Simple Data

COS 326
David Walker
Princeton University

slides copyright 2013-2015 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

Logistics

e Sign up for Piazza, our Q&A forum:
— https://piazza.com/princeton/fall2016/cos326/home

* Assignment #1 is due on Wednesday at 11:59pm

[OCaml |

OCaml is a functional programming language

— Java gets most work done by modifying data

— OCaml gets most work done by producing new, immutable data

OCaml is a typed programming language

— the type of an expression correctly predicts the kind of value
the expression will generate when it is executed

— the type system is sound; the language is safe
— types help us understand and write our programs
— there are hard and fast type checking rules

Example Type-checking Rules

if el :int
and e2 :int
thenel +e2:int

Type Checking Rules

Violating the rules:

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

The type error message tells you the type that was expected
and the type that it inferred for your subexpression

Notice that there is no way to evaluate this expression — it is
undefined (has no semantics according to the language
definition)

Type checking rules out such non-sensical expressions

Type Checking Rules

* Violating the rules:

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

* A possible fix:

"hello"™ ~ (string of int 1);;
- : string = "hellol"

* One of the keys to becoming a good ML programmer is to
understand type error messages.

Example Type-checking Rules

if el : bool
and e2 : tand e3 : t (the same type t, for some type t)
then if el then e2 else e3 : t (that same type t)

Type Checking Rules

* Type errors for if statements can be confusing sometimes.
Example. We create a string from s, concatenating it n times:

let rec concatn s n =
if n <= 0 then

else
s ~ (concatn s (n-1))

Type Checking Rules

* Type errors for if statements can be confusing sometimes.
Example. We create a string from s, concatenating it n times:

let rec concatn s n =
if n <= 0 then

else
s ©~ (concatn s (n-1))

ocamlbuild says:

Error: This expression has type int but an
expression was expected of type string

Type Checking Rules

* Type errors for if statements can be confusing sometimes.
Example. We create a string from s, concatenating it n times:

let rec concatn s n =
if n <= 0 then

else
s * (concatn s (n-1))

ocamlbuild says:

Error: This expression has type int but an
expression was expected of type string

merlin inside emacs points to the error above and gives a second error:

Error: This expression has type string but an
expression was expected of type int

10

11

Type Checking Rules

* Type errors for if statements can be confusing sometimes.
Example. We create a string from s, concatenating it n times:

let rec concatn s n =
if n <= 0 then

else
s * (concatn s (n-1))

ocamlbuild says:

227

Error: This expression has type int but an
expression was expected of type string

merlin inside emacs points to the error above and gives a second error:

expression was expected of type int

Error: This expression has type string but an

12

Type Checking Rules

* Type errors for if statements can be confusing sometimes.
Example. We create a string from s, concatenating it n times:

let rec concatn s n =
1f n <= 0 then
0
else
s * (concatn s (n-1))

they don't
agree!

ocamlbuild says:

227

Error: This expression has type int but an
expression was expected of type string

merlin inside emacs points to the error above and gives a second error:

expression was expected of type int

Error: This expression has type string but an

13

Type Checking Rules

* Type errors for if statements can be confusing sometimes.
Example. We create a string from s, concatenating it n times:

they don't
agree!

let rec concatn s n =
if n <= 0 then

0
else
s * (concatn s (n-1))

The type checker points to the correct branch as the cause of an
error because it does not AGREE with the type of an earlier branch.
Really, the error is in the earlier branch.

Moral: Sometimes need to look in an earlier branch for the error
even though the type checker points to a later branch.
The type checker doesn't know what the user wants.

A Tactic: Add Typing Annotations

let rec concatn (s:string) (n:int) : string
1f n <= 0 then
0
else
s ~ (concatn s (n-1))

Error: This expression has type int but an
expression was expected of type string

14

ONWARDS!

What is the single most important mathematical
concept ever developed in human history?

16

What is the single most important mathematical
concept ever developed in human history?

An answer: The mathematical variable

17

What is the single most important mathematical
concept ever developed in human history?

An answer: The mathematical variable

(runner up: natural numbers/induction)

18

19

[Why is the mathematical variable so important?]

The mathematician says:

“Let x be some integer, we define a polynomial over x ...”

20

[Why is the mathematical variable so important?]

The mathematician says:
“Let x be some integer, we define a polynomial over x ...”

What is going on here? The mathematician has separated a
definition (of x) from its use (in the polynomial).

This is the most primitive kind of abstraction (x is some integer)

Abstraction is the key to controlling complexity and without it,
modern mathematics, science, and computation would not exist.

