COS 471A,00S 471B/ELE 375 Midterm

Prof: David August
TAs : Jonathan Chang
' Junwen Lai

Neil Vachharajani

Fall 2004

Please write your answers clearly in the space provided. For partial credit, show all work. State all assumptions. You
have 1 hour and 20 minutes for this exam. This midterm is closed book. Only one two-sided, handwritten 8.5x11 sheet is
allowed. Put your name on every page. Write out and sign the Honor Code pledge before turning in the test. “I pledge my

honor that I have not violated the Honor Code during this examination.”

Question | Score
I | 20 /%0
2 20 /20
3 24 /20
4 20 /20
Total | 8¢ /80

Name;:

Course (circle one): COS471B/ELE375 COS471A

Honor Code: g
ol Ution

1 Binary Arithmetic

1.1 Consider 2’s complement 4-bit signed integer addition. Overfiow occurs whenever the sum of the two operands
cannot be represented in the given format. Using at most three of the following signals, explain how to compute the overflow
from the addition of two 2’s complement 4-bit signed integers.

e The carry-in of the most significant bit. C C t\)
e The carry-out of the most significant bit. C (_o>
e The sign of the first operand. (S,}
e The sign of the second operand. (St

e The sign of the sum. C SR)

s, | . (5.®5) A (5 e5)
O O

o 0 As an OPG(M(%Q,(‘\G/\ e

o / Pollowing alse works™:

o | C)uuﬁow = C @C,

! o) 0] No This workS b nez

1| © | ;’o that C, (ituf‘ %,{

| ' 0 CS S—BV\S I£ NS

[[No ?e{édo*'?{(— %\ Mscghcas§ i

the cperand si As i ame
Som Tsign mo el —f W Signs ace ¢ £ecent, “’(’,‘*g’o’v e rflow .
Define the WiMPY precision IEEE 754 floating point format to be:
X XXX XXXX
N e
Sign Exzponent Mantissa

where each "X’ represents one bit. Convert each of the following WiMPY floating point numbers to decimal:

1. 00000000 Sien = +
\Iag)uc Z0
2. 11011010
Suyn = | (Aeaq%wc) IY\GI\“’\‘SSQ,;' 13010

- | 4 - bi
bias = 2° D‘(=3 valoe =-mantissa x‘zcwou" Qs)l
QXPO‘\M'{'Z 5 :—l‘[O(O }(Z(S '3) :_“‘Oloxz - I{O.l@ :"G,Y?

3. 01110000
Sign = +
_— o0
exporen + =t =

@

A3

2 Dependence Detection

2.1 This question covers your understanding of dependencies between instructions. Using the code below, list all
of the dependence types (RAW, WAR, WAW). List the dependencies in the respective table by writing the instruction
numbers involved with the dependence. You may not need to fill the entire table.

I0: rl =12 + r3;
I1: r3 =rl1 -.r2;
I12: r4d = rl + r3;
13: rl = x2 * r3;
RAW Dependence WAR Dependence WAW Dependence
From Instr To Instr From Instr To Instr From Instr To Instr
IA I 1 Tn J’-.g I -] I l
I 0 — IL I ~I;2
I, Ty
t S
2.2 Given four instructions, how many unique comparisons (between register sources and destinations) are necessary

to find all of the RAW, WAR and WAW dependencies (find a tight upper bound). Answer for the case of four instructions,
and then derive a general equation for N instructions. Assume that all instructions have one register destination and two
register sources.

T'—or RALO derJu\c(eS FM‘ Msﬁudmv_\ K:

c
1 comparison Z Sgpd‘av\ds

X = '
orevioos X Steoperamol " Sh ockion (nstroction
iasttoction |

- 2K compa(‘l'sof_ﬁ

For U)A-‘R ,ﬁséeedn-ﬁ— &c,oemo&ncfeg Far (’/\errud‘t'o’r\ K:

Previoos inctrochon x dest gpelamds Jastrochion ,‘,,gfruchdn;
/2 SCToc e an

X K P feviods (‘45’/Tdc7(('ons

= 2 4 Compari=ens
For WAW AA/(M&’MU(S »Cor incfroctien K-

| CGYMPOJ(SOY‘ ,JC’S{' ‘ |) +r .

