
44

In 1996, Richard Sites, one of the
fathers of computer architecture and a lead
designer of the DEC Alpha microprocessor,
wrote the following about the future of com-
puter architecture research:

Across the industry, today’s chips are large-

ly able to execute code faster than we can

feed them with instructions and data.

There are no longer performance bottle-

necks in the floating-point multiplier or in

having only a single integer unit. The real

design action is in memory subsystems—

caches, buses, bandwidth, and latency.

An anecdote: in a recent database bench-

mark study using TPC-C, both 200-MHz

Pentium Pro and 400-MHz 21164 Alpha

systems were measured at 4.2-4.5 CPU

cycles per instruction retired. In other

words, three out of every four CPU cycles

retired zero instructions: most were spent

waiting for memory….Processor speed has

seriously outstripped memory speed.

Increasing the width of instruction issue

and increasing the number of simultane-

ous instruction streams only makes the

memory bottleneck worse. If a CPU chip

today needs to move 2 GBytes/s (say, 16

bytes every 8 ns) across the pins to keep

itself busy, imagine a chip in the foresee-

able future with twice the clock rate, twice

the issue width, and two instruction

streams. All these factors multiply togeth-

er to require about 16 GBytes/s of pin

bandwidth to keep this chip busy. It is not

clear whether pin bandwidth can keep

up—32 bytes every 2 ns?

I expect that over the coming decade

memory subsystems design will be the only
important design issue for microprocessors.1

Sites put it quite bluntly, even titling his
article “It’s the Memory, Stupid!” Because of
the increasing processor and memory speed
gap, the organization, architecture, and design
of memory subsystems (particularly DRAM
subsystems) have become dominant parts of
computer system design.

Accordingly, memory system behavior has
become a focal point of computer architecture
research. Recent research ranges from studies
of memory controller design2,3 to attempts to

Bruce Jacob
University of Maryland

THE WIDENING GAP BETWEEN TODAY’S PROCESSOR AND MEMORY SPEEDS

MAKES DRAM SUBSYSTEM DESIGN AN INCREASINGLY IMPORTANT PART OF

COMPUTER SYSTEM DESIGN. IF THE DRAM RESEARCH COMMUNITY WOULD

FOLLOW THE MICROPROCESSOR COMMUNITY’S LEAD BY LEANING MORE

HEAVILY ON ARCHITECTURE- AND SYSTEM-LEVEL SOLUTIONS IN ADDITION TO

TECHNOLOGY-LEVEL SOLUTIONS TO ACHIEVE HIGHER PERFORMANCE, THE GAP

MIGHT BEGIN TO CLOSE.

A CASE FOR STUDYING DRAM
ISSUES AT THE SYSTEM LEVEL

Published by the IEEE Computer Society 0272-1732/03/$17.00 2003 IEEE

integrate the DRAM core with the processor
core for improved memory bandwidth and
power consumption.4-6 Other recent work
looks at the performance of different com-
mercial DRAMs at the architecture level and
a wide range of DRAM bus and memory con-
troller organizations at the system level.7,8 Most
work done at the DRAM architecture level—
for example, evolving the DRAM interface
from fast page mode (FPM) to extended data
out (EDO) to SDRAM to double data rate
(DDR) SDRAM—has aimed at improving
the individual DRAM device’s bandwidth.
Simply improving bandwidth, however, does
not necessarily imply a significant improve-
ment in total execution time.

Figure 1 shows why paying attention to the
architecture level is important, particularly

concerning DRAM systems. Before the mid-
1980s, technological advances largely drove
microprocessor performance. Since then,
microprocessors have relied on advances in
both technology and architecture for improved
performance. The result, by the mid-1990s,
was a factor-of-five improvement over relying
on technology alone.

One reason for the growing performance
gap between processors and DRAM systems
is that relatively few studies exist on the archi-
tecture of DRAM devices and systems. As a
result, DRAMs have relatively little to draw
on for performance improvements. Whereas
processor performance has relied on improve-
ments in both technology and architecture,
DRAM performance has relied on technology
improvements and only bandwidth-related

45JULY–AUGUST 2003

1983 1985 1987 1989 1991 1993 1995

Year

0

100

200

300

400

S
P

E
C

in
t r

at
in

g

Average performance
increase of

1.58× per year

Average performance
increase of

1.35× per year

DEC Alpha

DEC Alpha

DEC Alpha

IBM Power2

HP
9000

IBM
Power1MIPS

R2000
Sun4

MIPS
R3000

Technology plus architecture
Technology alone

Figure 1. Relative importance of architecture and technology. Growth in microprocessor performance has
been dramatic since the mid-1980s, averaging 50 to 60 percent a year. Earlier, microprocessor performance
growth was largely technology driven and averaged about 35 percent a year. The difference is attributable to
advances in computer architecture. (Source: J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach, 2nd ed., Morgan Kaufmann, 1996)

improvements in architecture. Further hob-
bling DRAM is the fact that memory tech-
nology improvements aim primarily at
increasing DRAM capacity, not DRAM speed.
So, whereas technology advances improve
microprocessor performance 35 percent a year,
they improve DRAM performance only 7 per-
cent a year.9 Clearly, the industry could regain
some of this difference by focusing all tech-
nology improvements on DRAM performance
rather than DRAM capacity. Nevertheless,
DRAM performance would still trail micro-
processor performance unless it drew from
advances in both technology and architecture.