OCAML BASICS:
LET DECLARATIONS

Abstraction

Good programmers identify repeated patterns in their code
and factor out the repetition into meaningful components

In O’Caml, the most basic technique for factoring your code is
to use let expressions

Instead of writing this expression:

(2 + 3) * (2 + 3)

22

23

Abstraction & Abbreviation]

Good programmers identify repeated patterns in their code
and factor out the repetition into meaning components

In O’Caml, the most basic technique for factoring your code is
to use let expressions

Instead of writing this expression:

(2 + 3) * (2 + 3)

We write this one:

let x = 2 + 3 1n
X x

A Few More Let Expressions

let x = 2 in

let squared = x * x 1n

let cubed = x * squared in
squared * cubed

24

A Few More Let Expressions

let x = 2 in

let squared = x * x 1n

let cubed = x * squared in
squared * cubed

let a = "a" in
let b = "b" in
let as = a *~ a * a in

let bs = b ~ b * b in
as ~ bs

25

Abstraction & Abbreviation

e Two kinds of let:

if tuesday () then
let x = 2 + 3 1in
X + X

else

\

let x = 2 + 3 ;;

x + 17 / x ;;

let vy

\

26

let ... in ... is an expression that
can appear inside any other expression

The scope of x does not extend outside
the enclosing “in”

let ... ;; without “in” is a top-level
declaration

Variables x and y may be exported;
used by other modules

(Don’t need ;; if another let comes next; do need it
the next top-level declaration is an expression)

Binding Variables to Values

e Each OCaml variable is bound to 1 value
* The value to which a variable is bound to never changes!

let x = 3 ;;

<

let add three (y:int) : int =y + x ;;

27

Binding Variables to Values

e Each OCaml
e The value to

It does not
matter what

| write next. —
add _three

will always
add 3!

variable is bound to 1 value
which a variable is bound to never changes!

let x = 3 ;;

<

let add three (y:int) : int =y + x ;;

28

Binding Variables to Values

e Each OCaml variable is bound to 1 value

 The value a variable is bound to never changes!

a distinct
variable that
"happens to
be spelled the
same"

\

let x = 3 ;;

let add three (y:int) : int =y + x ;;

let add four (y:int) : int =y + X ;;

29

Binding Variables to Values

e Since the 2 variables (both happened to be named x) are
actually different, unconnected things, we can rename them

let x = 3 ;;

rename X

to 772 let add three (y:int) : 1Int =y + x ;;
if you want \\)
to, replacing Lokt 222 — 4 oo
its uses \
let add four (y:int) : int =y + zzz ;;
let add seven (y:int) : 1nt =

add three (add four y)

o o
r 7

Binding Variables to Values

e Each OCaml variable is bound to 1 value

* OCamlis a statically scoped language

we can use
add_three
without worrying
about the second
definition of x

let x = 3 ;;

let add three (y:int) : 1Int =y + x ;;

let add four (y:int) : int =y + X ;;

let add seven (y:int) : 1nt =
add three (add four y)

o o
r 7

31

How do let expressions operate?

let x

2 + 1 in X * X

32

How do let expressions operate?

let x = 2 + 1 in x * X

let x = 3 1n X * x

33

How do let expressions operate?

let x = 2 + 1 in x * X

let x = 3 1n X * x

substitute
> 3 for x

34

How do let expressions operate?

let x = 2 + 1 1n X * x
>
let x = 3 1n X * x
substitute
> 3 for x
3 * 3
>

35

How do let expressions operate?

let x

2 + 1 in X * X

let x

3 in x * X

substitute
3 for x

36

Note: | write
el-->e2

when el evaluates
to e2 in one step

Did you see what | did there?

37

Did you see what | did there?

| defined the language in terms of itself:
letx=2inx+3 -> 2+3

I’m trying to train you to think at a high level of
abstraction.

| didn’t have to mention low-level abstractions like
assembly code or registers or memory layout

38

Another Example

let x

let vy

Y

* X

2 1n
X + xX 1n

39

Another Example

2 1n
X + xX 1n

substitute
2 for x

2 4+ 2 in

40

Another Example

let x = 2 in

let v = x + x in substitute
y * x 2 for x
let vy 2 + 2 in

y * 2

let vy 4 in

y * 2

41

Another Example

let x = 2 in

let vy X + X 1in
y * x

let vy 2 + 2 in
y * 2

let vy 4 in
y * 2

substitute
2 for x

substitute
4 fory

42

Another Example

let x = 2 in

let vy X + X 1in
y * x

let vy 2 + 2 in
y * 2

let vy 4 in
y * 2

4 * 2

substitute
2 for x

substitute
4 fory

Moral: Let
operates by
substituting

computed values
for variables

43

44

[What would happen in an imperative language?]

