd)::(map f tl);; 

 
let square_all xs = map square xs 

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(map square tl) 
;; 

proof	by	
simple	
rewriJng	
unrolls	
definiJon	
once	



Next	Step	

36	

let rec map f xs =  
 match xs with 
 | [] -> [] 
 | hd::tl -> (f hd)::(map f tl);; 

 
let square_all xs = map square xs 

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(map square tl) 
;; 

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(square_all tl) 
;; 

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(map square tl) 
;; 

proof	
by	
induc6on	
eliminates	
recursive	
funcJon	
map	

proof	by	
simple	
rewriJng	
unrolls	
definiJon	
once	



Summary	

37	

We	saw	this:	
	
	
	
	
	
	
Is	equivalent	to	this:	
	
	
	
	
	
Moral	of	the	story		
•  (1)	OCaml’s	HOT	(higher-order,	typed)	funcJons	capture	recursion	paOerns	
•  (2)	we	can	figure	out	what	is	going	on	by	equa6onal	reasoning.	
•  (3)	...	but	we	typically	need	to	do	proofs	by	induc6on	to	reason	about	

recursive	(inducJve)	funcJons	

let rec map f xs =  
 match xs with 
 | [] -> [] 
 | hd::tl -> (f hd)::(map f tl);; 

 
let square_all ys = map square 

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(map square tl) 
;; 



POLY-HO!	



Here’s	an	annoying	thing	

39	

 

 
 

 

	
What	if	I	want	to	increment	a	list	of	floats?	
Alas,	I	can’t	just	call	this	map.		It	works	on	ints!	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl);; 



Here’s	an	annoying	thing	

40	

 

 
 

 

	
What	if	I	want	to	increment	a	list	of	floats?	
Alas,	I	can’t	just	call	this	map.		It	works	on	ints!	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl);; 

let rec mapfloat (f:float->float) (xs:float list) :  
           float list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(mapfloat f tl);; 



Turns	out	

41	

let rec map f xs =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl);; 
 
map (fun x -> x + 1) [1; 2; 3; 4] ;; 
 
map (fun x -> x +. 2.0) [3.1415; 2.718; 42.0] ;; 
 
map String.uppercase [“greg”; “victor”; “joe”] ;; 



Type	of	the	undecorated	map?	

42	

let rec map f xs =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl) 
;; 
 
 
map : ('a -> 'b) -> 'a list -> 'b list 
	



Type	of	the	undecorated	map?	

43	

	
	
	
	
	
	
	
Read	as:		for	any	types	'a	and	'b,	if	you	give	map	a	
funcJon	from	'a	to	'b,	it	will	return	a	funcJon	which	
when	given	a	list	of	'a	values,	returns	a	list	of	'b	
values.	

	

let rec map f xs =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl) 
;; 
 
 
map : ('a -> 'b) -> 'a list -> 'b list 
	

We	ogen	use	
greek	leOers	
like	α	or	β	to	
represent	type	

variables.	



We	can	say	this	explicitly	

44	

	
	
	
	
	
	
	
	
The	OCaml	compiler	is	smart	enough	to	figure	out	that	this	is	the	

most	general	type	that	you	can	assign	to	the	code.			
	
We	say	map	is	polymorphic	in	the	types	'a	and	'b	–	just	a	fancy	

way	to	say	map	can	be	used	on	any	types	'a	and	'b.		
	
Java	generics	derived	from	ML-style	polymorphism	(but	added	

ager	the	fact	and	more	complicated	due	to	subtyping)	
	
	
	

let rec map (f:'a -> 'b) (xs:'a list) : 'b list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl) 
;; 
 
map : (‘a -> ‘b) -> ‘a list -> ‘b list 
	



More	realisJc	polymorphic	funcJons	

45	

let rec merge (lt:'a->'a->bool) (xs:'a list) (ys:'a list)  
            : 'a list =  

  match (xs,ys) with  
  | ([],_) -> ys 

  | (_,[]) -> xs 

  | (x::xst, y::yst) ->  

    if lt x y then x::(merge lt xst ys) 
      else y::(merge lt xs yst) ;; 
 

let rec split (xs:'a list) (ys:'a list) (zs:'a list)  
            : 'a list * 'a list = 

  match xs with  
  | [] -> (ys, zs) 
  | x::rest -> split rest zs (x::ys) ;; 
 

let rec mergesort (lt:'a->'a->bool) (xs:'a list) : 'a list =  
  match xs with  
  | ([] | _::[]) -> xs 

  | _ -> let (first,second) = split xs [] [] in 
         merge lt (mergesort lt first) (mergesort lt second) ;;  
	



More	realisJc	polymorphic	funcJons	

46	

mergesort : ('a->'a->bool) -> 'a list -> 'a list   
 

mergesort (<) [3;2;7;1]  

  == [1;2;3;7] 

 

mergesort (>) [2.718; 3.1415; 42.0]  

  == [42.0 ; 3.1415; 2.718] 

 

mergesort (fun x y -> String.compare x y < 0) [“Hi”; “Bi”]  
  == [“Bi”; “Hi”]  

 

let int_sort = mergesort (<) ;; 
let int_sort_down = mergesort (>) ;; 
let str_sort =  
  mergesort (fun x y -> String.compare x y < 0) ;; 
	



let mystery =         fun x -> (add 1) (square x) ;; 

Another	InteresJng	FuncJon	

47 

let comp f g x = f (g x) ;; 
 
let mystery = comp (add 1) square ;; 

let comp = fun f -> (fun g -> (fun x -> f (g x))) ;; 
 
let mystery = comp (add 1) square ;; 

let mystery =  
 (fun f -> (fun g -> (fun x -> f (g x)))) (add 1) square ;; 

let mystery x = add 1 (square x) ;; 



OpJmizaJon	

48	

map f (map g [x1; x2; …; xn]) 	

What	does	this	program	do?	