To meet the need for architecture- and sys-
tem-level DRAM studies, my graduate stu-
dents and I have developed a simulation
framework that places disparate DRAM archi-
tectures on the same footing. We based the
framework on a model that defines a contin-
uum of design choices covering most con-
temporary DRAM architectures, such as
Rambus, Direct Rambus, SDRAM, and
DDR SDRAM. Using this framework, we
investigated system-level parameters, includ-
ing bus width, bus speed, number of inde-
pendent channels, logical organization of
channels, degree of banking, degree of inter-
leaving, read burst width, write burst width,
split-transaction versus pipelined buses, sym-
metric versus asymmetric read/write request
shapes, and others. These are system-level
parameters (as opposed to architecture-level)
because they can be defined independently of
the CPU or DRAM architectures.

This article presents the simulation frame-
work and an initial study of system-level para-
meters, including bus speed, bus width,
number of independent channels, degree of
banking, and read/write burst width. Despite
the large design space this study covers, it only
begins to explore memory system organiza-
tions. We modeled a high-performance
uniprocessor system—featuring a 2-GHz out-
of-order superscalar CPU with lockup-free L1
and L2 caches—and used the more memory-
intensive applications in the SPEC95 integer
suite. This study asks and answers the follow-
ing questions (clearly, our results and conclu-
sions depend on our system configuration and
choice of benchmarks):

• How important are design choices at the

DRAM system level? The organization
choices are extremely important. With
the CPU architecture, L1/L2 cache orga-
nizations, DRAM architecture, and
DRAM speed remaining constant, the
choices at the organization level can affect
total execution time by a factor of two.
Memory system organization choices can
affect memory overhead even more heav-
ily, but most of this overhead is hidden
behind program execution.

• What system-level parameters most affect
performance? With other factors remain-
ing constant, the read/write burst width
can cause twofold differences in total exe-
cution time. The memory channel’s cycle
time can be responsible for a factor of
two. The number of independent chan-
nels connecting the CPU to the DRAMs
can effect a 25 percent performance
change. Other parameters we studied are
responsible for differences of less than 15
percent in total execution time. (The
term burst width does not imply that the
model is a burst-mode model. It refers to
data access granularity; for example,
direct Rambus has a packetized DRAM
interface, rather than burst-mode
DRAMs such as SDRAM or enhanced
SDRAM (ESDRAM). However, its
access granularity is 128 bits, or 16 bytes.
Thus, we would model it as having a 16-
byte burst width.)

• What are the performance tradeoffs between
the number of independent channels, the
channel width, the channel speed, and the
total system bandwidth (number of channels
× channel width × channel speed)? As you
might guess, total per-channel bandwidth
(bus width × bus speed) is often more
important than either bus width or bus
speed because, to the first order, it takes the
same amount of time to send 128 bits
down a 16-bit, 800-MHz channel as down
a 128-bit, 100-MHz channel. However,
with the appropriate burst size, the design
space has large, relatively flat regions, indi-
cating that giving up only modest perfor-
mance (for example, 10 to 20 percent) can
save significant costs (such as cutting the
number of data pins in half or more and at
the same time cutting the channel speed in
half or more).

46

DRAM ISSUES

IEEE MICRO

These are insights that you can discover
only by studying DRAM issues at the system
level. For example, the delay-locked loop
(DLL) is present in DDR SDRAMs to align
DRAM output with the global system clock
and make the DRAMs in a single rank appear
to have similar timing characteristics—that
is, to deskew the output of devices in a mod-
ule. The disadvantage is a per-device cost for
the circuit in terms of both die size and power
consumption. A single module-resident DLL
or phase-locked loop (PLL) to align output
with the global clock and a set of FIFOs at the
memory controller to deskew between devices
within a rank could achieve the same func-
tion. (Arguably, you could do a better job of
deskewing at the memory controller, since
deskewing at the DRAM puts the decision
making in the hands of the DRAM and not
the memory controller—and the controller is
the reference point at which the amount of
skew matters most.)

The tradeoff would be to increase the com-
plexity of a single memory controller and add
a single DLL/PLL to each module, in return
for decreasing the complexity and power con-
sumption of every DRAM in the system. This
type of tradeoff can be quantified only by
studying DRAM issues at the system level.
Furthermore, as DRAM designs become
increasingly complex, this type of tradeoff is
likely to present itself more often.

Simulation framework and experimental
methodology

The basic goal of our work is to define a pri-
mary memory system model that represents
most existing DRAM organizations: burst-
mode organizations such as JEDEC SDRAMs
(including DDR and DDR2) and packetized
organizations such as Rambus—the two main
competing commercial standards—as well as
almost everything between.

