Thinking Inductively

COS 326
 David Walker
 Princeton University

slides copyright 2013-2015 David Walker and Andrew W. Appel permission granted to reuse these slides for non-commercial educational purposes

Administration

- Assignments and getting help
- don't start assignments early as there may be changes!
- but you can start Assignment 2 now if you want (due next Wed!)
- of course, you'll get more practice on A2 materials in precept
- sign up for Piazza!
- https://piazza.com/princeton/fall2016/cos326/home
- Assignment 1 due at 11:59 tonight!
- Program style guide:
- http://www.cs.princeton.edu/courses/archive/fall15/cos326/style.php
- Read notes:
- functional basics, type-checking, typed programming
- thinking inductively (today)
- Real World OCaml Chapter 2, 3

A SHORT JAVA RANT

Definition and Use of Java Pairs

```
public class Pair {
    public int x;
    public int y;
    public Pair (int a, int b) {
        x = a;
        y = b;
    }
}
```

```
public class User {
    public Pair swap (Pair pl) {
        Pair p2 =
            new Pair(p1.y, pl.x);
        return p2;
    }
}
```

What could go wrong?

A Paucity of Types

```
public class Pair {
    public int x;
    public int y;
    public Pair (int a, int b) {
        x = a;
        y = b;
    }
}
```

```
public class User {
    public Pair swap (Pair pl) {
        Pair p2 =
            new Pair(p1.y, pl.x);
    return p2;
    }
}
```

The input p1 to swap may be null and we forgot to check.

Java has no way to define a pair data structure that is just a pair.

How many students in the class have seen an accidental null pointer exception thrown in their Java code?

From Java Pairs to O'Caml Pairs

In O'Caml, if a pair may be null it is a pair option:

```
type java_pair = (int * int) option
```


From Java Pairs to O'Caml Pairs

In O'Caml, if a pair may be null it is a pair option:

```
type java_pair = (int * int) option
```

And if you write code like this:

```
let swap_java_pair (p:java_pair) : java_pair =
    let (x,y) = p in
    (y,x)
```


From Java Pairs to O'Caml Pairs

In O'Caml, if a pair may be null it is a pair option:

```
type java_pair = (int * int) option
```

And if you write code like this:

```
let swap_java_pair (p:java_pair) : java_pair =
    let (x,y) = p in
    (y,x)
```

You get a helpful error message like this:
\# ... Characters 91-92:
let $(x, y)=p$ in $(y, x) ;$;
Error: This expression has type java_pair = (int * int) option but an expression was expected of type 'a * 'b

From Java Pairs to O'Caml Pairs

```
type java_pair = (int * int) option
```

And what if you were up at 3am trying to finish your COS 326 assignment and you accidentally wrote the following sleep-deprived, brain-dead statement?

```
let swap_java_pair (p:java_pair) : java_pair =
    match p with
    | Some (x,y) -> Some (y,x)
```


From Java Pairs to O'Caml Pairs

```
type java_pair = (int * int) option
```

And what if you were up at 3am trying to finish your COS 326 assignment and you accidentally wrote the following sleep-deprived, brain-dead statement?

```
let swap_java_pair (p:java_pair) : java_pair =
    match p with
    | Some (x,y) -> Some (y,x)
```


OCaml to the rescue!

```
..match p with
```

 | Some (x,y) -> Some (y,x)
 Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
None

From Java Pairs to O'Caml Pairs

```
type java_pair = (int * int) option
```

And what if you were up at 3am trying to finish your COS 326 assignment and you accidentally wrote the following sleep-deprived, brain-dead statement?

```
let swap_java_pair (p:java_pair) : java_pair =
    match p with
    | Some (x,y) -> Some (y,x)
                                    An easy fix!
let swap_java_pair (p:java_pair) : java_pair =
    match p with
    | None -> None
    | Some (x,y) -> Some (y,x)
```


From Java Pairs to O'Caml Pairs

Moreover, your pairs are probably almost never null!

Defensive programming \& always checking for null is AnNOying

From Java Pairs to O'Caml Pairs

There just isn't always some "good thing" for a function to do when it receives a bad input, like a null pointer

In O'Caml, all these issues disappear when you use the proper type for a pair and that type contains no "extra junk"

```
type pair = int * int
```

Once you know O'Caml, it is hard to write swap incorrectly Your bullet-proof code is much simpler than in Java.

```
let swap (p:pair) : pair =
    let (x,y) = p in (y,x)
```


Summary of Java Pair Rant

Java has a paucity of types

- There is no type to describe just the pairs
- There is no type to describe just the triples
- There is no type to describe the pairs of pairs
- There is no type ...