X = 23

C program: , - x.; substitute
return x*2; 2 for x
substituting
g computed values
X += 2 2?27 for variables
return x*2;

This principle works in
functional languages, not
so well in imperative
languages

OCAML BASICS:
TYPE CHECKING AGAIN

[Type-checking Rules]

There are simple rules that tell you what the type of an expression is.

Those rules compute a type for an expression based on the types of
its subexpressions (and the types of the variables that are in scope).

You don’t have to know the details of how a subexpression is
implemented to do type checking. You just need to know its type.

That’s what makes OCaml type checking modular.

We write “e : t” to say that expression e has type t

[Back to Let Expressions ... Typing]

x granted type of el for use in e2

W

let x

e?

el 1in

—

overall expression
takes on the type of e2

47

[Back to Let Expressions ... Typing]

x granted type of el for use in e2

let x = el in ~ overall expression
5 takes on the type of e2
e
x has type int let,x = S _ overall expression
for use insidethe — | | has type string
let body string of int x

OCAML BASICS:
FUNCTIONS

Defining functions

let add one

(x:1nt) : int =1 + x ;;

50

[Defining functions]

;» terminates

top-level let
let keyword
T e
let add one (x:int) : int =1 + x ;;
T A _Y_}
/ \ type of result expression
function name that computes
type of argument value produced
by function

argument name

Note: recursive functions with begin with "let rec"

Defining functions

Nonrecursive functions:

let add one (x:int)

let add two (x:1

: 1int

o e

1 + x ;;

add one

-

(add one x) ;;

definition of add_one
must come before use

52

53

Defining functions]

* Nonrecursive functions:

let add one (x:int) : iInt =1 + x ;;
let add two (x:int) : int = add one (add one x) ;;
e With a local definition: local function definition

hidden from clients

let add two' (x:int) : int 1:/ | left off the types.
let add one x = 1 + x in O'Caml figures them out

add one (add one x)

Good style: types on
top-level definitions

e o
r 7

Types for Functions

Some functions:

let add one (x:int) : int
let add two (x:int) : int

let add (x:int) (y:1int)
\

=1+ x ;;
= add one (add one x) ;;

int = x + vy ;;

Types for functions:

function with two arguments

add one : int -> int
add two : int -> int

add : int -> int -> int

54

Rule for type-checking functions

General Rule:

If a functionf: T1->T2
and an argumente : T1

thenfe: T2
Example:
add one : int -> int

3 + 4 : int

add one (3 + 4) : int

55

Rule for type-checking functions

* Recall the type of add:

Definition:

let add (x:int) (y:int) : int =
X + vy

Type:

add : int -> int -> 1int

Rule for type-checking functions

* Recall the type of add:

Definition:

let add (x:int) (y:int) : int =
X + vy

Type:

add : int -> int -> 1int

Same as:

add : int -> (int -> 1int)

Rule for type-checking functions

General Rule:

If a functionf: T1->T2
and an argumente : T1
thenfe:T2

f: T1oT2 e:T1
fe:T2

Example:

Note:

A->B->C
is the same as
A -> (B ->C)

add : int -> int -> int

3 + 4 : int

add (3 + 4) : 27?27

58

Rule for type-checking functions

General Rule:

f: T15T2 e

11

fe:T2

Example:

Remember:

A->B->C
is the same as
A -> (B ->C)

add : int —->
3 + 4 : int

add (3 + 4)

(int -> int)

59

Rule for type-checking functions

General Rule:

f: T1oT2 e:T1
fe:T2

Example:

Remember:

A->B->C
is the same as
A -> (B ->C)

add : int -> (int -> 1int)

3 + 4 : int l

add (3 + 4) : int -> 1nt

60

Rule for type-checking functions

General Rule:

f:T1-5oT2 e:T1
fe:T2

Example:

Remember:

A->B->C
is the same as
A -> (B ->C)

add : int -> int -> 1int
3 + 4 : int
add (3 + 4) : int -> 1int

/

(add (3 + 4)) 7 : int

61

Rule for type-checking functions

General Rule:

f:T1-5oT2 e:T1
fe:T2

Example:

Remember:

