
Simple	Data	

COS	326	
David	Walker	

Princeton	University	
	
slides	copyright	2013-2015	David	Walker	and	Andrew	W.	Appel	

permission	granted	to	reuse	these	slides	for	non-commercial	educaGonal	purposes	
	

1	



LogisGcs	
•  Sign	up	for	Piazza,	our	Q&A	forum:	

–  hNps://piazza.com/princeton/fall2016/cos326/home	

•  Assignment	#1	is	due	on	Wednesday	at	11:59pm	

2	



OCaml	
OCaml	is	a	func%onal	programming	language	
	

–  Java	gets	most	work	done	by	modifying		data	

–  OCaml	gets	most	work	done	by	producing	new,	immutable	data	

OCaml	is	a	typed	programming	language		
–  the	type	of	an	expression	correctly	predicts	the	kind	of	value	
the	expression	will	generate	when	it	is	executed	

–  the	type	system	is	sound;	the	language	is	safe	
–  types	help	us	understand	and	write	our	programs	
–  there	are	hard	and	fast	type	checking	rules	

3	



Example	Type-checking	Rules	

if	e1	:	int	
and	e2	:	int	
then	e1	+	e2	:	int	

4	



Type	Checking	Rules	
•  ViolaGng	the	rules:	

•  The	type	error	message	tells	you	the	type	that	was	expected	
and	the	type	that	it	inferred	for	your	subexpression	

•  NoGce	that	there	is	no	way	to	evaluate	this	expression	–	it	is	
undefined	(has	no	semanGcs	according	to	the	language	
definiGon)	

•  Type	checking	rules	out	such	non-sensical	expressions	

 
# "hello" + 1;; 
Error: This expression has type string but an 
expression was expected of type int 

5	



Type	Checking	Rules	
•  ViolaGng	the	rules:	

•  A	possible	fix:	

•  One	of	the	keys	to	becoming	a	good	ML	programmer	is	to	
understand	type	error	messages.			

 
# "hello" + 1;; 
Error: This expression has type string but an 
expression was expected of type int 

 
# "hello" ^ (string_of_int 1);; 
- : string = "hello1" 

6	



Example	Type-checking	Rules	

if	e1	:	bool		
and	e2	:	t	and	e3	:	t	(the	same	type	t,	for	some	type	t)	
then	if	e1	then	e2	else	e3	:	t	(that	same	type	t)	

7	



Type	Checking	Rules	
•  Type	errors	for	if	statements	can	be	confusing	someGmes.		

Example.		We	create	a	string	from	s,	concatenaGng	it	n	Gmes:	

let rec concatn s n = 
  if n <= 0 then 
    ... 
  else 
    s ^ (concatn s (n-1)) 

8	



Type	Checking	Rules	
•  Type	errors	for	if	statements	can	be	confusing	someGmes.		

Example.		We	create	a	string	from	s,	concatenaGng	it	n	Gmes:	

let rec concatn s n = 
  if n <= 0 then 
    ... 
  else 
    s ^ (concatn s (n-1)) 

Error: This expression has type int but an 
expression was expected of type string 

ocamlbuild	says:	

9	



•  Type	errors	for	if	statements	can	be	confusing	someGmes.		
Example.		We	create	a	string	from	s,	concatenaGng	it	n	Gmes:	

Type	Checking	Rules	

Error: This expression has type int but an 
expression was expected of type string 

let rec concatn s n = 
  if n <= 0 then 
    ... 
  else 
    s ^ (concatn s (n-1)) 

Error: This expression has type string but an 
expression was expected of type int 

ocamlbuild	says:	

merlin	inside	emacs	points	to	the	error	above	and	gives	a	second	error:	

10	



•  Type	errors	for	if	statements	can	be	confusing	someGmes.		
Example.		We	create	a	string	from	s,	concatenaGng	it	n	Gmes:	

Type	Checking	Rules	

Error: This expression has type int but an 
expression was expected of type string 

let rec concatn s n = 
  if n <= 0 then 
    ... 
  else 
    s ^ (concatn s (n-1)) 

Error: This expression has type string but an 
expression was expected of type int 

ocamlbuild	says:	

merlin	inside	emacs	points	to	the	error	above	and	gives	a	second	error:	

11	



•  Type	errors	for	if	statements	can	be	confusing	someGmes.		
Example.		We	create	a	string	from	s,	concatenaGng	it	n	Gmes:	

Type	Checking	Rules	

Error: This expression has type int but an 
expression was expected of type string 

let rec concatn s n = 
  if n <= 0 then 
    0 
  else 
    s ^ (concatn s (n-1)) 

Error: This expression has type string but an 
expression was expected of type int 

ocamlbuild	says:	

merlin	inside	emacs	points	to	the	error	above	and	gives	a	second	error:	

they	don't	
agree!	

12	



•  Type	errors	for	if	statements	can	be	confusing	someGmes.		
Example.		We	create	a	string	from	s,	concatenaGng	it	n	Gmes:	

Type	Checking	Rules	

let rec concatn s n = 
  if n <= 0 then 
    0 
  else 
    s ^ (concatn s (n-1)) 

The	type	checker	points	to	the	correct	branch	as	the	cause	of	an	
error	because	it	does	not	AGREE	with	the	type	of	an	earlier	branch.			

Really,	the	error	is	in	the	earlier	branch.	
	

Moral:		SomeGmes	need	to	look	in	an	earlier	branch	for	the	error	
even	though	the	type	checker	points	to	a	later	branch.	
The	type	checker	doesn't	know	what	the	user	wants.	

they	don't	
agree!	

13	



A	TacGc:		Add	Typing	AnnotaGons	
14	

let rec concatn (s:string) (n:int) : string = 
  if n <= 0 then 
    0 
  else 
    s ^ (concatn s (n-1)) 

Error: This expression has type int but an 
expression was expected of type string 



ONWARDS!	

15	



What	is	the	single	most	important	mathemaGcal	
concept	ever	developed	in	human	history?		

16	



What	is	the	single	most	important	mathemaGcal	
concept	ever	developed	in	human	history?		

An	answer:		The	mathemaGcal	variable	

17	



What	is	the	single	most	important	mathemaGcal	
concept	ever	developed	in	human	history?		

An	answer:		The	mathemaGcal	variable	
	

(runner	up:	natural	numbers/inducGon)	

18	



Why	is	the	mathemaGcal	variable	so	important?	
The	mathemaGcian	says:	
	
“Let	x	be	some	integer,	we	define	a	polynomial	over	x	...”	
	