Device-level access timing
Most DRAMs in use today are synchro-

nous: they run off an external clock derived
from the bus. Figure 2 shows a typical
SDRAM timing diagram. SDRAM devices
typically contain a programmable register that
holds a bytes-per-request value. SDRAMs can
therefore return the bytes for a large request
over several cycles. There is only one burst
width; all reads and writes use the same trans-
action granularity.

The timing diagrams of all modern
DRAMs look similar, the most noticeable dif-
ferences being the clock frequencies and the
number of cycles per transaction phase. For
example, Figure 3 shows the read transaction
timing diagram for the direct Rambus
(DRDRAM), a radical departure from tradi-
tional DRAMs. The diagram shows the earli-
est point at which the active bank can be
precharged and reactivated, although other

47JULY–AUGUST 2003

CAS

Address

DQ

RAS

Clock

Row
address

Column
address

Valid
data out

Valid
data out

Valid
data out

Valid
data out

Figure 2. SDRAM read operation clock diagram. SDRAMs contain a writable register for the
request length, allowing high-speed column access.

banks can be activated sooner. ACT1 and
ACT2 are row activate commands, PRE is the
precharge command, RD0 to RD3 are read
commands, and DO0 to DO3 are corre-
sponding data-out timings.

DRDRAM uses a 400-MHz, 3-byte chan-
nel (2 bytes for data, 1 for addresses and com-
mands). DRDRAM parts transfer on both
clock edges, implying a maximum bandwidth
of 1.6 Gbytes/s. Because DRDRAM parti-
tions the bus into different components, four
transactions can simultaneously utilize the dif-
ferent portions of the DRDRAM interface

(the overlap is four, not three, because control
information can be embedded in column
address packets).

System-level access timing
At the system level, request timing is slight-

ly different. In PC and most workstation archi-
tectures, like the one shown in Figure 4a, an
external memory controller sends row and col-
umn requests directly to the DRAMs. This is
a relatively simple architecture in which the
DRAM output pins connect directly to the
CPU data pins (an example is the Alpha serv-

48

DRAM ISSUES

IEEE MICRO

Data[17:0]

Column[4:0]

Row[2:0] PRE

Four 2.5-ns cycles

ACT1 ACT2

RD0 RD1 RD2 RD3

DO0 DO1 DO2 DO3

Figure 3. Direct Rambus read clock diagram. Direct Rambus DRAMs transfer on both edges
of a fast clock and can handle multiple simultaneous requests to different banks.

t0

<DB0><DB1><DB2><DB3>

<PRE>

CPUCache

Address

Data bus

Backside bus Frontside bus

Data bus (800 MHz) D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

Memory
controller

Address
800 MHz
Control

Row/column
addresses and control

<ROW> <COL>

Read request timing:

Address bus

DRAM bank

Data bus

(a)

(b)

Figure 4. Typical uniprocessor system organization: architecture (a) and read request timing
diagram (b). This is the system modeled in this article. Note the absence of an accelerated
graphics port, which would overestimate system performance. (Source: R.C. Schumann10)

er described by Schumann10). This modulari-
ty makes more CPU pins available for data (as
opposed to putting the memory controller on
the CPU), thereby increasing the CPU’s
potential pin bandwidth. Modularity also
allows simpler implementation of multi-
processor systems (including uniprocessor sys-
tems with external graphics processors) by
providing a single contact point for the
DRAM system. It provides upward compati-
bility by allowing the system to use future
DRAMs without significant redesign (only the
lowest-level memory controller needs to be
redesigned). Finally, modularity is essential in
server configurations with large amounts of
memory in large numbers of dual in-line
memory modules because such a bus system’s
capacitance usually requires that the DIMMs
be placed on separate, multiplexed, buses.10

As a side effect of the modular design, the
operation timing changes slightly. The most
obvious change is that the CPU sends the
address to the memory controller all at once,
and not until the following cycle does the row-
address command activate the DRAM bank.
Figure 4b shows how SDRAM-like access
timing fits within the framework of a full
DRAM system.

For the DRAM core speed, we use para-
meters from the latest SDRAM (as of this
writing), which has reasonably fast timing
specifications and is common to PC-100 and

direct Rambus designs. This core speed gives
us read and write bus, and bank occupancies
similar to those reported in the literature.10,11

Figure 5 illustrates the bus and bank occu-
pancies for a 100-MHz channel. The figure
presents burst widths equal to the data bus
width, twice the bus width, and four times the
bus width. A burst is the smallest atomic trans-
action size—all read and write requests are
processed as an integral number of bursts, and
the bursts of different requests can be multi-
plexed in time over the same channel.

This interface model covers burst-mode
DRAM architectures such as SDRAM,
ESDRAM, and burst-mode synchronous-link
DRAM (SLDRAM); it also covers packetized
DRAM architectures such as Rambus, direct
Rambus, and packetized SLDRAM. The only
difference in moving to a packetized interface
is that the address bus packet scales with the data
bus packet in the length of time it occupies the
address bus. Since the two are scheduled togeth-
er, this scheme imposes no additional overhead.