A->B->C
is the same as
A -> (B ->C)

add : int -> int -> 1nt

3 + 4 : int

add (3 + 4) : int -> 1int

add (3 + 4) 7 : int

62

Rule for type-checking functions

Example:

let munge (b:bool) (x:1int) : 2?2 =
1f not b then
string of int x
else
"hello"

o o
r 7

let v = 17;;

munge (y > 17) =@ 272

munge true (f (munge false 3)) : 2?27
£ « 2?7

munge true (g munge) : ?2°7?

g : 27

63

Rule for type-checking functions

Example:

let munge (b:bool) (x:1int) : 2?2 =
1f not b then
string of int x
else
"hello"

o o
r 7

let v = 17;;

munge (y > 17) =@ 272

munge true (f (munge false 3)) : 2?27
f : string -> int

munge true (g munge) : ?2°7?
g : (bool -> int -> string) -> int

64

65

One key thing to remember]

* If you have a function f with a type like this:

A->B->C->D->E->F

 Then each time you add an argument, you can get the type of
the result by knocking off the first type in the series

fal:B->C->D->E->F (ifal:A)
fala2:C->D->E->F (ifa2:B)
fala2a3:D->E->F (ifa3:C)

fala2a3ad4a5:F (ifa4 : Dand a5 : E)

OUR FIRST* COMPLEX DATA STRUCTURE!
THE TUPLE

* it is really our second complex data structure since functions
are data structures too!

66

Tuples

 Atupleis a fixed, finite, ordered collection of values

 Some examples with their types:

(1, 2)

("hello", 7 + 3,

('a',

("hello",

true)

"goodbye"))

int * int

string * int * bool

char *

(string * string)

67

Tuples

* To use atuple, we extract its components

e General case:

let

(1d1,

id2, ..,

idn) = el 1in e2

 An example:

let

(X,Y)

= (2,4)

in X + x + vy

68

Tuples

* To use atuple, we extract its components

e General case:

let

(1dl, 1d2,

oo J

idn) = el 1in e2

 An example:

let
——>

(x,v) = (2,

2 + 2 + 4

4)

in x + x + yg;::) substitute!

<=

69

Tuples

* To use atuple, we extract its components

e General case:

let

(1dl, idz, ..,

idn) = el 1in e2

 An example:

let
——>

70

Rules for Typing Tuples

el :tl el :t2
(el, e2):t1 *t2

71

[Rules for Typing Tuples

el :tl el :t2
(el, e2) : t1 * t2

ifel:tl *t2 then
x1:tlandx2:t2
inside the expression e2

.

D
let (x1,x2) = el in

e’

overall expression
takes on the type of e2

[Distance between two points

(x1, y1)

c2=a2+b?

Problem:
A pointis represented as a pair of floating point values.

* Write a function that takes in two points as arguments and returns
the distance between them as a floating point number

Writing Functions Over Typed Data

Steps to writing functions over typed data:
1. Write down the function and argument names
2. Write down argument and result types

3. Write down some examples (in a comment)

74

Writing Functions Over Typed Data

Steps to writing functions over typed data:
Write down the function and argument names

1.
2.
3.
4.

5.

Write down argument and result types

Write down some examples (in a comment)

Deconstruct input data structures
the argument types suggests how to do it

Build new output values
the result type suggests how you do it

75

Writing Functions Over Typed Data

Steps to writing functions over typed data:

1.
2.
3.
4.

5.

6.

Write down the function and argument names

Write down argument and result types

Write down some examples (in a comment)

Deconstruct input data structures

the argument types suggests how to do it
Build new output values

the result type suggests how you do it

Clean up by identifying repeated patterns

define and reuse helper functions
your code should be elegant and easy to read

76

Writing Functions Over Typed Data

Steps to writing functions over typed data:
1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures
* the argument types suggests how to do it
5. Build new output values
* the result type suggests how you do it
6. Clean up by identifying repeated patterns

« define and reuse helper functions
e your code should be elegant and easy to read

Types help structure your thinking about how to write programes.