OCaml has many more types

- use option when things may be null
- do not use option when things are not null
- OCaml types describe data structures more precisely
- programmers have fewer cases to worry about
- entire classes of errors just go away
- type checking and pattern analysis help prevent programmers from ever forgetting about a case

Summary of Java Pair Rant

Java has a paucity of types

- There is no type to describe the pair
- There is n wne to describe
- There is no
- There is not

SCORE: OCAML 1, JAVA 0

analys, help prevent programmers from

C, C++ Rant

Java has a paucity of types

- but at least when you forget something,
it throws an exception instead of silently going off the trolley!

If you forget to check for null pointer in a C program,

- no type-check error at compile time
- no exception at run time
- it might crash right away (that would be best), or
- it might permit a buffer-overrun (or similar) vulnerability
- so the hackers pwn you!

Summary of C, C++ rant

Java has a paucity of types

- but at least when you for it throws a

SCORE:

OCAML 1, JAVA 0, C -1

INDUCTIVE THINKING

Typed Functional Programming

The form of a function is often governed in part by its type.

Typed Functional Programming

The form of a function is often governed in part by its type.

```
swap : int * int -> int * int
let swap (x,y) = (y,x)
```

A function from pairs to pairs has little to do:

- it extracts the elements of a pair
- builds a new pair

Typed Functional Programming

The form of a function is often governed in part by its type.

```
swap : int * int -> int * int
let }\operatorname{swap}(x,y)=(y,x
```

A function from pairs to pairs has little to do:

- it extracts the elements of a pair
- builds a new pair

Functions with more to do, recursive or inductive functions, operate over recursive or inductive data

Inductive Programming and Proving

An inductive data type T is a data type defined by:

- a collection of base cases
- that don't refer to T
- a collection of inductive cases that build new values of type T from pre-existing data of type T
- the pre-existing data is guarateed to be smaller than the new values

Programming principle:

- solve programming problem for base cases
- solve programming problem for inductive cases by calling function recursively (inductively) on smaller data value
Proving principle:
- prove program satisfies property P for base cases
- prove inductive cases satisfy property P assuming inductive calls on smaller data values satisfy property P

LISTS: AN INDUCTIVE DATA TYPE

Lists are Recursive Data

- In OCaml, a list value is:
- []
(the empty list)
- v:: vs (a value v followed barter list of values vs)

Lists are Inductive Data

- In OCaml, a list value is:
- [] (the empty list)
- v :: vs (a value v followed by a shorter list of values vs)
- An example:
- 2 :: 3 :: 5 :: [] has type int list
- is the same as: $2::(3::(5::[$]) $)$
- "::" is called "cons"
- An alternative syntax ("syntactic sugar" for lists):
- $[2 ; 3 ; 5]$
- But this is just a shorthand for 2 :: 3 :: 5 :: []. If you ever get confused fall back on the 2 basic constructors: :: and []

Typing Lists

- Typing rules for lists:
(1) [] may have any list type t list
(2) if e1 : t and e2 : t list then (e1 :: e2) : t list

[] : T list

> e1:T e2:T list e1::e2 : T list

Typing Lists

- Typing rules for lists:
(1) [] may have any list type tlist
(2) if e1 : t and e2 : t list then (e1 :: e2) : t list

[] : T list

$$
\frac{\mathrm{e} 1: \mathrm{T} \quad \mathrm{e}: \mathrm{T} \text { list }}{\mathrm{e} 1:: \mathrm{e} 2: \text { list }}
$$

- More examples:

$$
(1+2)::(3+4)::[]: \text { ? ? }
$$

$$
(2::[\text { [] })::(5:: \text { : } 6::[\text { [] : : [] : ? ? }
$$

[[2]; [5; 6]] :??

