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Administra,on	
•  Assignments	and	geJng	help	

–  don’t	start	assignments	early	as	there	may	be	changes!	
•  but	you	can	start	Assignment	2	now	if	you	want	(due	next	Wed!)	
•  of	course,	you'll	get	more	prac,ce	on	A2	materials	in	precept	

–  sign	up	for	Piazza!			
•  hTps://piazza.com/princeton/fall2016/cos326/home	

–  Assignment	1	due	at	11:59	tonight!	
•  Program	style	guide:	

–  hTp://www.cs.princeton.edu/courses/archive/fall15/cos326/style.php	
•  Read	notes:	

–  func,onal	basics,	type-checking,	typed	programming	
–  thinking	induc,vely	(today)	
–  Real	World	OCaml	Chapter	2,	3	
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A	SHORT	JAVA	RANT	
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Defini,on	and	Use	of	Java	Pairs	
	

What	could	go	wrong?	

public class Pair { 
 
  public int x; 
  public int y; 
 
  public Pair (int a, int b) { 
    x = a; 
    y = b; 
  } 
} 

public class User { 
 
  public Pair swap (Pair p1) { 
    Pair p2 =  
      new Pair(p1.y, p1.x); 
     
    return p2; 
  } 
} 
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A	Paucity	of	Types	

	

	
The	input	p1	to	swap	may	be	null	and	we	forgot	to	check.	

	
Java	has	no	way	to	define	a	pair	data	structure	that	is	just	a	pair.	

	

public class Pair { 
 
  public int x; 
  public int y; 
 
  public Pair (int a, int b) { 
    x = a; 
    y = b; 
  } 
} 

public class User { 
 
  public Pair swap (Pair p1) { 
    Pair p2 =  
      new Pair(p1.y, p1.x); 
     
    return p2; 
  } 
} 
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How	many	students	in	the	class	have	seen	an	accidental	null	pointer		
excep7on	thrown	in	their	Java	code?	

	



From	Java	Pairs	to	O'Caml	Pairs	

type java_pair = (int * int) option 

In	O'Caml,	if	a	pair	may	be	null	it	is	a	pair	op,on:	
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From	Java	Pairs	to	O'Caml	Pairs	

let swap_java_pair (p:java_pair) : java_pair = 
  let (x,y) = p in 
  (y,x) 

type java_pair = (int * int) option 

In	O'Caml,	if	a	pair	may	be	null	it	is	a	pair	op,on:	

And	if	you	write	code	like	this:	
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From	Java	Pairs	to	O'Caml	Pairs	

let swap_java_pair (p:java_pair) : java_pair = 
  let (x,y) = p in 
  (y,x) 

type java_pair = (int * int) option 

In	O'Caml,	if	a	pair	may	be	null	it	is	a	pair	op,on:	

And	if	you	write	code	like	this:	

# … Characters 91-92: 
    let (x,y) = p in (y,x);; 
                ^ 
Error: This expression has type java_pair = (int * int) option 
       but an expression was expected of type 'a * 'b 

You	get	a	helpful	error	message	like	this:	

8	



From	Java	Pairs	to	O'Caml	Pairs	

type java_pair = (int * int) option 

let swap_java_pair (p:java_pair) : java_pair = 
  match p with 
   | Some (x,y) -> Some (y,x) 

And	what	if	you	were	up	at	3am	trying	to	finish	your	
COS	326	assignment	and	you	accidentally	wrote	the	
following	sleep-deprived,	brain-dead	statement?	
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From	Java	Pairs	to	O'Caml	Pairs	

type java_pair = (int * int) option 

let swap_java_pair (p:java_pair) : java_pair = 
  match p with 
   | Some (x,y) -> Some (y,x) 

And	what	if	you	were	up	at	3am	trying	to	finish	your	
COS	326	assignment	and	you	accidentally	wrote	the	
following	sleep-deprived,	brain-dead	statement?	

 ..match p with 
      | Some (x,y) -> Some (y,x) 
Warning 8: this pattern-matching is not exhaustive. 
Here is an example of a value that is not matched: 
None 

OCaml	to	the	rescue!	
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From	Java	Pairs	to	O'Caml	Pairs	

type java_pair = (int * int) option 

let swap_java_pair (p:java_pair) : java_pair = 
  match p with 
   | Some (x,y) -> Some (y,x) 

And	what	if	you	were	up	at	3am	trying	to	finish	your	
COS	326	assignment	and	you	accidentally	wrote	the	
following	sleep-deprived,	brain-dead	statement?	

An	easy	fix!	

let swap_java_pair (p:java_pair) : java_pair = 
   match p with 
    | None -> None 
    | Some (x,y) -> Some (y,x) 
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From	Java	Pairs	to	O'Caml	Pairs	

Moreover,	your	pairs	are	probably	almost	never	null!	
	