77

[Distance between two points

a type abbreviation (x1,y1)

Y
type point = float * float

[Distance between two points

(x1, y1)

type point = float * float

let distance (pl:point) (p2:point) : float

=N

write down function name
argument names and types

[Distance between two points

(x1, y1)

examples

type point = float ¥ float

distance (0.0,0.0) (0.0,1.0) == 1.0
distance (0.0,0.0) (1.0,1.0) == sgrt(1.0 + 1.0)

from the picture:
distance (x1,vyl) (x2,y2) == sgrt(a®™2 + b"2)
)

b S R T &

let distance (pl:point) (pZ2:point) : float =

[Distance between two points

(x1, y1)

type point = float * float
let distance (pl:point) (pZ2:point) : float =
let (x1,yl) = pl 1in
let (x2,y2) = p2 in <
o deconstruct
function inputs

[Distance between two points

(x1, y1)

type point = float * float
let distance (pl:point) (pZ2:point) float =
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
sqrt ((x2 -. x1) *. (x2 -. x1) +. :%
(y2 —-. yl) *. (y2 -. y1))

\\

notice operators on

floats have a ".

compute
function
results

in them

[Distance between two points

(x1, y1)

type point = float * float

let distance (pl:point) (pZ2:point) : float =
let square x = x *. X 1n
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
sgrt (square (x2 -. x1)) +.
square (y2 -. yl1))

;s \

define helper functions to
avoid repeated code

[Distance between two points

type point = float * float

let square x = x *. X 1n
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in

e o
r 7

let ptl = (2.
let pt2 = (0.
let distl2 =

3.0);;

1.0);;

distance ptl pt2;;
<

0,
0,

(x1, y1)

let distance (pl:point) (pZ2:point)

sgrt (square (x2 -. x1) +. square

(v2 —-. y1))

testing

MORE TUPLES

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

86

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:

(4.0, 5, "hello") : float * int * string

87

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:

(4.0, 5, "hello") : float * int * string

Here's a tuple with 4 fields:

(4.0, 5, "hello", 55) : float * int * string * int

88

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:
(4.0, 5, "hello") : float * int * string
Here's a tuple with 4 fields:
(4.0, 5, "hello", 55) : float * int * string * int

Have you ever thought about what a tuple with O fields might
look like?

89

Unit

Unit is the tuple with zero fields!

() : unit

‘\

the unit value is written with an pair of parens
there are no other values with this type!

90

Unit

* Unitis the tuple with zero fields!

() : unit

\

* the unit value is written with an pair of parens
* there are no other values with this type!

* Why is the unit type and value useful?
* Every expression has a type:

(print_string "hello world\n") : ???

Unit

Unit is the tuple with zero fields!

() : unit

\

* the unit value is written with an pair of parens
* there are no other values with this type!

 Why is the unit type and value useful?

Every expression has a type:

(print_string "hello world\n") : unit

Expressions executed for their effect return the unit value

92

SUMMARY:
BASIC FUNCTIONAL PROGRAMMING

Writing Functions Over Typed Data

e Steps to writing functions over typed data:
Write down the function and argument names
Write down argument and result types

Write down some examples (in a comment)
Deconstruct input data structures

Build new output values

U A T o

Clean up by identifying repeated patterns

* For unit type:
— when the input has type unit

e uselet()=...in... to deconstruct
* or better use el; ... to deconstruct if el has type unit

— when the output has type unit
* use () to construct

94

Writing Functions Over Typed Data

Steps to writing functions over typed data:

1.
2.
3.
4.

5.

6.

Write down the function and argument names

Write down argument and result types

Write down some examples (in a comment)

Deconstruct input data structures
the argument types suggest how to do it
Build new output values
the result type suggest how you do it
Clean up by identifying repeated patterns
define and reuse helper functions
your code should be elegant and easy to read

95

Writing Functions Over Typed Data

Steps to writing functions over typed data:

Lo W

6.

Write down the function and argument names
Write down argument and result types

Write down some examples (in a comment)
Deconstruct input data structures

Build new output values

Clean up by identifying repeated patterns

For tuple types:

— when the input has type t1 * t2

e use let (x,y) = ... to deconstruct

— when the output has type t1 * t2

e use (el, e2) to construct

We will see this paradigm repeat itself over and over

96

[Options

A value v has type t option if it is either:
— the value None, or
— avalue Some v', and v' has type t

Options can signal there is no useful result to the computation

Example: we look up a value in a hash table using a key.
— If the key is present, return Some v where v is the associated value
— If the key is not present, we return None

97

[Slope between two points

(x1, y1)

type point = float * float

let slope (pl:point) (p2:point) : float =

[Slope between two points

(x1, y1)

type point = float * float

let slope (pl:point) (p2:point) : float =
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in

\\

deconstruct tuple

[Slope between two points

(x1, y1)

type point = float * float

let slope (pl:point) (p2:point) : float =
let (x1,yl) = pl in
let (x2,vy2) = p2 in
let xd = x2 -. x1 1in
1if xd !'= 0.0 then €\\\\\\\\\\\\\\\
els(z2 I avoid divide by zero

N
25 \

what can we return?