Typing Lists

- Typing rules for lists:
(1) [] may have any list type t list
(2) if e1 : t and e2 : t list then (e1 :: e2) : t list
- More examples:
$(1+2)::(3+4)::[]$ int list
(2 :: []) :: (5 :: 6 :: []) :: [] : int list list
[[2]; [5; 6]] : int list list
(Remember that the $3^{\text {rd }}$ example is an abbreviation for the $2^{\text {nd }}$)

Another Example

- What type does this have?

$$
\text { [[] :: [} 3 \text {] }
$$

Another Example

- What type does this have?

$$
\frac{\mathrm{e} 1: \mathrm{T} \text { e2:T list }}{\mathrm{e} 1:: \mathrm{e} 2: T \text { list }}
$$

```
# [2] :: [3];;
Error: This expression has type int but an
    expression was expected of type
    int list
#
```


Another Example

- What type does this have?

- Give me a simple fix that makes the expression type check?

Another Example

- What type does this have?

- Give me a simple fix that makes the expression type check?

Either: 2 :: [3] : int list

Or: [2]::[[3]] : int list list

Analyzing Lists

- Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

```
(* return Some v, if v is the first list element;
    return None, if the list is empty *)
let head (xs : int list) : int option =
```

; ;

Analyzing Lists

- Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

```
(* return Some v, if v is the first list element;
    return None, if the list is empty *)
let head (xs : int list) : int option =
    match xs with
| [] -> 
```

we don't care about the contents of the tail of the list so we use the underscore

Analyzing Lists

- Just like options, there are two possibilities when deconstructing lists. Hence we use a match with two branches

```
(* return Some v, if v is the first list element;
    return None, if the list is empty *)
let head (xs : int list) : int option =
    match xs with
    | [] -> None
    | hd :: _ -> Some hd
; ;
```

- This function isn't recursive -- we only extracted a small , fixed amount of information from the list -- the first element

A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs prods $[(2,3) ;(4,7) ;(5,2)]==[6 ; 28 ; 10]$ *)

A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
let rec prods (xs : (int * int) list) : int list =
;

A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
let rec prods (xs : (int * int) list) : int list = match xs with
| [] ->
| (x,y) :: tl ->
;

A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
let rec prods (xs : (int * int) list) : int list = match xs with
| [] -> []
| (x,y) :: tl ->
;

A more interesting example

```
    (* Given a list of pairs of integers,
        produce the list of products of the pairs
        prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
    *)
    let rec prods (xs : (int * int) list) : int list =
        match xs with
        | [] -> []
        | (x,y) :: tl -> ?? :: ??
;;
the result type is int list, so we can speculate that we should create a list
```


A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
let rec prods (xs : (int * int) list) : int list = match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: ??
;
the first element is the product

A more interesting example

```
(* Given a list of pairs of integers,
    produce the list of products of the pairs
        prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
    *)
let rec prods (xs : (int * int) list) : int list =
match xs with
    | [] -> []
    | (x,y) :: tl -> (x * y) :: ??
```

; ;
to complete the job, we must compute the products for the rest of the list

A more interesting example

(* Given a list of pairs of integers, produce the list of products of the pairs prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)
let rec prods (xs : (int * int) list) : int list = match xs with
| [] -> []
| (x,y) :: tl -> (x * y) :: prods tl
;

Three Parts to Constructing a Function

(2) Assume the recursive call on smaller data is correct.
(3) Use the result of the recursive call to build correct answer.

```
let rec prods (xs : (int*int) list) : int list =
```

(x,y) :: tl -> ... prods tl ...

Another example: zip

(* Given two lists of integers, return None if the lists are different lengths otherwise stitch the lists together to create Some of a list of pairs
zip $[2 ; 3][4 ; 5]==$ Some $[(2,4) ;(3,5)]$
zip [5; 3] [4] == None
zip [4; 5; 6] [8; 9; 10; 11; 12] == None
*)
(Give it a try.)

Another example: zip

```
let rec zip (xs : int list) (ys : int list)
    : (int * int) list option =
```


Another example: zip

```
let rec zip (xs : int list) (ys : int list)
        : (int * int) list option =
    match (xs, ys) with
```

; ;

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =
match (xs, ys) with
| ([], []) ->
| ([], y::ys') ->
| (x: :xs', []) ->
| (x: :xs', y::ys') ->
; ;

Another example: zip

let rec zip (xs : int list) (ys : int list) : (int * int) list option =
match (xs, vs) with
| ([], []) -> Some []
| ([], y::ys') ->
| (x: :xs', []) ->
| (x: :xs', y::ys') ->
; ;

Another example: zip

```
let rec zip (xs : int list) (ys : int list)
        : (int * int) list option =
    match (xs, ys) with
    | ([], []) -> Some []
    | ([], y::ys') -> None
    | (x::xS', []) -> None
    | (x::xS', y::ys') ->
```

; ;

Another example: zip

```
let rec zip (xs : int list) (ys : int list)
        : (int * int) list option =
    match (xs, ys) with
    | ([], []) -> Some []
    | ([], y::ys') -> None
    | (x::xS', []) -> None
    | (x::xs', y::ys') -> (x, y) :: zip xs' ys'
;;
```


is this ok?