19	



Why	is	the	mathemaGcal	variable	so	important?	
The	mathemaGcian	says:	
	
“Let	x	be	some	integer,	we	define	a	polynomial	over	x	...”	
	
What	is	going	on	here?		The	mathemaGcian	has	separated	a	
defini%on	(of	x)	from	its	use	(in	the	polynomial).			
	
This	is	the	most	primiGve	kind	of	abstrac%on	(x	is	some	integer)	
	
Abstrac%on	is	the	key	to	controlling	complexity	and	without	it,	
modern	mathemaGcs,	science,	and	computaGon	would	not	exist.	

20	



OCAML	BASICS:	
LET	DECLARATIONS	

21	



AbstracGon	
•  Good	programmers	idenGfy	repeated	paNerns	in	their	code	

and	factor	out	the	repeGGon	into	meaningful	components	
•  In	O’Caml,	the	most	basic	technique	for	factoring	your	code	is	

to	use	let	expressions		
•  Instead	of	wriGng	this	expression:	

	
	

	

(2 + 3) * (2 + 3) 

22	



AbstracGon	&	AbbreviaGon	
•  Good	programmers	idenGfy	repeated	paNerns	in	their	code	

and	factor	out	the	repeGGon	into	meaning	components	
•  In	O’Caml,	the	most	basic	technique	for	factoring	your	code	is	

to	use	let	expressions		
•  Instead	of	wriGng	this	expression:	

•  We	write	this	one:	
	

	

(2 + 3) * (2 + 3) 

let x = 2 + 3 in 
x * x 

23	



A	Few	More	Let	Expressions	

let x = 2 in 
let squared = x * x in 
let cubed = x * squared in 
squared * cubed 

24	



A	Few	More	Let	Expressions	

let a = "a" in  
let b = "b" in 
let as = a ^ a ^ a in 
let bs = b ^ b ^ b in 
as ^ bs 

let x = 2 in 
let squared = x * x in 
let cubed = x * squared in 
squared * cubed 

25	



AbstracGon	&	AbbreviaGon	
•  Two	kinds	of	let:	

	

	
let	…	in	…	is	an	expression	that		
can	appear	inside	any	other	expression	
	
The	scope	of	x	does	not	extend	outside	
the	enclosing	“in”	

let x = 2 + 3 ;; 
 
let y = x + 17 / x ;; 
 

let	…	;;	without	“in”	is	a	top-level	
declara%on		
	
Variables	x	and	y	may	be	exported;	
used	by	other	modules	
	
(Don’t	need	;;	if	another	let	comes	next;	do	need	it	
the	next	top-level	declaraGon	is	an	expression)	

if tuesday() then 
     let x = 2 + 3 in 
     x + x 
else 
     0 
;; 
 

26	



Binding	Variables	to	Values	
•  Each	OCaml	variable	is	bound	to	1	value	
•  The	value	to	which	a	variable	is	bound	to	never	changes!	

	

 
let x = 3 ;; 
 
 
let add_three (y:int) : int = y + x ;; 
 
 

27	



Binding	Variables	to	Values	
•  Each	OCaml	variable	is	bound	to	1	value	
•  The	value	to	which	a	variable	is	bound	to	never	changes!	

	

 
let x = 3 ;; 
 
 
let add_three (y:int) : int = y + x ;; 
 
 

It	does	not	
maBer	what	
I	write	next.	
add_three	
will	always	
add	3!	

28	



Binding	Variables	to	Values	
•  Each	OCaml	variable	is	bound	to	1	value	
•  The	value	a	variable	is	bound	to	never	changes!	

	

 
let x = 3 ;; 
 
 
let add_three (y:int) : int = y + x ;; 
 
 
let x = 4 ;; 
 
 
let add_four (y:int) : int = y + x ;; 
 

a	disGnct	
variable	that	
"happens	to	
be	spelled	the	
same"	

29	



Binding	Variables	to	Values	
•  Since	the	2	variables	(both	happened	to	be	named	x)	are	

actually	different,	unconnected	things,	we	can	rename	them	

	

 
let x = 3 ;; 
 
 
let add_three (y:int) : int = y + x ;; 
 
 
let zzz = 4 ;; 
 
 
let add_four (y:int) : int = y + zzz ;; 
 
 
let add_seven (y:int) : int = 
  add_three (add_four y) 
;; 

rename	x	
to	zzz	
if	you	want	
to,	replacing	
its	uses	

30	



Binding	Variables	to	Values	
•  Each	OCaml	variable	is	bound	to	1	value	
•  OCaml	is	a	staGcally	scoped	language	
	

	

 
let x = 3 ;; 
 
 
let add_three (y:int) : int = y + x ;; 
 
 
let x = 4 ;; 
 
 
let add_four (y:int) : int = y + x ;; 
 
 
let add_seven (y:int) : int = 
  add_three (add_four y) 
;; 

we	can	use	
add_three	
without	worrying	
about	the	second	
definiGon	of	x	

31	



How	do	let	expressions	operate?	

let x = 2 + 1 in x * x 

32	



How	do	let	expressions	operate?	

let x = 2 + 1 in x * x 

-->	

let x = 3 in x * x 

33	



How	do	let	expressions	operate?	

let x = 2 + 1 in x * x 

-->	

let x = 3 in x * x 

-->	

             3 * 3 

subsGtute	
3	for	x	

34	



How	do	let	expressions	operate?	

let x = 2 + 1 in x * x 

-->	

let x = 3 in x * x 

-->	

             3 * 3 

-->	

             9 

subsGtute	
3	for	x	

35	



How	do	let	expressions	operate?	

let x = 2 + 1 in x * x 

-->	

let x = 3 in x * x 

-->	

             3 * 3 

-->	

             9 

subsGtute	
3	for	x	

Note:		I	write		
e1	-->	e2	
when	e1	evaluates	
to	e2	in	one	step	

36	



Did	you	see	what	I	did	there?	

37	



Did	you	see	what	I	did	there?	

I	defined	the	language	in	terms	of	itself:	
	

let	x	=	2	in	x	+	3						-->							2	+	3	
	

I’m	trying	to	train	you	to	think	at	a	high	level	of	
abstracGon.	