100

[Slope between two points

type point = float * float
let slope (pl:point) (p2:point)
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
let xd = x2 -. x1 1n
1if xd !'= 0.0 then
P77
else
P27

(x1, y1)

(x2, y2)

float option =

we need an option
type as the result type

101

102

[Slope between two points]

(x1, y1)

type point = float * float (x2, y2)
let slope (pl:point) (p2:point) : float option =
let (x1,yl) = pl in
let (x2,vy2) = p2 in
let xd = x2 -. x1 1in
1f xd !'= 0.0 then
Some ((y2 -. yl) /. xd)
else
None

103

[Slope between two points]

(x1, y1)

type point = float * float (x2, y2)

let slope (pl:point) (p2:point) : float option =
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
let xd = x2 -. x1 1n
1if xd !'= 0.0 then
(yz -. yl) /. xd,
else Y‘\\\\\\\\\\\\
5 \NO“EZ\\\\\\ Has type float

Can have type float option

104

[Slope between two points]

(x1, y1)

type point = float * float (x2, y2)
let slope (pl:point) (p2:point) : float option =
let (x1,yl) = pl in
let (x2,vy2) = p2 in
let xd = x2 -. x1 1in
1f xd !'= 0.0 then
(y2 -. yl) /. xd
else '6\\\\\\\\\\\\
None, Has type float
Can have type float option AONG: Type mismatch

[Slope between two points

(x1, y1)

type point = float * float (x2,y2)
let slope (pl:point) (p2:point) : float option =
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
let xd = x2 -. x1 1n
1if xd !'= 0.0 then doubly WRONG:
(y2 -. vyl) /. xd result does not

Has type float

else "\\\\\\\\\\\\\\\\ match declared result
None

105

Remember the typing rule for if

el:bool e2:T e3:T
if elthene2elsee3 : T

None : T option

e:T

Some e : T option

 Returning an optional value from an if statement:

if ... then
None
else

Some (...)

: t option

: t option

106

How do we use an option?

107

slope

: point -> point -> float option

returns a float option

How do we use an option?

108

slope : point -> point -> float option

let print slope

(pl:point)

(p2:point)

: unit

How do we use an option?

109

slope : point -> point -> float option

let print slope (pl:point) (p2:point) : unit =
slope pl pZ2

;s \

returns a float option;
to print we must discover if it is
None or Some

110

How do we use an option?]

slope : point -> point -> float option

let print slope (pl:point) (pZ2:point) : unit =
match slope pl p2 with

111

How do we use an option?]

slope : point -> point -> float option

let print slope (pl:point) (p2:point) : unit =
match slope pl p2 with
some s —>
| None ->

There are two possibilities

\

Vertical bar separates possibilities

How do we use an option?

112

slope : point -> point -> float option

let print slope (pl:point) (p2:point) : unit =
match slope pl p2 with

Ssome s =>
| None ->
rr

The "Some s" pattern includes the variable s

The object between | and -> is called a pattern

113

How do we use an option?]

slope : point -> point -> float option

let print slope (pl:point) (p2:point) : unit =
match slope pl p2 with
some s —>
print string ("Slope: "
| None ->
print string "Vertical line.\n"

AN

string of float s)

Writing Functions Over Typed Data

e Steps to writing functions over typed data:

Write down the function and argument names
Write down argument and result types

Write down some examples (in a comment)
Deconstruct input data structures

Build new output values

U A T o

Clean up by identifying repeated patterns
For option types:

when the input has type t option, when the output has type t option,

deconstruct with: construct with:

match .. with

| None -> .. Some (...)

None

| Some s -> ..

114

MORE PATTERN MATCHING

Recall the Distance Function

116

type point = float * float

let distance (pl:point) (pZ2:point) : float
let square x = X *. X 1n
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in

sgrt (square (x2 -. x1) +. square (y2 -.

e o
r 7

v1))

117

Recall the Distance Function]

type point = float * float

let distance (pl:point) (pZ2:point) : float =

let square x = xXx *. X 1n

let (x1,yl) = pl 1in

let (x2,y2) = p2 1in

sgrt/ (square (x2 -. x1) +. square (y2 -. yl))

e o
r 7

/

(x2, y2) is an example of a pattern — a pattern for tuples.

