
Outatime: Using Speculation to
Enable Low-Latency Continuous
Interaction for Mobile Cloud Gaming
K Y U N G M I N L E E , D A V I D C H U , E D U A R D O Q U E R V O , J O H A N N E S KO P F, Y U R Y D E G T YA R E V, S E R G E Y G R I Z A N , A L E C
W O L M A N , J A S O N F L I N N

U N I V E R S I T Y O F M I C H I G A N , M I C R O S O F T R E S E A R C H , S T. P E T E R S B E R G P O LY T E C H N I C U N I V E R S I T Y, S I B E R I A N
F E D E R A L U N E V E R S I T Y

M O B I ’ S Y S ’ 1 5 , M AY 1 8 - 2 2 , 2 0 1 5

1

Background: Cloud Gaming
oProcessing and rendering done on cloud

oClient sends inputs, receives rendered images

oBenefits
oBetter graphics – use server’s processing hardware

oEasy to develop – no compatibility issues

2

The Problem
oLacks real-time interactivity
oHigh latency sensitivity affects gameplay

oBuffering impossible due to changing user input

Fig. 1 (a) – Standard Cloud Gaming: Frame time depends on net latency

3

Solution
oSpeculate frames until next response

oChallenges – dynamism and sensitivity

Fig. 1 (b) – Outatime: Frame time is negligible

4

Outatime Architecture

5

Fig. 2: Outatime Architecture

Speculation for Navigation
oCreate discrete time Markov Chain
oDefine input 𝑁𝑡 = 𝛿𝑥,𝑡 , 𝛿𝑦,𝑡 , 𝛿𝑧,𝑡 , 𝜃𝑥,𝑡 , 𝜃𝑦,𝑡 , 𝜃𝑧,𝑡

oGiven input 𝑛𝑡, find most likely input for next frame 𝑁𝑡+1
oFor RTT 𝜆:

 𝑁𝑡+𝜆 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝 𝑁𝑡+1 𝑁𝑡 = 𝑛𝑡 ∗ 𝑖=1
𝜆−1 𝑝 𝑁𝑡+𝑖+1 𝑁𝑡+𝑖

oAlso track error estimate

6

Speculation for Navigation
oSupersampling – Collect data as fast as input device allows
oImproves accuracy

oReduces sampling noise

oPrediction accuracy improves over 5 min.
of samples

oUse training data of other players
oCharacteristics depend on skill level

7

Fig. 5 – Error distribution for
different training periods

Speculation for Navigation
oVideo Shake
oCaused by small prediction errors at low-latency

oFixed using Kalman Filtering

oKalman Filter
oEmphasizes measured values for low RTT (< 40ms.)

oEmphasizes predicted values for high RTT (> 40ms.)

8

Misprediction Compensation
oImage-based Rendering
oTransform rendered prediction to be more accurate

oClipped Cube Map
oRender areas surrounding frame in case they are needed

oLimit size based on expected error values

9

Clipped Cube Map

10

Fig. 7 – Cube Map Example

Image-based Rendering (IBR)

11

Figure 6 – Image-based Rendering in Fable 3

Speculation for Impulse Events
oMuch harder to predict

oSolution: speculate different possibilities in parallel

oCreate speculative input sequence

oAs RTT increases, speculative sequence space grows exponentially

oTwo methods to decrease speculative sequence size
oSubsampling

oTime-Shifting

12

Subsampling and Time-Shifting
oSubsampling
oSample inputs at a period 𝜎 > 1 clock tick

oReduces state space to 2
𝜆

𝜎

oOn its own, likely to miss samples

oTime-shifting
oShift every input activation to occur on the nearest subsample

oSolves problem of subsampling

oCan shift inputs backwards since state is speculative

13

14

Speculation for Impulse Events
oNot all inputs are binary
oAlternate firing for a weapon

oState space grows quickly (eg. 3𝜆 instead of 2𝜆)

oOutatime supports ternary and quaternary events for RTT ≤ 128ms

oSome impulse events delay tolerant
oDo not speculate

oInstead, use time compression to account for RTT delay

15

Checkpoint and Rollback
oSupports page-level and object-level checkpointing
oDepends on density of Simulation State Objects (SSOs)

oPage-level checkpointing
oCopy page on page write

oInvalidate mis-speculated data

oCopy back on rollback

oObject-level checkpointing
oUse inverse functions when rolling back

16

Implementation
oManually modified Doom 3 code

oDoom 3 master with multiple speculative slave versions
orender
oundo

ocommit

orendercube

oUsed hardware to improve compression and video encoding

17

Experiment
o3 Experiments
oDoom 3: 23 people

oDoom 3: 18 gamers

oFable 3: 23 people

oMeasured on 3 metrics:
oMean Opinon Score

oSkill Impact

oTask Completion Time

18

Results
oMinor decrease in quality for latencies up to 128 ms

oMore noticed by gamers
oLarger/faster movements cause greater mispredictions

oMay be more sensitive as a player to such effects

oSignificant reduction in skills at higher latencies

oTask completion relatively unaffected

oImprovement over regular cloud gaming

19

Results

20

Performance
oBandwidth 1.97x higher than standard cloud gaming
o1.04 Mbps at RTT = 128ms

oFramerate = 52fps at 95th percentile

21

Strengths and Weaknesses
oStrengths
oMany useful and practical tactics to minimize bandwidth

oEffective and varied predictive measures are taken for different classifications of inputs

oProvides foundation to make cloud gaming practical with relatively low latency

oWeaknesses
oDoes not seem scalable to games with many inputs or fast inputs (eg. RTS)

oRequires significant code restructuring
o Harder to use on existing games

o Does not consider faster framerates
o Modern games are frequently 60Hz

22

Reference
[1] Lee, Kyungmin, et al. Outatime: Using speculation to enable low-latency continuous
interaction for mobile cloud gaming. Proc. of MobiSys. 2015.

23

Questions?

24

Image Source: http://i.ytimg.com/vi/gCSmykwODqA/maxresdefault.jpg

http://i.ytimg.com/vi/gCSmykwODqA/maxresdefault.jpg

25

26