			
I	didn’t	have	to	men%on	low-level	abstrac%ons	like	

assembly	code	or	registers	or	memory	layout	

38	



Another	Example	

let x = 2 in  
let y = x + x in  
y * x 

39	



Another	Example	

let x = 2 in  
let y = x + x in  
y * x 

-->	

subsGtute	
2	for	x	

 
let y = 2 + 2 in  
y * 2 

40	



Another	Example	

let x = 2 in  
let y = x + x in  
y * x 

-->	

-->	

subsGtute	
2	for	x	

 
let y = 2 + 2 in  
y * 2 

 
let y = 4     in  
y * 2 

41	



Another	Example	

let x = 2 in  
let y = x + x in  
y * x 

-->	

-->	

-->	

subsGtute	
2	for	x	

 
let y = 2 + 2 in  
y * 2 

 
let y = 4     in  
y * 2 

 
  
4 * 2 

subsGtute	
4	for	y	

42	



Another	Example	

let x = 2 in  
let y = x + x in  
y * x 

-->	

-->	

-->	

subsGtute	
2	for	x	

 
let y = 2 + 2 in  
y * 2 

 
let y = 4     in  
y * 2 

 
  
4 * 2 

-->	
 
  
8 

subsGtute	
4	for	y	

Moral:	Let	
operates	by	
subsGtuGng	

computed	values	
for	variables	

43	



What	would	happen	in	an	imperaGve	language?	

x = 2; 
x += x; 
return x*2; 

-->	

subsGtute	
2	for	x	

x += 2  ??? 
return x*2; 

Moral:	Let	
operates	by	
subsGtuGng	

computed	values	
for	variables	

C	program:	

This	principle	works	in	
funcGonal	languages,	not	
so	well	in	imperaGve	

languages		

44	



OCAML	BASICS:	
TYPE	CHECKING	AGAIN	

45	



Type-checking	Rules	

	

There	are	simple	rules	that	tell	you	what	the	type	of	an	expression	is.	
	
Those	rules	compute	a	type	for	an	expression	based	on	the	types	of		
its	subexpressions	(and	the	types	of	the	variables	that	are	in	scope).	
	
You	don’t	have	to	know	the	details	of	how	a	subexpression	is	
implemented	to	do	type	checking.		You	just	need	to	know	its	type.	
	
That’s	what	makes	OCaml	type	checking	modular.	

We	write	“e	:	t”	to	say	that	expression	e	has	type	t	

46	



Back	to	Let	Expressions	...	Typing	
	

 
let x = e1 in 
 
e2 
 

overall	expression		
takes	on	the	type	of	e2	

x	granted	type	of	e1	for	use	in	e2	

47	



Back	to	Let	Expressions	...	Typing	
	

 
let x = e1 in 
 
e2 
 

x	granted	type	of	e1	for	use	in	e2	

 
let x = 3 + 4 in 
 
string_of_int x 
 

overall	expression		
takes	on	the	type	of	e2	

x	has	type	int	
for	use	inside	the	
let	body	

overall	expression	
has	type	string	

48	



OCAML	BASICS:	
FUNCTIONS	

49	



 
let add_one (x:int) : int = 1 + x ;; 
 
 

Defining	funcGons	
50	



 
let add_one (x:int) : int = 1 + x ;; 
 
 

Defining	funcGons	

funcGon	name	

argument	name	

type	of	argument	

type	of	result	 expression	
that	computes	
value	produced	
by	funcGon	

;;	terminates	
top-level	let	

let	keyword	

Note:		recursive	funcGons	with	begin	with	"let	rec"	

51	



Defining	funcGons	
•  Nonrecursive	funcGons:	

 
let add_one (x:int) : int = 1 + x ;; 
 
let add_two (x:int) : int = add_one (add_one x) ;; 
 

definiGon	of	add_one	
must	come	before	use	

52	



Defining	funcGons	
•  Nonrecursive	funcGons:	

•  With	a	local	definiGon:	

 
let add_one (x:int) : int = 1 + x ;; 
 
let add_two (x:int) : int = add_one (add_one x) ;; 
 

 
 

local	funcGon	definiGon	
hidden	from	clients	

I	lex	off	the	types.			
O'Caml	figures	them	out	
	
Good	style:	types	on	
top-level	definiGons	

let add_two' (x:int) : int =  
  let add_one x = 1 + x in 
  add_one (add_one x)  
;; 
	

53	



Types	for	FuncGons	
Some	funcGons:	

Types	for	funcGons:	

let add_one (x:int) : int = 1 + x ;; 
 
let add_two (x:int) : int = add_one (add_one x) ;; 
 
let add (x:int) (y:int) : int = x + y ;; 
 

 
add_one : int -> int 
 
add_two : int -> int 
 
add : int -> int -> int 

funcGon	with	two	arguments	

54	



Rule	for	type-checking	funcGons	

 
add_one : int -> int 
 
3 + 4 : int 
 
add_one (3 + 4) : int 

If	a	funcGon	f	:	T1	->	T2	
and	an	argument	e	:	T1		
then	f	e	:	T2	

General	Rule:	

Example:	

55	



Rule	for	type-checking	funcGons	
•  Recall	the	type	of	add:	

 
let add (x:int) (y:int) : int =  
  x + y 
;; 

DefiniGon:	

 
add : int -> int -> int 

Type:	

56	



Rule	for	type-checking	funcGons	
•  Recall	the	type	of	add:	

 
let add (x:int) (y:int) : int =  
  x + y 
;; 

DefiniGon:	

 
add : int -> int -> int 

Type:	

 
add : int -> (int -> int) 

Same	as:	

57	



Rule	for	type-checking	funcGons	

 
add : int -> int -> int 
 
3 + 4 : int 
 
add (3 + 4) : ??? 