	
	

Defensive	programming	&	always	checking	for	null	is	
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From	Java	Pairs	to	O'Caml	Pairs	

	
There	just	isn't	always	some	"good	thing"	for	a	func,on	to	do	when	it	receives	a	

bad	input,	like	a	null	pointer	
	

In	O'Caml,	all	these	issues	disappear	when	you	use	the	proper	type	for	a	pair	and	
that	type	contains	no	"extra	junk”	

	
	

Once	you	know	O'Caml,	it	is	hard	to	write	swap	incorrectly	
Your	bullet-proof	code	is	much	simpler	than	in	Java.	

	

type pair = int * int 

let swap (p:pair) : pair = 
   let (x,y) = p in (y,x) 
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Summary	of	Java	Pair	Rant	

Java	has	a	paucity	of	types	
–  There	is	no	type	to	describe	just	the	pairs	
–  There	is	no	type	to	describe	just	the	triples	
–  There	is	no	type	to	describe	the	pairs	of	pairs	
–  There	is	no	type	…	

OCaml	has	many	more	types	
–  use	op,on	when	things	may	be	null	
–  do	not	use	op,on	when	things	are	not	null	
–  OCaml	types	describe	data	structures	more	precisely	

•  programmers	have	fewer	cases	to	worry	about	
•  en,re	classes	of	errors	just	go	away	
•  type	checking	and	paTern	analysis	help	prevent	programmers	from	
ever	forgeJng	about	a	case	
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Summary	of	Java	Pair	Rant	

Java	has	a	paucity	of	types	
–  There	is	no	type	to	describe	just	the	pairs	
–  There	is	no	type	to	describe	just	the	triples	
–  There	is	no	type	to	describe	the	pairs	of	pairs	
–  There	is	no	type	…	

OCaml	has	many	more	types	
–  use	op,on	when	things	may	be	null	
–  do	not	use	op,on	when	things	are	not	null	
–  ocaml	types	describe	data	structures	more	precisely	

•  programmers	have	fewer	cases	to	worry	about	
•  en,re	classes	of	errors	just	go	away	
•  type	checking	and	paTern	analysis	help	prevent	programmers	from	
ever	forgeJng	about	a	case	

	
SCORE:		OCAML	1,		JAVA	0	
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C,	C++		Rant	

Java	has	a	paucity	of	types	
–  but	at	least	when	you	forget	something,	
	it		throws	an	excep.on	instead	of	silently	going	off	the	trolley!	

	
If	you	forget	to	check	for	null	pointer	in	a	C	program,	

–  no	type-check	error	at	compile	,me	
–  no	excep,on	at	run	,me	
–  it	might	crash	right	away	(that	would	be	best),	or	
–  it	might	permit	a	buffer-overrun	(or	similar)	vulnerability	
–  so	the	hackers	pwn	you!	

16	



Java	has	a	paucity	of	types	
–  but	at	least	when	you	forget	something,	
	it		throws	an	excep.on	instead	of	silently	going	off	the	trolley!	

	
If	you	forget	to	check	for	null	pointer	in	a	C	program,	

–  no	type-check	error	at	compile	,me	
–  no	excep,on	at	run	,me	
–  it	might	crash	right	away	(that	would	be	best),	or	
–  it	might	permit	a	buffer-overrun	(or	similar)	vulnerability	
–  so	the	hackers	pwn	you!	

Summary	of	C,	C++	rant	

	
SCORE:			
OCAML	1,		JAVA	0,			C		-1	
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INDUCTIVE	THINKING	
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Typed	Func,onal	Programming	
19	

The	form	of	a	func,on	is	olen	governed	in	part	by	its	type.	



Typed	Func,onal	Programming	
20	

 
swap : int * int -> int * int 
 
let swap (x,y) = (y,x) 

The	form	of	a	func,on	is	olen	governed	in	part	by	its	type.	

A	func,on	from	pairs	to	pairs	has	liTle	to	do:	
•  it	extracts	the	elements	of	a	pair	
•  builds	a	new	pair	



Typed	Func,onal	Programming	
21	

 
swap : int * int -> int * int 
 
let swap (x,y) = (y,x) 

The	form	of	a	func,on	is	olen	governed	in	part	by	its	type.	