For	each	element	of	the	list	x1,	x2,	x3	...	xn,	it	executes	g,	creaJng:	

map f ([g x1; g x2; …; g xn]) 	

Then	for	each	element	of	the	list	[g	x1,	g	x2,	g	x3	...	g	xn],	it	executes	f,	creaJng:	

[f (g x1); f (g x2); …; f (g xn)] 	

Is	there	a	faster	way?	 Yes!		(And	query	opJmizers	for	SQL	do	it	for	you.)	

map (comp f g) [x1; x2; ...; xn] 	



DeforestaJon	

49	

map f (map g [x1; x2; …; xn]) 	

map (comp f g) [x1; x2; ...; xn] 	

This	kind	of	opJmizaJon	has	a	name:	
	

	deforestaJon	
	
(because	it	eliminates	intermediate	
lists	and,	um,	trees…)	



What	is	the	type	of	comp?	

50	

let comp f g x = f (g x) ;; 



What	is	the	type	of	comp?	

51	

 
comp : ('b -> 'c) ->  
       ('a -> 'b) ->  
       ('a -> 'c) 
 

let comp f g x = f (g x) ;; 



How	about	reduce?	

52	

let rec reduce f u xs =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce f u xs =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	

Based	on	the	
paOerns,	we	

know	xs	must	be	
a	('a	list)	for	
some	type	'a.	



How	about	reduce?	
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let rec reduce f u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce f u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	

f	is	called	so	it	
must	be	a	

funcJon	of	two	
arguments.	



How	about	reduce?	
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let rec reduce (f:? -> ? -> ?) u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce (f:? -> ? -> ?) u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	

Furthermore,	hd	
came	from	xs,	so	
f	must	take	an	'a	
value	as	its	first	

argument.	



How	about	reduce?	
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let rec reduce (f:'a -> ? -> ?) u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce (f:'a -> ? -> ?) u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	

The	second	
argument	to	f	
must	have	the	

same	type	as	the	
result	of	reduce.		
Let’s	call	it	'b.	



How	about	reduce?	
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let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	

The	result	of	f	
must	have	the	

same	type	as	the	
result	of	reduce	

overall:	'b.	



How	about	reduce?	
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let rec reduce (f:'a -> 'b -> 'b) u (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	

If	xs	is	empty,	
then	reduce	

returns	u.		So	u’s	
type	must	be	'b.	



How	about	reduce?	
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let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 

 
What’s	the	most	general	type	of	reduce?	
 

 ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b  

	



The	List	Library	
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NB:		map	and	reduce	are	already	defined	in	the	List	library.			
–  However,	reduce	is	called	“fold_right”.			
–  (Good	bet	there’s	a	“fold_leg”	too.)	

I’ll	use	reduce	instead	of	fold_right,	for	3	reasons:	
–  Analogy	with	Google’s	Map/Reduce		
–  The	library’s	arguments	to	fold_right	are	in	the	"wrong"	order	
–  Makes	the	example	fit	on	a	slide.	



Summary	
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•  Map	and	reduce	are	two	higher-order	func6ons	that	capture	
very,	very	common	recursion	paFerns	

•  Reduce	is	especially	powerful:	
–  related	to	the	“visitor	paOern”	of	OO	languages	like	Java.	
–  can	implement	most	list-processing	funcJons	using	it,	including	
things	like	copy,	append,	filter,	reverse,	map,	etc.	

•  We	can	write	clear,	terse,	reusable	code	by	exploiJng:	
–  higher-order	funcJons	
–  anonymous	funcJons	
–  first-class	funcJons	
–  polymorphism	



PracJce	Problems	
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Using	map,	write	a	funcJon	that	takes	a	list	of	pairs	of	integers,	and	produces	
a	list	of	the	sums	of	the	pairs.			

–  e.g.,	list_add	[(1,3);	(4,2);	(3,0)]	=	[4;	6;	3]	
–  Write	list_add	directly	using	reduce.	

Using	map,	write	a	funcJon	that	takes	a	list	of	pairs	of	integers,	and	produces	
their	quoJent	if	it	exists.	

–  e.g.,	list_div	[(1,3);	(4,2);	(3,0)]	=	[Some	0;	Some	2;	None]	
–  Write	list_div	directly	using	reduce.	

Using	reduce,	write	a	funcJon	that	takes	a	list	of	opJonal	integers,	and	filters	
out	all	of	the	None’s.	

–  e.g.,	filter_none	[Some	0;	Some	2;	None;	Some	1]	=	[0;2;1]	
–  Why	can’t	we	directly	use	filter?		How	would	you	generalize	filter	so	that	

you	can	compute	filter_none?		AlternaJvely,	rig	up	a	soluJon	using	filter	+	map.	

Using	reduce,	write	a	funcJon	to	compute	the	sum	of	squares	of	a	list	of	
numbers.	

–  e.g.,	sum_squares	=	[3,5,2]	=	38	