Another example: zip

```
let rec zip (xs : int list) (ys : int list)
    : (int * int) list option =
    match (xs, ys) with
    | ([], []) -> Some []
    | ([], y::ys') -> None
    | (x::xs', []) -> None
    | (x::xs', y::ys') -> (x, y) :: zip xs' ys'
;;
```

No! zip returns a list option, not a list! We need to match it and decide if it is Some or None.

Another example: zip

```
let rec zip (xs : int list) (ys : int list)
    : (int * int) list option =
    match (xs, ys) with
    | ([], []) -> Some []
    | ([], y::ys') -> None
    | (x::xS', []) -> None
    | (x::xs', y::ys') ->
    (match zip xs' ys' with
        None -> None
        | Some zs -> (x,y) :: zs
;;
```

Is this ok?

Another example: zip

let rec zip (xs : int list) (ys : int list)
: (int * int) list option =
match (xs, ys) with
| ([], []) -> Some []
| ([], y::ys') -> None
| (x::xs', []) -> None
| (x::xs', y::ys') ->
(match zip xs' ys' with
None -> None
| Some zs -> Some ((x,y) :: zs)
;

Another example: zip

```
let rec zip (xs : int list) (ys : int list)
    : (int * int) list option =
    match (xs, ys) with
    | ([], []) -> Some []
    | (x::xs', y::ys') ->
            (match zip xs' ys' with
                None -> None
            | Some zs -> Some ((x,y) :: zs))
    | (_, _) -> None
```

Clean up.
Reorganize the cases.
Pattern matching proceeds in order.

A bad list example

let rec sum (xs : int list) : int = match xs with
| hd::tl -> hd + sum tl
;

A bad list example

```
let rec sum (xs : int list) : int =
    match xs with
    | hd::tl -> hd + sum tl
;;
```

\#
Characters 39-78:
..match xs with
hd : : tl -> hd + sum tl..
Warning 8: this pattern-matching is not exhaustive. Here is an example of a value that is not matched: [] val sum : int list $->$ int $=$ <fun>

INSERTION SORT

Recall Insertion Sort

- At any point during the insertion sort:
- some initial segment of the array will be sorted
- the rest of the array will be in the same (unsorted) order as it was originally

Recall Insertion Sort

- At any point during the insertion sort:
- some initial segment of the array will be sorted
- the rest of the array will be in the same (unsorted) order as it was originally

- At each step, take the next item in the array and insert it in order into the sorted portion of the list

Insertion Sort With Lists

- The algorithm is similar, except instead of one array, we will maintain two lists, a sorted list and an unsorted list
list 1:

list 2:

- We'll factor the algorithm:
- a function to insert into a sorted list
- a sorting function that repeatedly inserts

Insert

$$
\begin{aligned}
& \text { (* insert } x \text { in to sorted list } x s \text { *) } \\
& \text { let rec insert (x : int) (xs : int list) : int list = } \\
& \text {; ; }
\end{aligned}
$$

Insert

```
    (* insert x in to sorted list xs *)
let rec insert (x : int) (xs : int list) : int list =
    match xs with
    | [] ->
    | hd :: tl ->
```

a familiar pattern: analyze the list by cases

Insert

```
(* insert x in to sorted list xs *)
let rec insert (x : int) (xs : int list) : int list =
    match xs with
    | [] -> [x] « - insert x into the
    | hd :: tl ->
    empty list
```


Insert

```
    (* insert x in to sorted list xs *)
let rec insert (x : int) (xs : int list) : int list =
    match xs with
    | [] -> [x]
    | hd :: tl ->
        if hd < x then
        hd :: insert x tl
;;
build a new list with:
- hd at the beginning
- the result of inserting \(x\) in to the tail of the list afterwards
```