A	func,on	from	pairs	to	pairs	has	liTle	to	do:	
•  it	extracts	the	elements	of	a	pair	
•  builds	a	new	pair	

Func,ons	with	more	to	do,	recursive	or	induc7ve	func,ons,	
operate	over	recursive	or	induc7ve	data	



Induc,ve	Programming	and	Proving	
An	induc7ve	data	type	T	is	a	data	type	defined	by:	

–  a	collec,on	of	base	cases		
•  that	don’t	refer	to	T	

–  a	collec,on	of	induc,ve	cases	that	build	new	values	of	type	T	from	
pre-exis,ng	data	of	type	T	
•  the	pre-exis,ng	data	is	guarateed	to	be	smaller	than	the	new	values	

Programming	principle:	
–  solve	programming	problem	for	base	cases	
–  solve	programming	problem	for	induc,ve	cases	by	calling	func,on	
recursively	(induc,vely)	on	smaller	data	value	

Proving	principle:	
–  prove	program	sa,sfies	property	P	for	base	cases	
–  prove	induc,ve	cases	sa,sfy	property	P	assuming	induc,ve	calls	on	
smaller	data	values	sa,sfy	property	P	
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LISTS:		AN	INDUCTIVE	DATA	TYPE	
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Lists	are	Recursive	Data	
•  In	OCaml,	a	list	value	is:	

–  [	] 	(the	empty	list)	
–  v	::	vs 	(a	value	v	followed	by	a	shorter	list	of	values	vs)		

	

Base	Case	Induc,ve	
Case	
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Lists	are	Induc,ve	Data	
•  In	OCaml,	a	list	value	is:	

–  [	] 	(the	empty	list)	
–  v	::	vs 	(a	value	v	followed	by	a	shorter	list	of	values	vs)		

	
•  An	example:	

–  2	::	3	::	5	::	[	]	has	type	int	list	
–  is	the	same	as:		2	::	(3	::	(5	::	[	]))	
–  "::"	is	called	"cons"	

	
•  An	alterna,ve	syntax	(“syntac,c	sugar”	for	lists):	

–  [2;	3;	5]	
–  But	this	is	just	a	shorthand	for	2	::	3	::	5	::	[].		If	you	ever	get	
confused	fall	back	on	the	2	basic	constructors:		::	and	[]	
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Typing	Lists	
•  Typing	rules	for	lists:	

	

[	]	may	have	any	list	type	t	list		

if	e1	:	t	and		e2	:	t	list	
then	(e1	::	e2)	:	t	list	

(1)	

(2)	

																				.				
	[	]		:		T	list	

			e1:T				e2:T	list	.				
e1::e2		:		T	list	
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Typing	Lists	
•  Typing	rules	for	lists:	

•  More	examples:	
(1	+	2)	::	(3	+	4)	::	[	]		:	??	
	
(2	::	[	])	::	(5	::	6		::	[	])	::	[	]	 	:	??	
	
[	[2];	[5;	6]	]	 	 	:	??	
	

	

[	]	may	have	any	list	type	t	list		

if	e1	:	t	and		e2	:	t	list	
then	(e1	::	e2)	:	t	list	

(1)	

(2)	

																				.				
	[	]		:		T	list	

			e1:T				e2:T	list	.				
e1::e2		:		T	list	
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Typing	Lists	
•  Typing	rules	for	lists:	

•  More	examples:	
(1	+	2)	::	(3	+	4)	::	[	]		:	int	list	
	
(2	::	[	])	::	(5	::	6		::	[	])	::	[	]	 	:	int	list	list	
	
[	[2];	[5;	6]	]	 	 	:	int	list	list	
	
(Remember	that	the	3rd	example	is	an	abbrevia,on	for	the	2nd)	

	

[	]	may	have	any	list	type	t	list		

if	e1	:	t	and		e2	:	t	list	
then	(e1	::	e2)	:	t	list	

(1)	

(2)	
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Another	Example	

•  What	type	does	this	have?	

																																																[	2	]	::	[	3	]	
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Another	Example	

# [2] :: [3];; 
Error: This expression has type int but an  
         expression was expected of type 
         int list 
# 
 

•  What	type	does	this	have?	

																																																[	2	]	::	[	3	]	

int	list	 int	list	

30	

			e1:T				e2:T	list	.				
e1::e2		:		T	list	



Another	Example	

•  What	type	does	this	have?	

																																																[	2	]	::	[	3	]	
	
	
	
	
•  Give	me	a	simple	fix	that	makes	the	expression	type	check?	

int	list	 int	list	

			e1:T				e2:T	list	.				
e1::e2		:		T	list	
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Another	Example	

•  What	type	does	this	have?	

																																																[	2	]	::	[	3	]	
	
	
	
	
•  Give	me	a	simple	fix	that	makes	the	expression	type	check?	