If	a	funcGon	f	:	T1	->	T2	
and	an	argument	e	:	T1		
then	f	e	:	T2	
	
	f	:	T1→T2						e	:	T1	
															f	e	:	T2	

General	Rule:	

Example:	

A	->	B	->	C	
is	the	same	as	
A	->	(B	->	C)	

Note:	

58	



Rule	for	type-checking	funcGons	

 
add : int -> (int -> int) 
 
3 + 4 : int 
 
add (3 + 4) :  

	f	:	T1→T2						e	:	T1	
															f	e	:	T2	

General	Rule:	

Example:	

A	->	B	->	C	
is	the	same	as	
A	->	(B	->	C)	

Remember:	

59	



Rule	for	type-checking	funcGons	

 
add : int -> (int -> int) 
 
3 + 4 : int 
 
add (3 + 4) : int -> int 

General	Rule:	

Example:	

A	->	B	->	C	
is	the	same	as	
A	->	(B	->	C)	

Remember:	

	f	:	T1→T2						e	:	T1	
															f	e	:	T2	

60	



Rule	for	type-checking	funcGons	

 
add : int -> int -> int 
 
3 + 4 : int 
 
add (3 + 4) : int -> int 
 
(add (3 + 4)) 7 : int 

General	Rule:	

Example:	

A	->	B	->	C	
is	the	same	as	
A	->	(B	->	C)	

Remember:	

f	:	T1→T2						e	:	T1	
															f	e	:	T2	

61	



Rule	for	type-checking	funcGons	

 
add : int -> int -> int 
 
3 + 4 : int 
 
add (3 + 4) : int -> int 
 
add (3 + 4) 7 : int 

General	Rule:	

Example:	

A	->	B	->	C	
is	the	same	as	
A	->	(B	->	C)	

Remember:	

f	:	T1→T2						e	:	T1	
															f	e	:	T2	

62	



Rule	for	type-checking	funcGons	

 
let munge (b:bool) (x:int) : ?? = 
  if not b then 
    string_of_int x 
  else  
    "hello" 
;; 
 
let y = 17;; 

Example:	

munge (y > 17) : ?? 
 
munge true (f (munge false 3)) : ??    
  f : ?? 
 
munge true (g munge) : ??      
  g : ?? 

63	



Rule	for	type-checking	funcGons	

 
let munge (b:bool) (x:int) : ?? = 
  if not b then 
    string_of_int x 
  else  
    "hello" 
;; 
 
let y = 17;; 

Example:	

munge (y > 17) : ?? 
 
munge true (f (munge false 3)) : ??    
  f : string -> int 
 
munge true (g munge) : ??      
  g : (bool -> int -> string) -> int 

64	



One	key	thing	to	remember	
•  If	you	have	a	funcGon	f	with	a	type	like	this:	

•  Then	each	Gme	you	add	an	argument,	you	can	get	the	type	of	
the	result	by	knocking	off	the	first	type	in	the	series	

A	->	B	->	C	->	D	->	E	->	F	

f	a1	:	B	->	C	->	D	->	E	->	F 	(if	a1	:	A)	
	
f	a1	a2	:	C	->	D	->	E	->	F 	(if	a2	:	B)	
	
f	a1	a2	a3	:	D	->	E	->	F 	(if	a3	:	C)	
	
f	a1	a2	a3	a4	a5	:	F	 	(if	a4	:	D	and	a5	:	E)	

65	



OUR	FIRST*	COMPLEX	DATA	STRUCTURE!	
THE	TUPLE	

*	it	is	really	our	second	complex	data	structure	since	funcGons	
are	data	structures	too!	

66	



•  A	tuple	is	a	fixed,	finite,	ordered	collecGon	of	values		
•  Some	examples	with	their	types:	

Tuples	

(1, 2)        : int * int 
 
("hello", 7 + 3, true)      : string * int * bool 
 
('a', ("hello", "goodbye")) : char * (string * string) 

67	



•  To	use	a	tuple,	we	extract	its	components	
•  General	case:	

	

•  An	example:	

Tuples	

let (id1, id2, …, idn) = e1 in e2 

let (x,y) = (2,4) in x + x + y 

68	



•  To	use	a	tuple,	we	extract	its	components	
•  General	case:	

	

•  An	example:	

Tuples	

let (id1, id2, …, idn) = e1 in e2 

let (x,y) = (2,4) in x + x + y   
-->  2 + 2 + 4  

subsGtute!	

69	



•  To	use	a	tuple,	we	extract	its	components	
•  General	case:	

	

•  An	example:	

Tuples	

let (id1, id2, …, idn) = e1 in e2 

let (x,y) = (2,4) in x + x + y 
-->  2 + 2 + 4   
-->  8 
 

70	



Rules	for	Typing	Tuples	

e1	:	t1								e2	:	t2		
(e1,	e2)	:	t1	*	t2 

71	



Rules	for	Typing	Tuples	

 
let (x1,x2) = e1 in 
 
e2 
 

if	e1	:	t1	*	t2	then	
x1	:	t1	and	x2	:	t2	
inside	the	expression	e2	

overall	expression		
takes	on	the	type	of	e2	

e1	:	t1								e2	:	t2		
(e1,	e2)	:	t1	*	t2 

72	



Distance	between	two	points	

c2	=	a2	+	b2	
(x1,	y1)	

(x2,	y2)	

a	

b	
c	

Problem:			
•  A	point	is	represented	as	a	pair	of	floaGng	point	values.	
•  Write	a	funcGon	that	takes	in	two	points	as	arguments	and	returns	
the	distance	between	them	as	a	floaGng	point	number	

73	



WriGng	FuncGons	Over	Typed	Data	
Steps	to	wriGng	funcGons	over	typed	data:	

1.  Write	down	the	funcGon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	

74	



WriGng	FuncGons	Over	Typed	Data	
Steps	to	wriGng	funcGons	over	typed	data:	

1.  Write	down	the	funcGon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	

•  the	argument	types	suggests	how	to	do	it	
5.  Build	new	output	values	

•  the	result	type	suggests	how	you	do	it		

75	



WriGng	FuncGons	Over	Typed	Data	
Steps	to	wriGng	funcGons	over	typed	data:	

1.  Write	down	the	funcGon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	

•  the	argument	types	suggests	how	to	do	it	
5.  Build	new	output	values	

•  the	result	type	suggests	how	you	do	it		
6.  Clean	up	by	idenGfying	repeated	paNerns	

•  define	and	reuse	helper	funcGons	
•  your	code	should	be	elegant	and	easy	to	read	

76	



WriGng	FuncGons	Over	Typed	Data	
Steps	to	wriGng	funcGons	over	typed	data:	

1.  Write	down	the	funcGon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	

•  the	argument	types	suggests	how	to	do	it	
5.  Build	new	output	values	

•  the	result	type	suggests	how	you	do	it		
6.  Clean	up	by	idenGfying	repeated	paNerns	

•  define	and	reuse	helper	funcGons	
•  your	code	should	be	elegant	and	easy	to	read	

Types	help	structure	your	thinking	about	how	to	write	programs.	