Channels and banks
A single DRAM device can handle one

request at a time and produces a certain num-
ber of bits per request; this number is the
device-level transfer width. DRAM devices
are grouped into independent banks, each of
which can service a different request than all
other banks are servicing at any given

49JULY–AUGUST 2003

t0

10 ns

10 ns

90 ns

70 ns

20 ns

10 ns

90 ns

70 ns

40 ns

10 ns

100 ns

70 ns

10 ns

10 ns

90 ns

40 ns

20 ns

10 ns

90 ns

40 ns

40 ns

10 ns

90 ns

40 ns

(a)

(b)

(c)

Read requests:

Address bus

DRAM bank

Data bus

Address bus

DRAM bank

Data bus

Address bus

DRAM bank

Data bus

t0

Write requests:

Address bus

DRAM bank

Data bus

Address bus

DRAM bank

Data bus

Address bus

DRAM bank

Data bus

Figure 5. Bus and bank occupancies for 100-MHz channel: burst-widths equal to the bus width (a), two times the bus width
(b), and four times the bus width (c). Each DRAM request requires the address bus, the data bus, and the bank for which the
request is destined. Note that the timings are not fixed; queuing and scheduling by the memory controller can delay a
request’s timing.

moment. The bank is the smallest unit of
granularity in this model. Whether a bank is
a collection of devices, a single physical device,
or a subcomponent of a single physical device
need not be specified. Figure 6 shows several
example memory system organizations that
our model can represent. In the figure, we vary
the number of independent channels and the
number of independent DRAM banks
attached to each channel.

A single bank has a transfer width at least as
wide as the data bus. Each channel is a split-
transaction address-bus and data-bus pair, and
connects to potentially multiple banks, each
operated independently. Using multiple banks
per channel supports concurrent transactions
at the channel level. The CPU connects
through an on-board memory controller to
potentially multiple channels, each operated
independently. Using multiple channels sup-
ports concurrent transactions at the DRAM
subsystem level. Bit mapping from address to
channel, bank, and row attempts to best exploit
the physical organization’s available concur-
rency by assigning the lowest-order bits (which
change the most frequently) to the channel
number, the next bits to the bank number, and
so on. Counters in our simulator show that
requests are divided evenly across a system’s
channels and across each channel’s banks.

This very simple organization accounts for
most existing DRAM architectures. Clearly,

it can emulate organizations such as SDRAM
and DDR SDRAM, but by increasing the
degree of banking and scaling the channel
width and speed, it can also do a fair job of
emulating Rambus-style organizations that
are highly banked internally.

Concurrency within a single channel
With multiple channels, it is easy to see that

a system can exploit concurrency. However,
with sufficient banking, a single channel can
also support concurrency. Figure 7 illustrates
how back-to-back requests can overlap in time
on a split-transaction bus.11 Back-to-back reads
and back-to-back writes can be pipelined, pro-
vided they require different banks. Back-to-
back read/write pairs can be similarly pipelined,
though less efficiently. But under the right con-
ditions, it is also possible to nestle writes inside
of reads, as Figure 7b shows. This feature is pos-
sible only because of the asymmetric nature of
read/write requests, and it is possible only on a
split-transaction bus. Although reads and writes
are asymmetric, they look less so as the burst
width increases and the data bus turnaround
time increases. We model bus turnaround time
as a constant number of bus cycles; for this
study, we used a one-cycle delay for all buses.

Burst ordering
If a burst is smaller than the level-2 cache

line size, we have four options for ordering the

50

DRAM ISSUES

IEEE MICRO

C

D

C

D D

C

D D

D D

D

C

D

C

D DD D

C

D DD D

D DD D

C

D DD D

D DD D

D D

D D

D D

D D

C

DD

DD

D

D

D

D

C

DD DD

(a)

(c)

(b)

CPU

DRAM bank

C

D

Figure 6. Channels and banks: one (a), two (b), and four (c) independent channels, banking
degrees of 1, 2, 4, and so on.

burst-sized blocks that make up the request.
These options, illustrated in Figure 8, are the
following multiplexing schemes:

• One request, one burst, in which the burst
size is equal to the cache line size. In this
scenario, two requests that require the
same resource at the same time (either a
channel or a bank within a channel) must
go one after the other.

• Critical block first, in which the burst
block containing the critical word is
fetched ahead of the rest of the cache line,
but two simultaneous requests are still
processed one after the other. Two
requests A and B that require the same
bank and arrive at the DRAM system
simultaneously are processed in the order
A′A′′B′B′′, where X′ is the critical burst
of cache block X, and X′′ is the remain-
der of the cache block.

• Minimally interleaved, in which the burst
block containing the critical word has a
higher priority than the noncritical burst

blocks of other transactions. Two
requests A and B that require the same
bank and arrive at the DRAM system
simultaneously are processed in the order
A′B′A′′B′′.