																												Either:									2		::		[	3	]					 	:	int	list	
	
																												Or:											[	2	]	::	[	[	3	]	] 	:	int	list	list	

int	list	 int	list	

32	

			e1:T				e2:T	list	.				
e1::e2		:		T	list	



Analyzing	Lists	
•  Just	like	op,ons,	there	are	two	possibili,es	when	

deconstruc,ng	lists.	Hence	we	use	a	match	with	two	branches	

 
(* return Some v, if v is the first list element; 
   return None, if the list is empty *)   
 
let head (xs : int list) : int option = 
 
 
 
;; 
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Analyzing	Lists	
•  Just	like	op,ons,	there	are	two	possibili,es	when	

deconstruc,ng	lists.	Hence	we	use	a	match	with	two	branches	

 
(* return Some v, if v is the first list element; 
   return None, if the list is empty *)   
 
let head (xs : int list) : int option = 
  match xs with 
  | [] ->  
  | hd :: _ ->  
;; 
 

we	don't	care	about	the	contents	of	the	
tail	of	the	list	so	we	use	the	underscore	
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Analyzing	Lists	
•  Just	like	op,ons,	there	are	two	possibili,es	when	

deconstruc,ng	lists.	Hence	we	use	a	match	with	two	branches	

•  This	func,on	isn't	recursive	--	we	only	extracted	a	small	,	fixed	
amount	of	informa,on	from	the	list	--	the	first	element	

 
(* return Some v, if v is the first list element; 
   return None, if the list is empty *)   
 
let head (xs : int list) : int option = 
  match xs with 
  | [] -> None  
  | hd :: _ -> Some hd  
;; 
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A	more	interes,ng	example 		

 
(* Given a list of pairs of integers,  
   produce the list of products of the pairs 
   
   prods [(2,3); (4,7); (5,2)] == [6; 28; 10] 
*)   
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A	more	interes,ng	example 		

 
(* Given a list of pairs of integers,  
   produce the list of products of the pairs 
   
   prods [(2,3); (4,7); (5,2)] == [6; 28; 10] 
*)   
 
let rec prods (xs : (int * int) list) : int list = 
 
 
 
;; 
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A	more	interes,ng	example 		

 
(* Given a list of pairs of integers,  
   produce the list of products of the pairs 
   
   prods [(2,3); (4,7); (5,2)] == [6; 28; 10] 
*)   
 
let rec prods (xs : (int * int) list) : int list = 
  match xs with 
  | [] ->  
  | (x,y) :: tl ->  
;; 
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A	more	interes,ng	example 		

 
(* Given a list of pairs of integers,  
   produce the list of products of the pairs 
   
   prods [(2,3); (4,7); (5,2)] == [6; 28; 10] 
*)   
 
let rec prods (xs : (int * int) list) : int list = 
  match xs with 
  | [] -> []  
  | (x,y) :: tl -> 
;; 
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A	more	interes,ng	example 		

 
(* Given a list of pairs of integers,  
   produce the list of products of the pairs 
   
   prods [(2,3); (4,7); (5,2)] == [6; 28; 10] 
*)   
 
let rec prods (xs : (int * int) list) : int list = 
  match xs with 
  | [] -> []  
  | (x,y) :: tl -> ?? :: ??  
;; 
 

the	result	type	is	int	list,	so	we	can	speculate	
that	we	should	create	a	list	
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A	more	interes,ng	example 		

 
(* Given a list of pairs of integers,  
   produce the list of products of the pairs 
   
   prods [(2,3); (4,7); (5,2)] == [6; 28; 10] 
*)   
 
let rec prods (xs : (int * int) list) : int list = 
  match xs with 
  | [] -> []  
  | (x,y) :: tl -> (x * y) :: ?? 
;; 
 

the	first	element	is	the	product	
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A	more	interes,ng	example 		

 
(* Given a list of pairs of integers,  
   produce the list of products of the pairs 
   
   prods [(2,3); (4,7); (5,2)] == [6; 28; 10] 
*)   
 
let rec prods (xs : (int * int) list) : int list = 
  match xs with 
  | [] -> []  
  | (x,y) :: tl -> (x * y) :: ?? 
;; 
 

to	complete	the	job,	we	must	compute	
the	products	for	the	rest	of	the	list	
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A	more	interes,ng	example 		

 
(* Given a list of pairs of integers,  
   produce the list of products of the pairs 
   
   prods [(2,3); (4,7); (5,2)] == [6; 28; 10] 
*)   
 
let rec prods (xs : (int * int) list) : int list = 
  match xs with 
  | [] -> []  
  | (x,y) :: tl -> (x * y) :: prods tl  
;; 
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Three	Parts	to	Construc,ng	a	Func,on		

let rec prods (xs : (int*int) list) : int list = 
  match xs with 
 
  | [] ->  ... 
 
  | (x,y) :: tl ->   ... 
;; 
 

(1)	Think	about	how	to	break	down	the	input	in	to	cases:	

let rec prods (xs : (int*int) list) : int list = 
  ... 
  | (x,y) :: tl ->   ...  prods tl ... 
 

(2)	Assume	the	recursive	call	on	smaller	data	is	correct.		
	
(3)	Use	the	result	of	the	recursive	call	to	build	correct	answer.	