Insert

```
(* insert x in to sorted list xs *)
let rec insert (x : int) (xs : int list) : int list =
    match xs with
    | [] -> [x]
    | hd :: tl ->
        if hd < x then
        hd :: insert x tl
        else
        X : : XS
;;
put \(x\) on the front of the list, the rest of the list follows
```


Insertion Sort

```
type il = int list
insert : int -> il -> il
(* insertion sort *)
let rec insert_sort(xs : il) : il =
```

; ;

Insertion Sort

```
type il = int list
insert : int -> il -> il
    (* insertion sort *)
let rec insert_sort(xs : il) : il =
    let rec aux (sorted : il) (unsorted : il) : il =
    in
;;
```


Insertion Sort

```
type il = int list
insert : int -> il -> il
    (* insertion sort *)
let rec insert_sort(xs : il) : il =
    let rec aux (sorted : il) (unsorted : il) : il =
    in
    aux [] xs
;;
```


Insertion Sort

```
type il = int list
insert : int -> il -> il
    (* insertion sort *)
let rec insert_sort(xs : il) : il =
    let rec aux (sorted : il) (unsorted : il) : il =
        match unsorted with
        | [] ->
        | hd :: tl ->
    in
    aux [] xs
```

; ;

Insertion Sort

```
type il = int list
insert : int -> il -> il
    (* insertion sort *)
let rec insert_sort(xs : il) : il =
    let rec aux (sorted : il) (unsorted : il) : il =
        match unsorted with
        | [] -> sorted
        | hd :: tl -> aux (insert hd sorted) tl
    in
    aux [] xs
```

; ;

A COUPLE MORE THOUGHTS ON LISTS

The (Single) List Programming Paradigm

- Recall that a list is either:
- [] (the empty list)
- v :: vs (a value v followed by a previously constructed list vs)
- Some examples:

```
let l0 = [];;
let l1 = 1::10;;
let l2 = 2::11;;
let l3 = 3::12;;
```

```
(* length is 0 *)
```

(* length is 0 *)
(* length is 1 *)
(* length is 1 *)
(* length is 2 *)
(* length is 2 *)
(* length is 3 *)

```
(* length is 3 *)
```


Consider This Picture

- Consider the following picture. How long is the linked structure?
- Can we build a value with type int list to represent it?

Consider This Picture

- How long is it? Infinitely long?
- Can we build a value with type int list to represent it? No!
- all values with type int list have finite length

The List Type

- Is it a good thing that the type list does not contain any infinitely long lists? Yes!
- A terminating list-processing scheme:

```
let rec f (xs : int list) : int =
    match xs with
        [] -> ... do something not recursive ...
    | hd::tail -> ... f tail ...
;;
```

terminates because f only called recursively on smaller lists

A Loopy Program

```
let rec loop (xs : int list) : int =
    match xs with
        [] -> 0
    | hd::tail -> hd + loop (0::tail)
;;
```

Does this program terminate?

A Loopy Program

```
let rec loop (xs : int list) : int =
    match xs with
        [] -> []
    | hd::tail -> hd + loop (0::tail)
```

; ;

Does this program terminate? No! Why not? We call loop recursively on (0::tail). This list is the same size as the original list -- not smaller.

Take-home Message

ML has a strong type system

- ML types say a lot about the set of values that inhabit them

In this case, the tail of the list is always shorter than the whole list

This makes it easy to write functions that terminate; it would be harder if you had to consider more cases, such as the case that the tail of a list might loop back on itself. Moreover OCaml hits you over the head to tell you what the only 2 cases are!

Note: Just because the list type excludes cyclic structures does not mean that an ML program can't build a cyclic data structure if it wants to. ML is better than other languages because it gives you control over the values you want to program with via types!

Rant \#2: Imperative lists

- One week from today, ask yourself: Which is easier:
- Programming with immutable lists in ML?
- Programming with pointers and mutable
in C/Java
- I guarantre you are going
- there a
- so many

SCORE: OCAML 2, JAVA 0 C: why bother?

Example problems to practice

- Write a function to sum the elements of a list
- sum $[1 ; 2 ; 3]==>6$
- Write a function to append two lists
- append $[1 ; 2 ; 3][4 ; 5 ; 6]==>[1 ; 2 ; 3 ; 4 ; 5 ; 6]$
- Write a function to reverse a list
$-\operatorname{rev}[1 ; 2 ; 3]==>[3 ; 2 ; 1]$
- Write a function to turn a list of pairs into a pair of lists
- split $[(1,2) ;(3,4) ;(5,6)]==>([1 ; 3 ; 5],[2 ; 4 ; 6])$
- Write a function that returns all prefixes of a list
- prefixes $[1 ; 2 ; 3]==>$ [[]; [1]; [1;2]; $[1 ; 2 ; 3]]$
- suffixes...