• Round-robin, which processes two simul-
taneous requests in the order
A′B′A1′′B1′′A2′′B2′′ … An–1′′Bn–1′′, where
Xi′′ represents the ith burst of the remain-
ing cache line (excluding the critical burst).

An obvious question is how many buffers are
needed to handle each of these schemes; if writes
can always be preempted, they must be queued
indefinitely. How extensively would a real appli-
cation take advantage of this? In this study, we
use the round-robin approach: The block con-
taining the critical word is always fetched first
and takes priority over any other block in the
queue, unless that block also contains a critical
word. We always give write requests the lowest
priority, and they stack up in the queue until all
the reads drain from it.

51JULY–AUGUST 2003

Legal if read/read to different banks

(a)

(b)

(c)

20 ns

10 ns

90 ns
70 ns

20 ns

10 ns
90 ns

40 ns

20 ns

10 ns
90 ns

70 ns

Read:

Write:

10 ns

10 ns
90 ns

40 ns

10 ns

10 ns
90 ns

70 ns

Read:

Write:

20 ns

10 ns

90 ns
70 ns

Read:

Read:
20 ns

10 ns10 ns

40 ns

10 ns
90 ns

40 ns

40 ns

10 ns
100 ns

70 ns

Read:

Write: 10 ns

Legal if turnaround ≤ 10 ns and read/write to different banks:
(write can start up to 8.75 ns later if turnaround = 1/25 ns)

Legal if no turnaround and read/write to different banks

Back-to-back read/write pair that cannot be nestled

Figure 7. Concurrency within a single channel. If two concurrent reads require different banks, they can be pipelined across
the address and data bus (a). Writes can be nestled inside of reads, provided the bus turnaround time is low and the burst
width is small (b). However, for some burst sizes, reads and writes cannot be nestled (c).

Bit addressing and page policy
We choose bit assignments to exploit page

mode and maximize the degree of memory
concurrency achieved by the application. To
maximize the page mode effectiveness, we
divide memory into DRAM-page-sized
chunks. To maximize request concurrency, the
lowest-order bits after the DRAM page offset
choose the DRAM channel, the next bits
choose the bank, and the highest-order bits
choose the row.

We assign address bits so that the most sig-
nificant bits identify the system’s smallest-scale
component, and the least significant, which
should change most often from request to
request, identify the system’s largest-scale com-
ponent. Simultaneous requests to adjacent
DRAM-page-sized blocks in the memory sys-
tem go out on two different DRAM channels
if available, and the requests that make up a
cache block fill go to the same DRAM page.
This organization exploits concurrency to the
greatest degree possible because sequential
addresses are striped across entire DRAM chan-
nels, and the requests that make up a cache
block fill can exploit a DRAM’s page mode.

We assume a close-page auto-precharge pol-
icy12 in our simulations, and we assume SRAM
buffering of one DRAM page in ESDRAM
style. The DDR2 working group is leaning
toward a close-page auto-precharge policy. This

makes sense as systems go to larger amounts of
DRAM; to fully exploit an open-page mode, a
memory controller must retain information on
every open page in the DRAM system, which
can become expensive. Our address-bit assign-
ments direct adjacent cache fill requests to the
same DRAM page; in a normal close-page pol-
icy, these requests would encounter an inter-
vening precharge cycle. Nonetheless, the
simulation doesn’t stall in this situation. Using
a DRAM’s page mode is possible only because
we expect the DRAM device to have
ESDRAM-style page buffering: one full page of
SRAM storage per internal bank. As a result of
such buffering, a memory controller can imple-
ment a close-page auto-precharge policy with-
out destroying any read locality for future
requests to the same DRAM page. The penal-
ty is that the memory controller must keep
track of all open pages.

CPU model
To obtain accurate memory request timing

in a dynamically reordered instruction stream,
we integrated our code into SimpleScalar 3.0a,
an execution-driven simulator of an aggres-
sive out-of-order processor. Our simulated
processor is eight-way superscalar; its simu-
lated cycle time is 0.5 ns (a 2-GHz clock). Its
L1 caches are split into 64 Kbytes and 64
Kbytes; both are two-way set associative, and

52

DRAM ISSUES

IEEE MICRO

Time

(a)

(b)

(c)

(d)

Request A, critical burst-sized chunk highlighted Request B, critical burst-sized chunk highlighted

Figure 8. Time division multiplexing of simultaneous read requests. For simultaneous read requests that require the same
resource, there are at least four interleaving schemes: one request, one burst (a); critical block first (b); minimally interleaved
(c); and round-robin (d).

both have 64-byte line sizes. Its L2 cache is a
unified 1-Mbyte, four-way set-associative,
write-back cache with a 128-byte line size and
a 10-cycle access time. The L1 and L2 caches
are both lockup-free, and both allow up to 32
outstanding requests at a time. The degree of
concurrency allowed by the bus and memory
system depends on the configuration (the
number of independent channels, the num-
ber of banks per channel, and so on).