This	assump7on	is	called	the	
Induc7on	Hypothesis.		You’ll	
use	it	to	prove	your	program	

correct.		
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Another	example:	zip	

 
(* Given two lists of integers,  
   return None if the lists are different lengths 
   otherwise stitch the lists together to create 
     Some of a list of pairs 
 
   zip [2; 3] [4; 5] == Some [(2,4); (3,5)] 
   zip [5; 3] [4] == None 
   zip [4; 5; 6] [8; 9; 10; 11; 12] == None 
*)   
 
 

(Give	it	a	try.)	
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Another	example:	zip	

 
let rec zip (xs : int list) (ys : int list)  
  : (int * int) list option = 
 
 
 
 
 
 
 
 
 
;; 
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Another	example:	zip	

 
let rec zip (xs : int list) (ys : int list)  
  : (int * int) list option = 
 
  match (xs, ys) with 
 
 
 
 
 
 
 
;; 
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Another	example:	zip	

 
let rec zip (xs : int list) (ys : int list)  
  : (int * int) list option = 
 
  match (xs, ys) with 
  | ([], []) -> 
  | ([], y::ys') ->  
  | (x::xs', []) ->  
  | (x::xs', y::ys') ->  
 
 
 
;; 
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Another	example:	zip	

 
let rec zip (xs : int list) (ys : int list)  
  : (int * int) list option = 
 
  match (xs, ys) with 
  | ([], []) -> Some [] 
  | ([], y::ys') ->  
  | (x::xs', []) ->  
  | (x::xs', y::ys') ->  
 
 
 
;; 
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Another	example:	zip	

 
let rec zip (xs : int list) (ys : int list)  
  : (int * int) list option = 
 
  match (xs, ys) with 
  | ([], []) -> Some [] 
  | ([], y::ys') -> None 
  | (x::xs', []) -> None 
  | (x::xs', y::ys') ->  
 
 
 
;; 
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Another	example:	zip	

 
let rec zip (xs : int list) (ys : int list)  
  : (int * int) list option = 
 
  match (xs, ys) with 
  | ([], []) -> Some [] 
  | ([], y::ys') -> None 
  | (x::xs', []) -> None 
  | (x::xs', y::ys') -> (x, y) :: zip xs' ys' 
 
 
 
;; 
 

is	this		ok?	

51	



Another	example:	zip	

 
let rec zip (xs : int list) (ys : int list)  
  : (int * int) list option = 
 
  match (xs, ys) with 
  | ([], []) -> Some [] 
  | ([], y::ys') -> None 
  | (x::xs', []) -> None 
  | (x::xs', y::ys') -> (x, y) :: zip xs' ys' 
 
 
 
;; 
 

No!		zip	returns	a	list	op,on,	not	a	list!			
We	need	to	match	it	and	decide	if	it	is	Some	or	None.	
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Another	example:	zip	

 
let rec zip (xs : int list) (ys : int list)  
  : (int * int) list option = 
 
  match (xs, ys) with 
  | ([], []) -> Some [] 
  | ([], y::ys') -> None 
  | (x::xs', []) -> None 
  | (x::xs', y::ys') ->  
      (match zip xs' ys' with 
         None -> None 
       | Some zs -> (x,y) :: zs 
;; 
 

Is	this	ok?	
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Another	example:	zip	

 
let rec zip (xs : int list) (ys : int list)  
  : (int * int) list option = 
 
  match (xs, ys) with 
  | ([], []) -> Some [] 
  | ([], y::ys') -> None 
  | (x::xs', []) -> None 
  | (x::xs', y::ys') ->  
      (match zip xs' ys' with 
         None -> None 
       | Some zs -> Some ((x,y) :: zs) 
;; 
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Another	example:	zip	

 
let rec zip (xs : int list) (ys : int list)  
  : (int * int) list option = 
 
  match (xs, ys) with 
  | ([], []) -> Some [] 
  | (x::xs', y::ys') ->  
      (match zip xs' ys' with 
         None -> None 
       | Some zs -> Some ((x,y) :: zs)) 
  | (_, _) -> None 
;; 
 

Clean	up.		
Reorganize	the	cases.	
PaTern	matching	proceeds	in	order.	
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A	bad	list	example	

 
let rec sum (xs : int list) : int = 
  match xs with 
  | hd::tl -> hd + sum tl  
;; 
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A	bad	list	example	

 
let rec sum (xs : int list) : int = 
  match xs with 
  | hd::tl -> hd + sum tl  
;; 
 

 
#       Characters 39-78: 
  ..match xs with 
      hd :: tl -> hd + sum tl.. 
Warning 8: this pattern-matching is not exhaustive. 
Here is an example of a value that is not matched: [] 
val sum : int list -> int = <fun> 