ANOTHER INDUCTIVE DATA TYPE: THE NATURAL NUMBERS

Natural Numbers

- Natural numbers are a lot like lists
- both can be defined inductively
- A natural number n is either
- 0, or
- $m+1$ where m is a smaller natural number
- Functions over naturals n must consider both cases
- programming the base case 0 is usually easy
- programming the inductive case ($m+1$) will often involve recursive calls over smaller numbers
- OCaml doesn't have a built-in type "nat" so we will use "int" instead for now ...
- "int" has too many values in it (and also not enough)
- later in the course we could define an abstract type that contains exactly the natural numbers

An Example

```
(* precondition: n is a natural number
    return double the input *)
let rec double_nat (n : int) : int =
;;
```

By definition of naturals:

- $n=0$ or
- $n=m+1$ for some nat m

An Example

(* precondition: n is a natural number return double the input *)
let rec double_nat (n : int) : int = match n with

two cases:
one for 0
one for $\mathrm{m}+1$

By definition of naturals:

- $n=0$ or
- $n=m+1$ for some nat m

An Example

```
(* precondition: n is a natural number
    return double the input *)
let rec double_nat (n : int) : int =
    match n with
    | 0 -> 0
    | _ ->
;;
solve easy base case first
consider:
what number is double 0 ?
```

By definition of naturals:

- $\mathrm{n}=0$ or
- $n=m+1$ for some nat m

An Example

```
(* precondition: n is a natural number
    return double the input *)
let rec double_nat (n : int) : int =
    match n with
    | 0 -> 0
    | _ -> ????
;;
assume double_nat m is correct
where n = m+1
that's the inductive hypothesis
```

By definition of naturals:

- $n=0$ or
- $n=m+1$ for some nat m

An Example

```
(* precondition: n is a natural number
    return double the input *)
let rec double_nat (n : int) : int =
    match n with
    | 0 -> 0
    -> 2 + double_nat (n-1)
```

; ;
assume double_nat m is correct
where $n=m+1$
that's the inductive hypothesis

By definition of naturals:

- $\mathrm{n}=0$ or
- $n=m+1$ for some nat m

I wish I had a pattern ($m+1$) ... but OCaml doesn't have it. So I use n-1 to get m.

An Example

```
(* fail if the input is negative
    double the input if it is non-negativn *l
                                    nest double_nat so it
let double (n : int) : int = can only be called by double
```

 let rec double_nat (n : int) : int =
 match n with
 \(0->0\)
 | n -> 2 + double_nat (n-1)
 in
 raises exception
 if \(n<0\) then
 failwith "negative input!"
 else
 double_nat \(n\)
 ; ;
protect precondition of double_nat by wrapping it with dynamic check later we will see how to create a static guarantee using types

More than one way to decompose naturals

A natural n is either:

- 0,
- $m+1$, where m is a natural

A natural n is either:

- 0,
-1 ,
$-m+2$, where m is a natural

A natural n is either:

- 0,
- m*2
- m*2+1
unary decomposition
unary even/odd decomposition
\succ binary decomposition
(there's a little problem here with
a redundant representation; what is it?)

More than one way to decompose lists

A list xs is either:

- [],
- x::xs, where ys is a list

A list xs is either:

- [],
- [x],
- x::y::ys, where ys is a list

A list xs is either:

$$
\begin{aligned}
& -[], \\
& -\mathrm{a} @ \mathrm{~b} \\
& -\mathrm{x}::(\mathrm{a} @ \mathrm{~b})
\end{aligned}
$$

unary decomposition
unary even/odd decomposition
where a and b are lists of the same length; recall that @ is list-concat

Summary

- Instead of while or for loops, functional programmers use recursive functions
- These functions operate by:
- decomposing the input data
- considering all cases
- some cases are base cases, which do not require recursive calls
- some cases are inductive cases, which require recursive calls on smaller arguments
- We've seen:
- lists with cases:
- (1) empty list, (2) a list with one or more elements
- natural numbers with cases:
- (1) zero (2) m+1
- we'll see many more examples throughout the course