For our lockup-free cache model, a load
instruction that misses the L2 cache is blocked
until it obtains a miss status holding register
(MSHR), which it holds only until the criti-
cal burst of data returns (remember that the
atomic unit of transfer between the CPU and
DRAM system is a burst, which is variable-
sized in our framework). This scheme frees
the MSHR quickly, allowing subsequent load
instructions that miss the L2 cache to com-
mence as soon as possible. The scheme is rel-
atively expensive to implement because it
assumes that cache tags can be checked for
subsequently arriving blocks of data without
disturbing regular cache traffic. We model this
optimization to put the highest possible pres-
sure on the physical memory system—it rep-
resents the highest rate at which the processor
can generate concurrent memory accesses

given the number of available MSHRs.

Timing calculations
Much of the DRAM access time overlaps

instruction execution. To determine the degree
of overlap, we run a second simulation with
perfect primary memory (no overhead). Using
a methodology similar to that described by
Cuppu and Jacob,7 we partition the total appli-
cation execution time into three components:
TP, time spent processing; TM, time spent
stalling for memory; and TO, the portion of
time spent in the memory system that success-
fully overlaps processor execution. Here, time
spent processing includes all activity above the
primary memory system; that is, it contains all
processor execution time and L1 and L2 cache
activity. Let TReal be the total execution time for
the realistic simulation, let TPerf be the execu-
tion time with a perfect DRAM system, and
let TDRAM be the total time spent in the DRAM
system. Then we have the following:

• TP = TReal – TDRAM

• TM = TReal – TPerf

• TO = TPerf + TDRAM – TReal

Figure 9 illustrates the relationships among
these time parameters.

53JULY–AUGUST 2003

Stalls due to
memory

CPU-memory
overlap

CPU + L1 + L2
execution

TM = TReal – TPerf

TO = TPerf + TDRAM – TReal

TP = TReal – TDRAM

TDRAM = time spent
 in DRAM system

TPerf = execution time
 with perfect memory

TReal

Figure 9. Definitions of execution time breakdowns. The results of several simulations show
time spent in the memory system versus time spent processing versus the amount of
memory latency hidden by the CPU.

Experimental results
The simulations in our study cover most of

the space defined by the cross-product of these
variables:

• 1, 2, and 4 independent channels;
• 1, 2, and 4 banks per channel;
• 8-, 16-, 32-, 64-, and 128-byte burst

widths;
• 1-, 2-, 4-, and 8-byte data bus widths;
• 100-, 200-, 400-, and 800-MHz bus

speeds; and
• the gcc and perl benchmarks from SPEC,

known to have relatively large memory
footprints.

The simulated L1 and L2 cache line sizes are
64 and 128 bytes. The unit of performance is
cycles per instruction (CPI), a direct measure-
ment of execution time, given a fixed cycle
time and the length of each program. For some
system configurations, we further break down
total execution time into the timing compo-
nents described in the preceding subsection.

Figure 10 shows our simulation results,
with total execution time as a function of both
burst width and memory system bandwidth.
On the x-axis is system bandwidth, which is
total channels × channel width × channel
speed. For each bandwidth value, several con-
figurations represent different combinations
of channels, width, and speed. For each con-
figuration, five bars represent total execution
time for burst widths of 8, 16, 32, 64, and 128
bytes. For perl, Figure 10a shows all possible
bandwidth configurations—although the
graph is cluttered, it gives a distinct feel for
the complete design space. For gcc, Figure 10b
shows all configurations at 800 MHz and
omits the other configurations for clarity.

Among other things, the graphs show that
for a given bandwidth configuration, the choice
of burst size can affect execution time signifi-
cantly—for example, by a factor of two for perl
and 1.5 for gcc. This shows the importance of
selecting an appropriate burst size. Although
optimal burst width depends on bandwidth
and channel speed (optimal burst width is
around 32 bytes for 200-MHz channels and
around 64 bytes for 400- and 800-MHz chan-
nels), it generally tends to be relatively large;
for most configurations, it is 64 bytes. Other
experiments of ours show that the optimal

burst size also depends on cache block size—in
general, the burst should be large enough to
fetch a level-2 cache block in two requests.

In Figure 10, if you look only at the 64-byte
burst widths (the optimal points, for the most
part), you see a gradual curve that slopes down
as bandwidth increases, showing the effects of
increased bandwidth on execution time. Once
the system bandwidth is sufficient for the
application in question, the slope reflects a
mere 10 percent or less improvement in exe-
cution time for every doubling of memory sys-
tem bandwidth, which is far less significant
than burst width’s effect on performance.
Within a fixed bandwidth class, the choice of
bus speed and number of channels is signifi-
cant, but not as significant as doubling or
halving the bandwidth. For example, at 800
Mbytes/s, moving from a quad 200-MHz
1-byte bus organization to a dual 400-MHz 1-
byte bus organization to a single 800-MHz
1-byte bus organization yields a smaller per-
formance difference than moving to a 400-
Mbyte/s or 1.6-Gbyte/s organization.