So let declarations can contain patterns just like match statements

The difference is that a match allows you to consider multiple different data shapes

118

Recall the Distance Function]

type point = float * float

let distance (pl:point) (pZ2:point) : float =
let square x = X *. X 1n
match pl with
| (x1,yl) ->
let (x2,y2) = p2 in
sgrt (square (x2 -. x1) +. square (y2 -. vyl))

There is only 1 possibility when matching a pair

Recall the Distance Function

119

type point = float * float

let distance (pl:point) (pZ2:point) : float =
let square x = x *. X 1n
match pl with
| (x1,yl) ->
match p2 with
| (x2,y2) ->
l/ sgqrt (square (x2 -. xl1l) +. square (y2 -. yl))

/

We can nest one match expression inside another.
(We can nest any expression inside any other, if the expressions have the
right types)

Better Style: Complex Patterns

we built a pair of pairs

120

type point = float * float
let distance (pl:pgint) (p2:point) : float =
let square x = *., X 1n
match (pl, p2) with
| ((x1,y1), (x2, y2)) ->
sgrt (square (x2 -. x1) +. square (y2 -. vyl))

/

Pattern for a pair of pairs: ((variable, variable), (variable, variable))
All the variable names in the pattern must be different.

121

Better Style: Complex Patterns]

we built a pair of pairs

type point = float * float

let distance (pl:pgint) (pZ2:point) : float =
let square x = . X 1n
match (pl, p2) with
| (p3, pd) ->
let (x1, yl) = p3 1in
let (x2, y2) = p4 1in
sgrt (square (x2 -. x1) +. square (y2 -. yl))

e o
r 7

/

A pattern must be consistent with the type of the expression
in between match ... with
We use (p3, p4) here instead of ((x1, y1), (x2, y2))

122

Pattern-matching in function parameters]

type point = float * float

let distance ((x1,yl):point) ((x2,y2):point) : float =
let square x = X *. X 1n
sgqrt (square (x2 -. x1) +. square (y2 —-. yl))

e o
r 7

Function parameters are patterns too!

What’s the best style?

123

let distance (pl:point) (pZ2:point) : float =
let square x = x *. X 1n
let (x1,yl) = pl in
let (x2,y2) = p2 1in
sgrt (square (x2 -. x1) +. square (y2 -. yl))

let distance ((x1,yl):point) ((x2,y2):point) : float
let square x = x *. X 1n
sgrt (square (x2 -. x1) +. square (y2 -. yl))

Either of these is reasonably clear and compact.
Code with unnecessary nested matches/lets is particularly ugly to read.
You'll be judged on code style in this class.

124

Combining patterns]

type point = float * float

(* returns a nearby point in the graph 1f one exists *)
nearby : graph -> point -> point option

let printer (g:graph) (p:point) : unit =
match nearby g p with
| None -> print string "could not find one\n"
| Some (x,y) —->
print float x;
print string ", ";
print float y;
print newline();

Other Patterns

 Constant values can be used as patterns

let small prime (n:int)

match n with
| 2 -> true
| 3 => true
| 5 => true
| -> false

rs I\

bool =

the underscore pattern
matches anything
itis the "don't care" pattern

let iffy (b:bool)
match b with
| true -> 0
| false -> 1

int

125

A SHORT JAVA RANT

Definition and Use of Java Pairs

public class Pair {

public int x;
public int y;

public Pair (int a,
X = a;
y = b;

}

int b)

{

public class User {

public Pair swap
Pair p2 =
new Pair(pl.y,

return p2;

}

(Pair pl)

pl.x);

{

127

What could go wrong?

A Paucity of Types

public class Pair {

public int x;
public int y;

public Pair (int a,
X = a;
y = b;

}

int b)

{

public class User {

public Pair swap (Pair pl)
Pair p2 =
new Pair(pl.y, pl.x);

return p2;

}

128

The input p1 to swap may be null and we forgot to check.

Java has no way to define a pair data structure that is just a pair.

How many students in the class have seen an accidental null pointer

exception thrown in their Java code?