57	



INSERTION	SORT	
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Recall	Inser,on	Sort	

•  At	any	point	during	the	inser,on	sort:	
–  some	ini,al	segment	of	the	array	will	be	sorted	
–  the	rest	of	the	array	will	be	in	the	same	(unsorted)	order	as	it	
was	originally		

-5	 -2	 3	 -4	 10	 6	 7	

sorted	 unsorted	
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Recall	Inser,on	Sort	

•  At	any	point	during	the	inser,on	sort:	
–  some	ini,al	segment	of	the	array	will	be	sorted	
–  the	rest	of	the	array	will	be	in	the	same	(unsorted)	order	as	it	
was	originally		

•  At	each	step,	take	the	next	item	in	the	array	and	insert	it	in	
order	into	the	sorted	por,on	of	the	list	

-5	 -2	 3	 -4	 10	 6	 7	

sorted	 unsorted	

-5	 -4	 -2	 3	 10	 6	 7	

sorted	 unsorted	
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Inser,on	Sort	With	Lists	
•  The	algorithm	is	similar,	except	instead	of	one	array,	we	will	

maintain	two	lists,	a	sorted	list	and	an	unsorted	list	

•  We'll	factor	the	algorithm:	
–  a	func,on	to	insert	into	a	sorted	list	
–  a	sor,ng	func,on	that	repeatedly	inserts	

-5	 -2	 3	 -4	 10	 6	 7	

sorted	 unsorted	

list	1:	 list	2:	
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Insert	

 
(* insert x in to sorted list xs *) 
 
let rec insert (x : int) (xs : int list) : int list = 
 
 
 
 
 
 
 
;; 
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Insert	

 
(* insert x in to sorted list xs *) 
 
let rec insert (x : int) (xs : int list) : int list = 
  match xs with 
  | [] ->  
  | hd :: tl ->  
 
 
 
 
;; 
 a	familiar	paTern:		

analyze	the	list	by	cases		
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Insert	

 
(* insert x in to sorted list xs *) 
 
let rec insert (x : int) (xs : int list) : int list = 
  match xs with 
  | [] -> [x] 
  | hd :: tl ->  
 
 
 
 
;; 
 

insert	x	into	the	
empty	list	
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Insert	

 
(* insert x in to sorted list xs *) 
 
let rec insert (x : int) (xs : int list) : int list = 
  match xs with 
  | [] -> [x] 
  | hd :: tl ->  
      if hd < x then 
        hd :: insert x tl 
 
;; 
 

build	a	new	list	with:	
•  hd	at	the	beginning	
•  the	result	of	inser,ng	x	in	to	

the	tail	of	the	list	alerwards	
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Insert	

 
(* insert x in to sorted list xs *) 
 
let rec insert (x : int) (xs : int list) : int list = 
  match xs with 
  | [] -> [x] 
  | hd :: tl ->  
      if hd < x then 
        hd :: insert x tl 
      else  
        x :: xs  
;; 
 

put	x	on	the	front	of	the	list,		
the	rest	of	the	list	follows	
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Inser,on	Sort	

type il = int list 
 
insert : int -> il -> il  
 
 
(* insertion sort *) 
 
let rec insert_sort(xs : il) : il = 
 
 
 
 
 
 
 
 
;; 
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Inser,on	Sort	

type il = int list 
 
insert : int -> il -> il  
 
 
(* insertion sort *) 
 
let rec insert_sort(xs : il) : il = 
 
  let rec aux (sorted : il) (unsorted : il) : il = 
 
 
 
  in 
   
 
;; 
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Inser,on	Sort	

type il = int list 
 
insert : int -> il -> il  
 
 
(* insertion sort *) 
 
let rec insert_sort(xs : il) : il = 
 
  let rec aux (sorted : il) (unsorted : il) : il = 
 
 
 
  in 
  aux [] xs 
 
;; 
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Inser,on	Sort	

type il = int list 
 
insert : int -> il -> il  
 
 
(* insertion sort *) 
 
let rec insert_sort(xs : il) : il = 
 
  let rec aux (sorted : il) (unsorted : il) : il = 
    match unsorted with 
    | [] ->  
    | hd :: tl ->  
  in 
  aux [] xs 
 
;; 
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Inser,on	Sort	

type il = int list 
 
insert : int -> il -> il  
 
 
(* insertion sort *) 
 
let rec insert_sort(xs : il) : il = 
 
  let rec aux (sorted : il) (unsorted : il) : il = 
    match unsorted with 
    | [] -> sorted 
    | hd :: tl -> aux (insert hd sorted) tl 
  in 
  aux [] xs 
 
;; 
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A	COUPLE	MORE	THOUGHTS	ON	
LISTS	
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The	(Single)	List	Programming	Paradigm	
•  Recall	that	a	list	is	either:	

–  [	] 	(the	empty	list)	
–  v	::	vs 	(a	value	v	followed	by	a	previously	constructed	list	vs)	

•  Some	examples:	

let l0 = [];;             (* length is 0 *) 
let l1 = 1::l0;;          (* length is 1 *) 
let l2 = 2::l1;;          (* length is 2 *) 
let l3 = 3::l2;;          (* length is 3 *) 
… 
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Consider	This	Picture	
•  Consider	the	following	picture.		How	long	is	the	linked	structure?	
•  Can	we	build	a	value	with	type	int	list	to	represent	it?	