77	



Distance	between	two	points	

type point = float * float 
 

a	type	abbreviaGon	 (x1,	y1)	

(x2,	y2)	

a	

b	
c	

78	



Distance	between	two	points	

type point = float * float 
 
let distance (p1:point) (p2:point) : float = 
 
 
 
 
;; 

write	down	funcGon	name	
argument	names	and	types	

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

79	



Distance	between	two	points	

type point = float * float 
 
 
(* distance (0.0,0.0) (0.0,1.0) == 1.0 
 * distance (0.0,0.0) (1.0,1.0) == sqrt(1.0 + 1.0) 
 * 
 * from the picture: 
 * distance (x1,y1) (x2,y2) == sqrt(a^2 + b^2)  
 *)  
 
 
let distance (p1:point) (p2:point) : float = 
 
 
 
 
;; 

(x1,	y1)	

(x2,	y2)	

a	

b	
c	examples	

80	



Distance	between	two	points	

type point = float * float 
 
let distance (p1:point) (p2:point) : float = 
 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  ... 
 
 
;; 

deconstruct	
funcGon	inputs	

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

81	



Distance	between	two	points	

type point = float * float 
 
let distance (p1:point) (p2:point) : float = 
 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  sqrt ((x2 -. x1) *. (x2 -. x1) +.  
        (y2 -. y1) *. (y2 -. y1)) 
;; 

compute		
funcGon	
results	

noGce	operators	on	
floats	have	a	"."	in	them	

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

82	



Distance	between	two	points	

type point = float * float 
 
let distance (p1:point) (p2:point) : float = 
  let square x = x *. x in 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  sqrt (square (x2 -. x1)) +.  
        square (y2 -. y1)) 
;; 

define	helper	funcGons	to	
avoid	repeated	code	

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

83	



Distance	between	two	points	

type point = float * float 
 
let distance (p1:point) (p2:point) : float = 
  let square x = x *. x in 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  sqrt (square (x2 -. x1) +. square (y2 -. y1)) 
;; 
 
let pt1 = (2.0,3.0);; 
let pt2 = (0.0,1.0);; 
let dist12 = distance pt1 pt2;;  

tesGng	

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

84	



MORE	TUPLES	

85	



Tuples	
•  Here's	a	tuple	with	2	fields:	

(4.0,	5.0)	:	float	*	float	

86	



Tuples	
•  Here's	a	tuple	with	2	fields:	

•  Here's	a	tuple	with	3	fields:	

(4.0,	5.0)	:	float	*	float	

(4.0,	5,	"hello")	:	float	*	int	*	string	

87	



Tuples	
•  Here's	a	tuple	with	2	fields:	

•  Here's	a	tuple	with	3	fields:	

•  Here's	a	tuple	with	4	fields:	

(4.0,	5.0)	:	float	*	float	

(4.0,	5,	"hello")	:	float	*	int	*	string	

(4.0,	5,	"hello",	55)	:	float	*	int	*	string	*	int	

88	



Tuples	
•  Here's	a	tuple	with	2	fields:	

•  Here's	a	tuple	with	3	fields:	

•  Here's	a	tuple	with	4	fields:	

	
•  Have	you	ever	thought	about	what	a		tuple	with	0	fields	might	

look	like?	

(4.0,	5.0)	:	float	*	float	

(4.0,	5,	"hello")	:	float	*	int	*	string	

(4.0,	5,	"hello",	55)	:	float	*	int	*	string	*	int	

89	



Unit	
•  Unit	is	the	tuple	with	zero	fields!	

()	:	unit	

•  the	unit	value	is	wriNen	with	an	pair	of	parens	
•  there	are	no	other	values	with	this	type!	
	
	

90	



Unit	
•  Unit	is	the	tuple	with	zero	fields!	

•  Why	is	the	unit	type	and	value	useful?	
•  Every	expression	has	a	type:	

()	:	unit	

•  the	unit	value	is	wriNen	with	an	pair	of	parens	
•  there	are	no	other	values	with	this	type!	
	
	

(print_string	"hello	world\n")		:				???	

91	



Unit	
•  Unit	is	the	tuple	with	zero	fields!	

•  Why	is	the	unit	type	and	value	useful?	
•  Every	expression	has	a	type:	

•  Expressions	executed	for	their	effect	return	the	unit	value	

()	:	unit	

•  the	unit	value	is	wriNen	with	an	pair	of	parens	
•  there	are	no	other	values	with	this	type!	
	
	

(print_string	"hello	world\n")		:				unit	

92	



SUMMARY:	
BASIC	FUNCTIONAL	PROGRAMMING	

93	



WriGng	FuncGons	Over	Typed	Data	
•  Steps	to	wriGng	funcGons	over	typed	data:	

1.  Write	down	the	funcGon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	
5.  Build	new	output	values	
6.  Clean	up	by	idenGfying	repeated	paNerns	

•  For	unit	type:	
–  when	the	input	has	type	unit	

•  use	let	()	=	…	in	…	to	deconstruct	
•  or	beNer	use	e1;	…	to	deconstruct	if	e1	has	type	unit	

–  when	the	output	has	type	unit	
•  use	()	to	construct		

94	



WriGng	FuncGons	Over	Typed	Data	
Steps	to	wriGng	funcGons	over	typed	data:	

1.  Write	down	the	funcGon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	

•  the	argument	types	suggest	how	to	do	it	
5.  Build	new	output	values	

•  the	result	type	suggest	how	you	do	it		
6.  Clean	up	by	idenGfying	repeated	paNerns	

•  define	and	reuse	helper	funcGons	
•  your	code	should	be	elegant	and	easy	to	read	

95	



WriGng	FuncGons	Over	Typed	Data	
Steps	to	wriGng	funcGons	over	typed	data:	

1.  Write	down	the	funcGon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	
5.  Build	new	output	values	
6.  Clean	up	by	idenGfying	repeated	paNerns	

For	tuple	types:	
–  when	the	input	has	type	t1	*	t2	

•  use	let	(x,y)	=	…	to	deconstruct	
–  when	the	output	has	type	t1	*	t2	

•  use	(e1,	e2)	to	construct		

We	will	see	this	paradigm	repeat	itself	over	and	over	

96	



OpGons	
A	value	v	has	type	t	opGon	if	it	is	either:	