Overall, our results show that burst width
is an extremely significant parameter that
overshadows both raw bandwidth and the
details of how we choose the bandwidth
(number of channels, channel width, and
channel speed). Moreover, completely accept-
able performance is possible with slow, mul-
tichannel buses, suggesting that even
single-processor applications can exploit con-
currency in the memory system.

Memory system organization is extreme-
ly important and can significantly affect

an application’s total execution. Unfortunate-
ly, no memory system design choices are uni-
versally good. The only rules of thumb are

• the optimal burst size scales with the L2
block size, and

• faster channels are slightly better than
slower channels, given the same system
bandwidth.

However, the second rule of thumb is probably
due to our modeling the bus turnaround time
as a constant number of bus cycles, rather than
a constant number of nanoseconds; this trans-
lates to a lower overhead for buses with short-
er cycle times. Because the interactions between

54

DRAM ISSUES

IEEE MICRO

system configuration and burst size can affect
system performance by such a large factor (two
times or more), designing the entire memory
system to fit together is critically important—
no one component can be optimized in isola-
tion. Given that the optimal burst width scales
with the level-2 cache block size, even the cache
organization must play a role in the design of
the primary memory system.

As mentioned earlier, however, once the
appropriate burst size is chosen, the design
space has large, relatively flat regions, indi-

cating that giving up only modest perfor-
mance (for example, 10 to 20 percent) will
save significant costs (for example, cutting the
number of data pins in half or more and at
the same time cutting the channel speed in
half or more). Again, these are insights we can
discover only by studying DRAM issues at the
system level. The implication: Compared with
the present focus on maximizing per-device
bandwidth by increasing data pin toggle rates,
system-level approaches to higher DRAM sys-
tem performance can yield as good or better

55JULY–AUGUST 2003

System bandwidth (Gbytes/s = channels × width × 800 MHz)

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6

System bandwidth (Gbytes/s = channels × width × speed)

0

0.5

1

1.5

T
ot

al
 e

xe
cu

tio
n

tim
e

(C
P

I)

1
x 8

-b
it x

 1
00

 M
hz

1
x 1

6-
bit

 x
10

0
M

hz

2
x 8

-b
it x

 1
00

 M
hz

1
x 8

-b
it x

 2
00

 M
hz

1
x 3

2-
bit

 x
10

0
M

hz

2
x 1

6-
bit

 x
10

0
M

hz

4
x 8

-b
it x

 1
00

 M
hz

1
x 1

6-
bit

 x
20

0
M

hz

2
x 8

-b
it x

 2
00

 M
hz

1
x 8

-b
it x

 4
00

 M
hz

1
x 3

2-
bit

 x
20

0
M

hz

2
x 1

6-
bit

 x
20

0
M

hz

4
x 8

-b
it x

 2
00

 M
hz

1
x 1

6-
bit

 x
40

0
M

hz

2
x 8

-b
it x

 4
00

 M
hz

1
x 8

-b
it x

 8
00

 M
hz

1
x 6

4-
bit

 x
10

0
M

hz

2
x 3

2-
bit

 x
10

0
M

hz

4
x 1

6-
bit

 x
10

0
M

hz

1
x 3

2-
bit

 x
40

0
M

hz

2
x 1

6-
bit

 x
40

0
M

hz

4
x 8

-b
it x

 4
00

 M
hz

1
x 1

6-
bit

 x
80

0
M

hz

2
x 8

-b
it x

 8
00

 M
hz

1
x 6

4-
bit

 x
20

0
M

hz

2
x 3

2-
bit

 x
20

0
M

hz

4
x 1

6-
bit

 x
20

0
M

hz

2
x 6

4-
bit

 x
10

0
M

hz

4
x 3

2-
bit

 x
10

0
M

hz

1
x 3

2-
bit

 x
80

0
M

hz

2
x 1

6-
bit

 x
80

0
M

hz

4
x 8

-b
it x

 8
00

 M
hz

1
x 6

4-
bit

 x
40

0
M

hz

2
x 3

2-
bit

 x
40

0
M

hz

4
x 1

6-
bit

 x
40

0
M

hz

2
x 6

4-
bit

 x
20

0
M

hz

4
x 3

2-
bit

 x
20

0
M

hz

4
x 6

4-
bit

 x
10

0
M

hz

1
x 6

4-
bit

 x
80

0
M

hz

2
x 3

2-
bit

 x
80

0
M

hz

4
x 1

6-
bit

 x
80

0
M

hz

2
x 6

4-
bit

 x
40

0
M

hz

4
x 3

2-
bit

 x
40

0
M

hz

4
x 6

4-
bit

 x
20

0
M

hz

2
x 6

4-
bit

 x
80

0
M

hz

4
x 3

2-
bit

 x
80

0
M

hz

4
x 6

4-
bit

 x
40

0
M

hz

4
x

64
-b

it
x

80
0

M
hz

12.8 25.6
0

1

2

3

64-byte burst
32-byte burst

128-byte burst

0.8 1.6 3.2 6.4

T
ot

al
 e

xe
cu

tio
n

tim
e

(C
P

I)