1	

2	

3	4	
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Consider	This	Picture	
•  How	long	is	it?		Infinitely	long?	
•  Can	we	build	a	value	with	type	int	list	to	represent	it?		No!	

–  all	values	with	type	int	list	have	finite	length	

1	

2	

3	4	
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The	List	Type	

•  Is	it	a	good	thing	that	the	type	list	does	not	contain	any	
infinitely	long	lists?		Yes!	

•  A	termina,ng	list-processing	scheme:	

let rec f (xs : int list) : int = 
  match xs with 
    [] -> … do something not recursive … 
  | hd::tail -> …  f tail … 
;;  

terminates	because	f	only	called	recursively	on	smaller	lists	
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A	Loopy	Program	

let rec loop (xs : int list) : int = 
  match xs with 
    [] -> 0 
  | hd::tail -> hd + loop (0::tail) 
;;  

Does	this	program	terminate?	
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A	Loopy	Program	

Does	this	program	terminate?		No!		Why	not?		We	call	loop	recursively	on	
(0::tail).		This	list	is	the	same	size	as	the	original	list	--	not	smaller.	

let rec loop (xs : int list) : int = 
  match xs with 
    [] -> [] 
  | hd::tail -> hd + loop (0::tail) 
;;  

78	



Take-home	Message	

ML	has	a	strong	type	system	
•  ML	types	say	a	lot	about	the	set	of	values	that	inhabit	them		

In	this	case,	the	tail	of	the	list	is	always	shorter	than	the	whole	list	

This	makes	it	easy	to	write	func,ons	that	terminate;	it	would	be	
harder	if	you	had	to	consider	more	cases,	such	as	the	case	that	the	
tail	of	a	list	might	loop	back	on	itself.		Moreover	OCaml	hits	you	over	
the	head	to	tell	you	what	the	only	2	cases	are!	

Note:		Just	because	the	list	type	excludes	cyclic	structures	does	not	
mean	that	an	ML	program	can't	build	a	cyclic	data	structure	if	it	
wants	to.		ML	is	beMer	than	other	languages	because	it	gives	you	
control	over	the	values	you	want	to	program	with	via	types!			
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Rant	#2:	Impera,ve	lists	
•  One	week	from	today,	ask	yourself:		Which	is	easier:	

–  Programming	with	immutable	lists	in	ML?	
–  Programming	with	pointers	and	mutable	cells	in	C/Java	
–  I	guarantee	you	are	going	to	say	ML	

•  there	are	so	many	more	cases	to	worry	about	in	C/Java	
•  so	many	more	things	that	can	go	wrong		

SCORE:		OCAML	2,		JAVA	0	
							C:	why	bother?	
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xkcd	
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Example	problems	to	prac,ce	
•  Write	a	func,on	to	sum	the	elements	of	a	list	

–  sum	[1;	2;	3]	==>	6	
•  Write	a	func,on	to	append	two	lists	

–  append	[1;2;3]	[4;5;6]	==>	[1;2;3;4;5;6]	
•  Write	a	func,on	to	reverse	a	list	

–  rev	[1;2;3]	==>	[3;2;1]	
•  Write	a	func,on	to	turn	a	list	of	pairs	into	a	pair	of	lists	

–  split	[(1,2);	(3,4);	(5,6)]	==>		([1;3;5],	[2;4;6])	
•  Write	a	func,on	that	returns	all	prefixes	of	a	list	

–  prefixes	[1;2;3]	==>	[[];	[1];	[1;2];	[1;2;3]]	
•  suffixes…	
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ANOTHER	INDUCTIVE	DATA	TYPE:	
THE	NATURAL	NUMBERS	
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Natural	Numbers	
•  Natural	numbers	are	a	lot	like	lists	

–  both	can	be	defined	induc,vely	
•  A	natural	number	n	is	either	

–  0,	or	
–  m	+	1	where	m	is	a	smaller	natural	number	

•  Func,ons	over	naturals	n	must	consider	both	cases	
–  programming	the	base	case	0	is	usually	easy	
–  programming	the	induc,ve	case	(m+1)	will	olen	involve	
recursive	calls	over	smaller	numbers	