–  the	value	None,	or	
–  a	value	Some	v',	and	v'	has	type	t	

OpGons	can	signal	there	is	no	useful	result	to	the	computaGon	

Example:	we	look	up	a	value	in	a	hash	table	using	a	key.			
–  If	the	key	is	present,	return	Some	v	where	v	is	the	associated	value	
–  If	the	key	is	not	present,	we	return	None	

	

97	



Slope	between	two	points	

type point = float * float 
 
let slope (p1:point) (p2:point) : float = 
 
 
 
   
;; 

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

98	



Slope	between	two	points	

type point = float * float 
 
let slope (p1:point) (p2:point) : float = 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
   
 
;; 

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

deconstruct	tuple	

99	



Slope	between	two	points	

type point = float * float 
 
let slope (p1:point) (p2:point) : float = 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  let xd = x2 -. x1 in 
  if xd != 0.0 then 
    (y2 -. y1) /. xd 
  else 
    ???  
;; 

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

what	can	we	return?	

avoid	divide	by	zero	

100	



Slope	between	two	points	

type point = float * float 
 
let slope (p1:point) (p2:point) : float option = 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  let xd = x2 -. x1 in 
  if xd != 0.0 then 
    ??? 
  else 
    ???  
;; 

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

we	need	an	opGon	
type	as	the	result	type	

101	



Slope	between	two	points	

type point = float * float 
 
let slope (p1:point) (p2:point) : float option = 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  let xd = x2 -. x1 in 
  if xd != 0.0 then 
    Some ((y2 -. y1) /. xd) 
  else 
    None  
;; 

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

102	



Slope	between	two	points	

type point = float * float 
 
let slope (p1:point) (p2:point) : float option = 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  let xd = x2 -. x1 in 
  if xd != 0.0 then 
    (y2 -. y1) /. xd 
  else 
    None  
;; 

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

Has	type	float	

Can	have	type	float	opGon	

103	



Slope	between	two	points	

type point = float * float 
 
let slope (p1:point) (p2:point) : float option = 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  let xd = x2 -. x1 in 
  if xd != 0.0 then 
    (y2 -. y1) /. xd 
  else 
    None  
;; 

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

Has	type	float	

Can	have	type	float	opGon	 WRONG:		Type	mismatch	

104	



Slope	between	two	points	

type point = float * float 
 
let slope (p1:point) (p2:point) : float option = 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  let xd = x2 -. x1 in 
  if xd != 0.0 then 
    (y2 -. y1) /. xd 
  else 
    None  
;; 

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

Has	type	float	

doubly	WRONG:	
result	does	not	
match	declared	result	

105	



Remember	the	typing	rule	for	if	

•  Returning	an	opGonal	value	from	an	if	statement:	

if	…	then	
	
				None								 	:	t	opGon	
	
else	
						
				Some	(	…	) 	:	t	opGon	

		e1	:	bool					e2:	T					e3:	T				
	if	e1	then	e2	else	e3		:		T	

																																.					
	None	:	T	opGon	

	
													e	:	T													.					
	Some	e	:	T	opGon	

	

106	



How	do	we	use	an	opGon?	

slope : point -> point -> float option 
 

returns	a	float	opGon	

107	



How	do	we	use	an	opGon?	

slope : point -> point -> float option 
 
 
let print_slope (p1:point) (p2:point) : unit =  
 
 
 
;; 

108	



How	do	we	use	an	opGon?	

slope : point -> point -> float option 
 
 
let print_slope (p1:point) (p2:point) : unit =  
        slope p1 p2 
 
 
;; 

returns	a	float	opGon;	
to	print	we	must	discover	if	it	is	
None	or	Some	

109	



How	do	we	use	an	opGon?	

slope : point -> point -> float option 
 
 
let print_slope (p1:point) (p2:point) : unit =  
  match slope p1 p2 with 
 
 
;; 

110	



How	do	we	use	an	opGon?	

slope : point -> point -> float option 
 
 
let print_slope (p1:point) (p2:point) : unit =  
  match slope p1 p2 with 
    Some s ->  
  | None ->  
;; 

There	are	two	possibiliGes		

VerGcal	bar	separates	possibiliGes	

111	



How	do	we	use	an	opGon?	

slope : point -> point -> float option 
 
 
let print_slope (p1:point) (p2:point) : unit =  
  match slope p1 p2 with 
    Some s ->  
  | None ->  
;; 

The	object	between	|	and	->	is	called	a	paNern		

The	"Some	s"		paNern	includes	the	variable	s		

112	



How	do	we	use	an	opGon?	

slope : point -> point -> float option 
 
 
let print_slope (p1:point) (p2:point) : unit =  
  match slope p1 p2 with 
    Some s ->  
      print_string ("Slope: " ^ string_of_float s) 
  | None ->  
      print_string "Vertical line.\n" 
;; 

113	



WriGng	FuncGons	Over	Typed	Data	
•  Steps	to	wriGng	funcGons	over	typed	data:	

1.  Write	down	the	funcGon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	
5.  Build	new	output	values	
6.  Clean	up	by	idenGfying	repeated	paNerns	

•  For	opGon	types:	

match … with 
  | None -> … 
  | Some s -> … 

when	the	input	has	type	t	opGon,		
deconstruct	with:	
	

when	the	output	has	type	t	opGon,		
construct	with:	
	

Some (…) None 

114	



MORE	PATTERN	MATCHING	

115	



Recall	the	Distance	FuncGon	

type point = float * float 
 
let distance (p1:point) (p2:point) : float = 
  let square x = x *. x in 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  sqrt (square (x2 -. x1) +. square (y2 -. y1)) 
;; 
 

116	



Recall	the	Distance	FuncGon	

type point = float * float 
 
let distance (p1:point) (p2:point) : float = 
  let square x = x *. x in 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  sqrt (square (x2 -. x1) +. square (y2 -. y1)) 
;; 
 

(x2,	y2)	is	an	example	of	a	paNern	–	a	paNern	for	tuples.	
	