PFQU . ,'nS’i‘f, X dﬂﬁfi’i“"’/ ' “057_(1, ‘ ' k P{‘eu_ (AS éﬂps

f - ‘ e

Total comparisons - Z@*ZK*‘ZK) N l 5(!\))2_(—1\)‘])7 Loken N N)

. :0 3 >‘ 5—(4 (5) - 50 CMPS‘ H
- &

3 Loop Unrolling and Fibonacci
Consider the following pseudo-C code to compute the fourth Fibonacci number (F'(4)).

int a,b,i,t;
a=b=1; /* Set a and b to F(2) and F(1) respectively */
for(i=0;i<2;i++)
{
t=a; /* save F(n-1) to .a temporary location */
a+=b; /* F(n) = F(n-1) + F(n-2) */
b=t; /* set b to F(n~-1) */
}

00 =3 O Ot I LW N =

3.1 Convert the pseudo-C code for this snippet of pseudo-C code into reasonably efficient MIPS assembly code.
Represent each variable of the pseudo-C program with a register. Clearly indicate which register corresponds to which
variable. Try to follow the pseudo-C code as closely as possible, but do not use any pseudo-instructions except for mov.

adotl ft{tO, $%eco/ l o a=|
add? 3t1, $erc, ;b
ad d $tz 3 2e(0, $2e© L, =0
cddi 3td, e 2 t mp =

lcop add $¢3 ft%aro)'fi“i‘é Lt
add gto, o, $E - azax
add 31, e, B3 b=+
add‘ $+z $tz, | SR
sle $¢45, Tz, $t4 0 $t5= (<2

bnez $ t5, $rewo, loop

—

b

One observation that a compiler might make is that the loop construction is somewhat unnecessary. Since the the range
of the loop indices is fixed, one can unroll the loop by simply writing three iterations of the loop one after the other without
the intervening increment./comparison on i. For example, the above could be written as: :

int a,b,t;
a=b=1;
t=a;
a+=b;
b=t ;

t=a;
a+=b;
b=t ;

00~ O Ot i W N

Convert the pseudo-C code for this snippet of pseudo-C-code into reasonably efficient MIPS assembly code. Represent
each variable of the pseudo-C program with a register. Clearly indicate which register corresponds to which variable. Try to
follow the pseudo-C code as closely as possible, but do not use any pseudo-instructions except for mov.

addi dto, $zero, | coa
cdd i st §$ zew, | o b=
add % t2, $rec, $to t=a
add $to. Sto, $¢t |
odd ¢t | <-t'z’:e(b) $t2
0dd $tz2 Frew, $to
odd $£to $to, &t L a=a
add $t1, $Tew o bot

J

3.2 Now suppose that instead of the fourth Fibonacci number we decided to compute the 20th (18 iterations). How
many static instructions would there be in the first version and how many would there be in the unrolled version? What
about dynamic instructions? You do not need to write out the assembly for this part.

" Rolled " Verston Onrolled Versten

S"‘a\hc IO (_C‘f‘&l\%\ﬂ # op 3 instrs pec ‘l"euzﬂn"m "Jlg rz = 5“6)

Heratdis doesa't
clange e program

() V\QM[(; 5(0 3'(‘6\'!’\ == d ‘¢
3 G [OOP instes < (% jteations + ‘/bcﬁar({a,f, ’ - GW N

12 (astrs

3.3 Even if the non-unrolled and unrolled versions of code had the'same dynamic instruction count, what would
be the advantage of unrolled code on a deeply pipelined system?

There. afe Mo branches in oncolled versiown which: rears
r\c; pipehne bobbles gre introdoced) dve to bramgk nis peedi chion,
On Olgep pipe [ines branchk ml‘spceo(l‘c}mg are expensive be ca use.
of the +me o d omd ecover (BUsk e pipe)

3.4 Assuming a standard MIPS five-stage, single-issue pipe with no branch prediction how many cycles will the
unrolled and non-unrolled versions of F(20) take? State any assumptions you make.

A’ SSU(Y\P‘HMS" I[H ('?orwarol C P&‘{'ng PFeScA‘f‘
4 c‘&ck, fa’g&(\ beanch stall

| (cqcle
Onrolled Ve rsicon : 56 O/dWMW'C— astre ¢ fﬁﬂ_ﬁic " qp?ccl{fmﬂt:

“ { | ¢
RO“&() g ve fSion “7, ddﬂa,ml‘c. H\S'ffs ¢ e C—«— -’ﬁL—'e I8 bromcLa

(NSt 6 comch”

+ Y CUC(L ?ipe ‘l'/l(‘g“

5(/'54 cic/c_s)

3.5 (Optional Extra Credit) If we only care about the value of a at the end of the program, how might a really
smart compiler further optimize the unrolled code for F(4)?