129

From Java Pairs to O'Caml Pairs]

In O'Caml, if a pair may be null it is a pair option:

type java palr = (int * int) option

130

From Java Pairs to O'Caml Pairs]

In O'Caml, if a pair may be null it is a pair option:

type java palr = (int * int) option

And if you write code like this:

let swap java palr (p:java pailr) : java pair =
let (x,y) = p 1in
(y,x)

131

[From Java Pairs to O'Caml Pairs]

In O'Caml, if a pair may be null it is a pair option:

type java palr = (int * int) option

And if you write code like this:

let swap java palr (p:java pailr) : java pair =
let (x,y) = p 1in
(y,x)

You get a helpful error message like this:

.. Characters 91-92:
let (x,y) = p in (y,x):;
Error: This expression has type java pair = (int * int) option
but an expression was expected of type 'a * 'b

132

From Java Pairs to O'Caml Pairs]

type java palr = (int * int) option

And what if you were up at 3am trying to finish your
COS 326 assignment and you accidentally wrote the
following sleep-deprived, brain-dead statement?

let swap java palr (p:java pailr) : java pair =
match p with
| Some (x,y) —-> Some (y,X)

From Java Pairs to O'Caml Pairs

type java palr = (int * int) option

And what if you were up at 3am trying to finish your
COS 326 assignment and you accidentally wrote the
following sleep-deprived, brain-dead statement?

let swap java palr (p:java pailr) : java pair =
match p with
| Some (x,y) —-> Some (y,X)

OCaml to the rescue!

..match p with
| Some (x,y) —-> Some (y,X)
Warning 8: this pattern-matching i1s not exhaustive.
Here is an example of a value that is not matched:
None

133

134

From Java Pairs to O'Caml Pairs]

type java palr = (int * int) option

And what if you were up at 3am trying to finish your
COS 326 assignment and you accidentally wrote the
following sleep-deprived, brain-dead statement?

let swap java palr (p:java pailr) : java pair =
match p with
| Some (x,y) —-> Some (y,X)

u An easy fix! @

let swap java palr (p:java pailr) : java pair =
match p with
| None -> None
| Some (x,y) —-> Some (y,X)

135

From Java Pairs to O'Caml Pairs]

Moreover, your pairs are probably almost never null!

Defensive programming & always checking for null is
AnNOyYInG

136

From Java Pairs to O'Caml Pairs]

There just isn't always some "good thing" for a function to do when it receives a
bad input, like a null pointer

In O'Caml, all these issues disappear when you use the proper type for a pair and
that type contains no "extra junk”

type pair = int * int

Once you know O'Caml, it is hard to write swap incorrectly
Your bullet-proof code is much simpler than in Java.

let swap (p:pair) : pair =
let (x,y) = p in (y,X)

137

Summary of Java Pair Rant]

Java has a paucity of types
— There is no type to describe just the pairs
— There is no type to describe just the triples
— There is no type to describe the pairs of pairs
— There is no type ...

OCaml has many more types
— use option when things may be null
— do not use option when things are not null
— OCaml types describe data structures more precisely
* programmers have fewer cases to worry about
* entire classes of errors just go away

* type checking and pattern analysis help prevent programmers from
ever forgetting about a case

138

Summary of Java Pair Rant

Java has a paucity of types
— There is no type to describe |
— Thereis n e to describg
— Thereis no MeCril
— Thereis no

the pair

e Type B clp prevent programmers from
ever fo ® about ®Case

139

C, C++ Rant]

Java has a paucity of types
— but at least when you forget something,
it throws an exception instead of silently going off the trolley!

If you forget to check for null pointer in a C program,
— no type-check error at compile time
— no exception at run time
— it might crash right away (that would be best), or
— it might permit a buffer-overrun (or similar) vulnerability
— so the hackers pwn you!

140

Summary of C, C++ rant

Java has a paucity of types

— but at least when you forg amethd

it throws ¢ ation ing

If yo

— Nno tVw

)

Inerability

so the hag

141

OVERALL SUMMARY:
A SHORT INTRODUCTION TO
FUNCTIONAL PROGRAMMING

142

Functional Programming]

Steps to writing functions over typed data:
Write down the function and argument names

2. Write down argument and result types
3. Write down some examples
4. Deconstruct input data structures

 the argument types suggest how you do it
 the types tell you which cases you must cover
5. Build new output values
* the result type suggests how you do it
6. Clean up by identifying repeated patterns
 define and reuse helper functions

 refactor code to use your helpers
 your code should be elegant and easy to read

143

[Summary: Constructing/Deconstructing Values]

Construct Values Number of Cases Deconstruct Values

0,-1,2,. 2731-1 match i with
| 0-> ...
| -1-> ...

| x> ...

bool true, false 2 match b with
| true -> ...
| false -> ...

t1*t2 (2, "hi") (# of t1) * (# of t2) let (x,y) =

match p with (x,y) -> ...

unit () 1 el; ...
t option None, Some 3 1+ (# of t1) match opt with
| None -> ...

| Some x -> ...