So	let	declaraGons	can	contain	paNerns	just	like	match	statements	
	
The	difference	is	that	a	match	allows	you	to	consider	mulGple	different	data	shapes	

117	



Recall	the	Distance	FuncGon	

type point = float * float 
 
let distance (p1:point) (p2:point) : float = 
  let square x = x *. x in 
  match p1 with 
  | (x1,y1) ->   
       let (x2,y2) = p2 in 
       sqrt (square (x2 -. x1) +. square (y2 -. y1)) 
;; 
 

There	is	only	1	possibility	when	matching	a	pair	

118	



Recall	the	Distance	FuncGon	

type point = float * float 
 
let distance (p1:point) (p2:point) : float = 
  let square x = x *. x in 
  match p1 with 
  | (x1,y1) ->   
     match p2 with 
     | (x2,y2) -> 
        sqrt (square (x2 -. x1) +. square (y2 -. y1)) 
;; 
 

We	can	nest	one	match	expression	inside	another.			
(We	can	nest	any	expression	inside	any	other,	if	the	expressions	have	the	
right	types)		

119	



BeNer	Style:	Complex	PaNerns	

type point = float * float 
 
let distance (p1:point) (p2:point) : float = 
  let square x = x *. x in 
  match (p1, p2) with 
  | ((x1,y1), (x2, y2)) ->   
    sqrt (square (x2 -. x1) +. square (y2 -. y1)) 
;; 
 

PaNern	for	a	pair	of	pairs:			((variable,	variable),	(variable,	variable))	
All	the	variable	names	in	the	paNern	must	be	different.	

we	built	a	pair	of	pairs	

120	



BeNer	Style:	Complex	PaNerns	

type point = float * float 
 
let distance (p1:point) (p2:point) : float = 
  let square x = x *. x in 
  match (p1, p2) with 
  | (p3, p4) -> 
    let (x1, y1) = p3 in 
    let (x2, y2) = p4 in   
    sqrt (square (x2 -. x1) +. square (y2 -. y1)) 
;; 
 

A	paNern	must	be	consistent	with	the	type	of	the	expression	
in	between	match	…	with	
We	use	(p3,	p4)	here	instead	of	((x1,	y1),	(x2,	y2))	

we	built	a	pair	of	pairs	

121	



PaNern-matching	in	funcGon	parameters	

type point = float * float 
 
let distance ((x1,y1):point) ((x2,y2):point) : float = 
  let square x = x *. x in 
  sqrt (square (x2 -. x1) +. square (y2 -. y1)) 
;; 

FuncGon	parameters	are	paNerns	too!	

122	



What’s	the	best	style?	

let distance (p1:point) (p2:point) : float = 
  let square x = x *. x in 
  let (x1,y1) = p1 in  
  let (x2,y2) = p2 in 
  sqrt (square (x2 -. x1) +. square (y2 -. y1)) 

Either	of	these	is	reasonably	clear	and	compact.	
Code	with	unnecessary	nested	matches/lets	is	parGcularly	ugly	to	read.			
You'll	be	judged	on	code	style	in	this	class.	

let distance ((x1,y1):point) ((x2,y2):point) : float = 
  let square x = x *. x in 
  sqrt (square (x2 -. x1) +. square (y2 -. y1)) 

123	



Combining	paNerns	

type point = float * float 
 
(* returns a nearby point in the graph if one exists *) 
nearby : graph -> point -> point option 
 
let printer (g:graph) (p:point) : unit = 
  match nearby g p with 
  | None -> print_string "could not find one\n" 
  | Some (x,y) ->  
      print_float x;  
      print_string ", "; 
      print_float y; 
      print_newline(); 
;; 
 

124	



Other	PaNerns	
•  Constant	values	can	be	used	as	paNerns	

let small_prime (n:int) : bool = 
  match n with 
  | 2 -> true 
  | 3 -> true 
  | 5 -> true 
  | _ -> false 
;; 
 let iffy (b:bool) : int = 

  match b with 
  | true -> 0 
  | false -> 1 
;; 
 the	underscore	paNern	

matches		anything	
it	is	the	"don't	care"	paNern	

125	



A	SHORT	JAVA	RANT	

126	



DefiniGon	and	Use	of	Java	Pairs	
	

What	could	go	wrong?	

public class Pair { 
 
  public int x; 
  public int y; 
 
  public Pair (int a, int b) { 
    x = a; 
    y = b; 
  } 
} 

public class User { 
 
  public Pair swap (Pair p1) { 
    Pair p2 =  
      new Pair(p1.y, p1.x); 
     
    return p2; 
  } 
} 

127	



A	Paucity	of	Types	

	

	
The	input	p1	to	swap	may	be	null	and	we	forgot	to	check.	
	
Java	has	no	way	to	define	a	pair	data	structure	that	is	just	a	pair.	
	
How	many	students	in	the	class	have	seen	an	accidental	null	pointer	
excep%on	thrown	in	their	Java	code?	

public class Pair { 
 
  public int x; 
  public int y; 
 
  public Pair (int a, int b) { 
    x = a; 
    y = b; 
  } 
} 

public class User { 
 
  public Pair swap (Pair p1) { 
    Pair p2 =  
      new Pair(p1.y, p1.x); 
     
    return p2; 
  } 
} 

128	



From	Java	Pairs	to	O'Caml	Pairs	

type java_pair = (int * int) option 

In	O'Caml,	if	a	pair	may	be	null	it	is	a	pair	opGon:	

129	



From	Java	Pairs	to	O'Caml	Pairs	

let swap_java_pair (p:java_pair) : java_pair = 
  let (x,y) = p in 
  (y,x) 

type java_pair = (int * int) option 

In	O'Caml,	if	a	pair	may	be	null	it	is	a	pair	opGon:	

And	if	you	write	code	like	this:	

130	



From	Java	Pairs	to	O'Caml	Pairs	

let swap_java_pair (p:java_pair) : java_pair = 
  let (x,y) = p in 
  (y,x) 

type java_pair = (int * int) option 

In	O'Caml,	if	a	pair	may	be	null	it	is	a	pair	opGon:	

And	if	you	write	code	like	this:	

# … Characters 91-92: 
    let (x,y) = p in (y,x);; 
                ^ 
Error: This expression has type java_pair = (int * int) option 
       but an expression was expected of type 'a * 'b 

You	get	a	helpful	error	message	like	this:	

131	



From	Java	Pairs	to	O'Caml	Pairs	

type java_pair = (int * int) option 

let swap_java_pair (p:java_pair) : java_pair = 
  match p with 
   | Some (x,y) -> Some (y,x) 

And	what	if	you	were	up	at	3am	trying	to	finish	your	
COS	326	assignment	and	you	accidentally	wrote	the	
following	sleep-deprived,	brain-dead	statement?	