The compiler coold perform Dactial evalvation and
realize %a)f‘ ’F(l{) =3 The refore He code

adoli 4L, $rew, 3
is sfficient

4 Pipelining and Bypass

In this question we will explore how bypassing affects program execution performance. To begin consider the standard MIPS
5 stage pipeline (presented in lecture and the book). For your reference, refer to the figure on the last page. For this question,
we will use the following code to evaluate the pipeline’s performance:

add $t2, $s1, $sp
lw $t1, $t2, 0
addi $t2, $ti1, 7
add $ti, $s2, $sp
lw $t1, $t1, O
addi $t1, $ti, 9
sub $t1, $ti, $t2

~ O U W N e

4.1 What is the load-use latency for the standard MIPS 5-stage pipeline? .
The load-vse la*cncd is 2 c\trc/es, (1 bobble between
' laad amd o)

4.2 Once again, using the standard MIPS pipeline, identify whether the value for each register operand is coming
from the bypass or from the register file. Recall that in the MIPS pipeline, writes occur in the first half of each cycle, while
reads occur in the second half of each cycle. For clarity, please write REG or BYPASS in each box.

| Instruction | Src Operand 1 | Src Operand 2

1 REG REs
? BYPASS N7A

3 BYPASS N/A

4 RE KEQ

5 RYPASS N/A

6 DYPASS | N/A

7 BYPAZ KEG

4.3 How many cycles will the program take to execute én the standard MIPS pipeline?

H# cdc/eg = 7/ cc\fc(e,s + "z cdoks F L{ ct{cles = {%C/S

Pt 1

(st tuckimg bobbles PP ‘
time
4.4‘ Assume, due to circuit constraints, that the bypass wire from the memory stage back to the execute stage is

omitted from the pipeline. What is the load-use latency for this modified pipeline?

The load-vse (aﬁvwg s 5036143 (2 bobbles betweeq

load amd oUse)

O ——

4.5 How long does the program take to execute on the modified pipeline?

:{:tc:(c[f’g = /o« 4 +Y{ =5 C\tfc/fg
| /\ ' ,\ \ pipe lane {l(”
d i 7 X Z,Iéad-%c buLNeS
(0Strock (ons

4.6 Could the code be transformed to make the program perform better on the modified pipeline? If so, show
the transformed program. You are free to use any register not used in the code. Also, you can assume that only register $t1

is used by the code following this code. How many cycles does it take to execute on the modified pipeline? How about on
the original pipeline?

| adOl $tz/ $L5'(,_ j‘SF

2 lw $H1, $t2 O (AL dhe bothles
: l/’? petween load

L{ O.JO' ft”/ 1’52) 1%5‘? and V2

5 o $tlH, #tl 0

] oddi ttr s F]

(adds Tt st T
2 s $EI, B, 2
ModGied pin(l'Ae, .7 cycles + |eyele v Y cyeles = 2 cqeles
P 7 _ 7 ~
dymamw/ (45tCs load -ust bubble Pipeline

between instts :
s mo‘ G %”

Notice that coonti " Hhe bobbles n +Hhc
Pma cam (s trick j . Becavse on 8 1 ingtrocti on
lies Lefwca\ \M\z (oac‘ and ‘M\Q vse Cn INStrdetron s

5 and G, | bobble most be joserted after

(astroction 3 exe cotes,

~—

TP the load-vse olid not cavse a bobble thua

‘HM 040\:*()&& O(e{??MD/U'Cf between (nstructiorg 3 a,w}
(R#w)
2 woold cae a bobble (7 s ia ID whes 3 ¢ ja

ME{“? amd t0 MEM to EX pass exists, Se 7 mast
wact in Ib), f‘lowaou/ +Hhis bobble does net cocuc

beeausc (ns(’rodl"'a\ 3 s Q,(Qaaij O(G/Qjed 5\y ‘M‘-L
lead] - vse [g)bb[e ‘prcrm easlier

Orfj(‘(\a(P"PQ’I'IM’ - (’jc{és +0 /'(:\‘f“{“‘ + c\jc(cg = M eyele
djﬂW(‘Q MA - US(f‘?({;a(
(astrs (o)\o‘atQS Q“

Bypass wire from
memory stage

youeig

TP =gtTuopannsyy” K
ur ~ ig | =pziuojonnsu]
T g ozl dofprifsu
abs T Tiz=sel vopnasy ,
. LY pusxel\ »
. * \ T T
- z€ @9
Em.v. " B8Bp
AR |1 SIIM _— L BIED
g8 Z e1ep .
BN uwmw_ TpesH - aisifies 5 PEOY —edoa
Y e = SS8IPEY[®
SselppY | siesifiey W
) Z 12181601 5] Kiowet
Aiotuet pesy[* = UONONSY 1
8)8d | orept sapspel®
— - stponr PO 70
- . . |
w oIS I —F s
= - *
Fed
®
i - . M +< n_l_M_._
mg_m”z._: il S _e.cooﬁ
e i
WaNX3 . -
. | X
; in
pET]] — W
125 n .
—— ucgOSIp | i
- "\, Piezer aIMod
- uysnig i
enbg | T F