1 chan x 4 bytes

2 chan x 2 bytes

4 chan x 1 byte

1 chan x 8 bytes

2 chan x 4 bytes

4 chan x 2 bytes

2 chan x 8 bytes

4 chan x 4 bytes

4 chan x 8 bytes

1 chan x 2 bytes

2 chan x 1 byte

1 chan x 1 byte

(a)

(b)

8 16 32 64128

Burst width
(for perl)

Figure 10. Simulation bandwidths and burst widths: SPEC perl, four banks per channel (a); SPEC gcc, two banks per channel (b).

results with significantly less cost and engi-
neering effort. MICRO

Acknowledgments
Two of my students, Vinodh Cuppu and

Ken Powers, collected the data presented in
this article. Given that the data represents a
bit more than six months of simulations, I cer-
tainly could not have written the article with-
out their help.

Vinodh Cuppu was supported in part by
NSF grant EIA-9806645 and NSF Career
Award CCR-9983618. Ken Powers was sup-
ported in part by NSF’s sponsorship of under-
graduate research through grant NSF-9912218.
I am supported in part by NSF Career Award
CCR-9983618, NSF grant EIA-9806645, NSF
grant EIA-0000439, and DoD award AFOSR-
F496200110374, as well as by Compaq and
IBM.

References
1. R. Sites, “It’s the Memory, Stupid!”

Microprocessor Report, vol. 10, no. 10, Aug.
1996, pp. 1, 2.

2. S.A. McKee and W.A. Wulf, “Access
Ordering and Memory-Conscious Cache
Utilization,” Proc. 1st IEEE Symp. High-
Performance Computer Architecture (HPCA-
1 95), IEEE CS Press, 1995, pp. 253-262.

3. J. Carter et al., “Impulse: Building a Smarter
Memory Controller,” Proc. 5th Int’l Conf.
High-Performance Computer Architecture
(HPCA-5 99), IEEE CS Press, 1999, pp. 70-79.

4. D. Burger, J.R. Goodman, and A. Kagi,
“Memory Bandwidth Limitations of Future
Microprocessors,” Proc. 23rd Int’l Symp.
Computer Architecture (ISCA 96), ACM
Press, 1996, pp. 78-89.

5. A. Saulsbury, F. Pong, and A. Nowatzyk,
“Missing the Memory Wall: The Case for
Processor/Memory Integration,” Proc. 23rd
Int’l Symp. Computer Architecture (ISCA 96),
ACM Press, 1996, pp. 90-101.

6. C. Kozyrakis et al., “Scalable Processors in
the Billion-Transistor Era: IRAM,” Computer,
vol. 30, no. 9, Sept. 1997, pp. 75-78.

7. V. Cuppu and B. Jacob, “Concurrency,
Latency, or System Overhead: Which Has

the Largest Impact on Uniprocessor DRAM
System Performance?” Proc. 28th Int’l
Symp. Computer Architecture (ISCA 01),
IEEE CS Press, 2001, pp. 62-71.

8. V. Cuppu et al., “High Performance DRAMs
in Workstation Environments,” IEEE Trans.
Computers, vol. 50, no. 11, Nov. 2001, pp.
1133-1153.

9. W.A. Wulf and S.A. McKee, “Hitting the
Memory Wall: Implications of the Obvious,”
ACM Computer Architecture News, vol. 23,
no. 1, Mar. 1995, pp. 20-24.

10. R.C. Schumann, “Design of the 21174
Memory Controller for Digital Personal
Workstations,” Digital Technical J., vol. 9,
no. 2, 1997, pp. 57-70.

11. W.R. Bryg, K.K. Chan, and N.S. Fiduccia, “A
High-Performance, Low-Cost Multiprocessor
Bus for Workstations and Midrange
Servers,” Hewlett-Packard J., vol. 47, no. 1,
Feb. 1996.

12. B. Davis et al., “DDR2 and Low Latency
Variants,” Proc. Memory Wall Workshop at
the 26th Int’l Symp. Computer Architecture,
2000; http://www.ece.mtu.edu/faculty/
btdavis/papers/mem_wall.isca2k.pdf.

Bruce Jacob is an associate professor in the
Electrical and Computer Engineering Depart-
ment of the University of Maryland, College
Park. His research interests include memory
systems, embedded systems, and operating
systems. Jacob has a PhD in computer science
and engineering from the University of
Michigan, Ann Arbor. He is a member of the
IEEE and the ACM.

Direct questions and comments about this
article to Bruce Jacob, Dept. of Electrical and
Computer Engineering, University of Mary-
land, College Park, MD 20742; blj@eng.umd.
edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://computer.org/publications/dlib.

56

DRAM ISSUES

IEEE MICRO