132	



From	Java	Pairs	to	O'Caml	Pairs	

type java_pair = (int * int) option 

let swap_java_pair (p:java_pair) : java_pair = 
  match p with 
   | Some (x,y) -> Some (y,x) 

And	what	if	you	were	up	at	3am	trying	to	finish	your	
COS	326	assignment	and	you	accidentally	wrote	the	
following	sleep-deprived,	brain-dead	statement?	

 ..match p with 
      | Some (x,y) -> Some (y,x) 
Warning 8: this pattern-matching is not exhaustive. 
Here is an example of a value that is not matched: 
None 

OCaml	to	the	rescue!	

133	



From	Java	Pairs	to	O'Caml	Pairs	

type java_pair = (int * int) option 

let swap_java_pair (p:java_pair) : java_pair = 
  match p with 
   | Some (x,y) -> Some (y,x) 

And	what	if	you	were	up	at	3am	trying	to	finish	your	
COS	326	assignment	and	you	accidentally	wrote	the	
following	sleep-deprived,	brain-dead	statement?	

An	easy	fix!	

let swap_java_pair (p:java_pair) : java_pair = 
   match p with 
    | None -> None 
    | Some (x,y) -> Some (y,x) 

134	



From	Java	Pairs	to	O'Caml	Pairs	

Moreover,	your	pairs	are	probably	almost	never	null!	
	
	
	

Defensive	programming	&	always	checking	for	null	is	

	
	

135	



From	Java	Pairs	to	O'Caml	Pairs	

	
There	just	isn't	always	some	"good	thing"	for	a	funcGon	to	do	when	it	receives	a	

bad	input,	like	a	null	pointer	
	

In	O'Caml,	all	these	issues	disappear	when	you	use	the	proper	type	for	a	pair	and	
that	type	contains	no	"extra	junk”	

	
	

Once	you	know	O'Caml,	it	is	hard	to	write	swap	incorrectly	
Your	bullet-proof	code	is	much	simpler	than	in	Java.	

	

type pair = int * int 

let swap (p:pair) : pair = 
   let (x,y) = p in (y,x) 

136	



Summary	of	Java	Pair	Rant	

Java	has	a	paucity	of	types	
–  There	is	no	type	to	describe	just	the	pairs	
–  There	is	no	type	to	describe	just	the	triples	
–  There	is	no	type	to	describe	the	pairs	of	pairs	
–  There	is	no	type	…	

OCaml	has	many	more	types	
–  use	opGon	when	things	may	be	null	
–  do	not	use	opGon	when	things	are	not	null	
–  OCaml	types	describe	data	structures	more	precisely	

•  programmers	have	fewer	cases	to	worry	about	
•  enGre	classes	of	errors	just	go	away	
•  type	checking	and	paNern	analysis	help	prevent	programmers	from	
ever	forge~ng	about	a	case	

137	



Summary	of	Java	Pair	Rant	

Java	has	a	paucity	of	types	
–  There	is	no	type	to	describe	just	the	pairs	
–  There	is	no	type	to	describe	just	the	triples	
–  There	is	no	type	to	describe	the	pairs	of	pairs	
–  There	is	no	type	…	

OCaml	has	many	more	types	
–  use	opGon	when	things	may	be	null	
–  do	not	use	opGon	when	things	are	not	null	
–  ocaml	types	describe	data	structures	more	precisely	

•  programmers	have	fewer	cases	to	worry	about	
•  enGre	classes	of	errors	just	go	away	
•  type	checking	and	paNern	analysis	help	prevent	programmers	from	
ever	forge~ng	about	a	case	

	
SCORE:		OCAML	1,		JAVA	0	
	

138	



C,	C++		Rant	

Java	has	a	paucity	of	types	
–  but	at	least	when	you	forget	something,	
	it		throws	an	excep.on	instead	of	silently	going	off	the	trolley!	

	
If	you	forget	to	check	for	null	pointer	in	a	C	program,	

–  no	type-check	error	at	compile	Gme	
–  no	excepGon	at	run	Gme	
–  it	might	crash	right	away	(that	would	be	best),	or	
–  it	might	permit	a	buffer-overrun	(or	similar)	vulnerability	
–  so	the	hackers	pwn	you!	

139	



Java	has	a	paucity	of	types	
–  but	at	least	when	you	forget	something,	
	it		throws	an	excep.on	instead	of	silently	going	off	the	trolley!	

	
If	you	forget	to	check	for	null	pointer	in	a	C	program,	

–  no	type-check	error	at	compile	Gme	
–  no	excepGon	at	run	Gme	
–  it	might	crash	right	away	(that	would	be	best),	or	
–  it	might	permit	a	buffer-overrun	(or	similar)	vulnerability	
–  so	the	hackers	pwn	you!	

Summary	of	C,	C++	rant	

	
SCORE:			
OCAML	1,		JAVA	0,			C		-1	
	

140	



OVERALL	SUMMARY:	
A	SHORT	INTRODUCTION	TO	
FUNCTIONAL	PROGRAMMING	

141	



FuncGonal	Programming	
Steps	to	wriGng	funcGons	over	typed	data:	

1.  Write	down	the	funcGon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	
4.  Deconstruct	input	data	structures	

•  the	argument	types	suggest	how	you	do	it	
•  the	types	tell	you	which	cases	you	must	cover	

5.  Build	new	output	values	
•  the	result	type	suggests	how	you	do	it		

6.  Clean	up	by	idenGfying	repeated	paNerns	
•  define	and	reuse	helper	funcGons	
•  refactor	code	to	use	your	helpers	
•  your	code	should	be	elegant	and	easy	to	read	

142	



Summary:	ConstrucGng/DeconstrucGng	Values	

Type	 Construct	Values	 Number	of	Cases	 Deconstruct	Values	
int	 0,	-1,	2,	…	 2^31-1	 match	i	with	

	|	0	->	…	
	|	-1	->	…	
	…	
	|	x	->	…	

bool	 true,	false	 2	 match	b	with	
|	true	->	…	
|	false	->	….	

t1	*	t2	 (2,	"hi")	 (#	of	t1)	*	(#	of	t2)	 let	(x,y)	=	…	in	…	
	
match	p	with	(x,y)	->	…	

unit	 ()	 1	 e1;	…	
t	opGon	 None,	Some	3	 1	+	(#	of	t1)	 match	opt	with	

|	None	->	…	
|	Some	x	->	…	

143	