•  OCaml	doesn't	have	a	built-in	type	"nat"	so	we	will	use	"int"	
instead	for	now	…		
–  “int”	has	too	many	values	in	it	(and	also	not	enough)	
–  later	in	the	course	we	could	define	an	abstract	type	that	
contains	exactly	the	natural	numbers	
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An	Example	

(* precondition: n is a natural number 
   return double the input *) 
 
let rec double_nat (n : int) : int = 
 
 
 
;; 
 

By	defini,on	of	naturals:	
•  n	=	0	or		
•  n	=	m+1	for	some	nat	m	
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An	Example	

(* precondition: n is a natural number 
   return double the input *) 
 
let rec double_nat (n : int) : int = 
  match n with 
  | 0 ->  
  | _ -> 
;; 
 

two	cases:	
one	for	0	
one	for	m+1	

By	defini,on	of	naturals:	
•  n	=	0	or		
•  n	=	m+1	for	some	nat	m	
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An	Example	

(* precondition: n is a natural number 
   return double the input *) 
 
let rec double_nat (n : int) : int = 
  match n with 
  | 0 -> 0 
  | _ -> 
;; 
 

solve	easy	base	case	first	
	
consider:	
what	number	is	double	0?	

By	defini,on	of	naturals:	
•  n	=	0	or		
•  n	=	m+1	for	some	nat	m	
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An	Example	

(* precondition: n is a natural number 
   return double the input *) 
 
let rec double_nat (n : int) : int = 
  match n with 
  | 0 -> 0 
  | _ -> ????  
;; 
 assume	double_nat	m	is	correct	

where	n	=	m+1	
	
that’s	the	induc7ve	hypothesis	

By	defini,on	of	naturals:	
•  n	=	0	or		
•  n	=	m+1	for	some	nat	m	
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An	Example	

(* precondition: n is a natural number 
   return double the input *) 
 
let rec double_nat (n : int) : int = 
  match n with 
  | 0 -> 0 
  | _ -> 2 + double_nat (n-1)  
;; 
 assume	double_nat	m	is	correct	

where	n	=	m+1	
	
that’s	the	induc7ve	hypothesis	

By	defini,on	of	naturals:	
•  n	=	0	or		
•  n	=	m+1	for	some	nat	m	

I	wish	I	had	a	paMern	(m+1)	...	but	
OCaml	doesn’t	have	it.	So	I	use	n-1	
to	get	m.	
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(* fail if the input is negative 
   double the input if it is non-negative *) 
 
let double (n : int) : int = 
 
  let rec double_nat (n : int) : int = 
    match n with 
      0 -> 0 
    | n -> 2 + double_nat (n-1)  
  in 
 
  if n < 0 then  
    failwith "negative input!" 
  else  
    double_nat n 
;; 

An	Example	

protect	precondi,on	of	double_nat	
by	wrapping	it	with	dynamic	check	
	
later	we	will	see	how	to	create	a		
sta,c	guarantee	using	types	

raises	excep,on	

nest	double_nat	so	it	
can	only	be	called	by	
double	
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More	than	one	way	to	decompose	naturals	
	
A	natural	n	is	either:	

–  0,	
–  m+1,	where	m	is	a	natural	

A	natural	n	is	either:	
–  0,	
–  1,	
–  m+2,	where	m	is	a	natural	

A	natural	n	is	either:	
–  0,	
–  m*2	
–  m*2+1	

unary	decomposi,on	

unary		even/odd	decomposi,on	

binary	decomposi,on	
(there’s	a	liTle	problem	here	with	
a	redundant	representa,on;	what	is	it?)	
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More	than	one	way	to	decompose	lists	
	
A	list	xs	is	either:	

–  [],	
–  x::xs,	where	ys	is	a	list	

A	list	xs	is	either:	
–  [],	
–  [x],	
–  x::y::ys,	where	ys	is	a	list	

A	list	xs	is	either:	
–  [	],	
–  a@b	
–  x	::	(a@b)	

unary	decomposi,on	

unary		even/odd	decomposi,on	

where	a	and	b	are	lists	
of	the	same	length;	
recall	that	@	is	list-concat	
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Summary	
•  Instead	of	while	or	for	loops,	func,onal	programmers	use	

recursive	func,ons	
•  These	func,ons	operate	by:	

–  decomposing	the	input	data	
–  considering	all	cases	
–  some	cases	are	base	cases,	which	do	not	require	recursive	calls	
–  some	cases	are	induc7ve	cases,	which	require	recursive	calls	on	
smaller	arguments	

•  We've	seen:	
–  lists	with	cases:	

•  (1)	empty	list,	(2)	a	list	with	one	or	more	elements	
–  natural	numbers	with	cases:	

•  (1)	zero				(2)	m+1	
–  we'll	see	many	more	examples	throughout	the	course	
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