
ELE 375 / COS471B, COS 471A Midterm
Fall 2003

Prof: David August
TAs: Neil Vachharajani

David Penry

Please write your answers clearly in the space provided. For
partial credit, show all work. State all assumptions. You have 1
hour and 20 minutes for this exam. This midterm is closed book.
Only one two-sided, handwritten 8.5x11 sheet is allowed. Put your
name on every page. Write out and sign the Honor Code pledge
before turning in the test. “I pledge my honor that I have not
violated the Honor Code during this examination.”

NAME: _______________________________

COURSE (circle one): COS471B/ELE375 COS471A

HONOR CODE:

Question Score
I /20
II /20
III /20
IV /20

TOTAL /80

QUESTION I:
Answer the following questions. Circle your final answer. Consider the
following assembly code for parts 1 and 2. (Assume no branch delay slot in
this architecture.)

 r1 = 99
Loop:
 r1 = r1 – 1
 branch r1 > 0, Loop
 halt

1. During the execution of the above code, how many dynamic instructions
are executed?

2. Assuming a standard unicycle machine running at 100KHz, how long
will the above code take to complete?

3. Using our 8-bit IEEE 754 wimpy precision floating point with three (3)
exponent bits and four (4) mantissa bits, show the representation of -11/16
(-0.6875).

4. What is the smallest positive (not including +0) representable number in
our 8-bit IEEE 754 wimpy precision floating point? Show the bit encoding
and the value in base 10 (fraction or decimal OK).

5. Consider a unicycle machine implementation in which 40% of every
cycle is spent performing instruction memory fetch. You invent and
implement a technique which cuts fetch time in half. Quantitatively, what
effect did this optimization have on latency and throughput?

6. In the same machine, what is the maximum speedup possible by
optimizing only instruction memory fetch?

QUESTION II:

Convert the C function on the next page to MIPS assembly language. Make
sure that your assembly language code could be called from a standard C
program (that is to say, make sure you follow the MIPS calling
conventions).

This machine has no delay slots. The stack grows downward (toward lower
memory addresses). The following registers are used in the calling
convention:

Register Name Register Number Usage

$zero 0 Constant 0
$at 1 Reserved for assembler

$v0, $v1 2, 3 Function return values
$a0 - $a3 4 – 7 Function argument values
$t0 - $t7 8 – 15 Temporary (caller saved)
$s0 - $s7 16 – 23 Temporary (callee saved)
$t8, $t9 24, 25 Temporary (caller saved)
$k0, $k1 26, 27 Reserved for OS Kernel

$gp 28 Pointer to Global Area
$sp 29 Stack Pointer
$fp 30 Frame Pointer
$ra 31 Return Address

This is the function you should convert:

unsigned int sum(unsigned int n)
{
 if (n == 0) return 0;
 else return n + sum(n-1);
}

QUESTION III:

1. Draw the register dependence arcs that exist in the following code
segment. Be sure to properly label each arc.

 r1 = MEM[r3]

 r2 = r1 – 1

 MEM[r2] = r4

 r2 = r5 + 5

2. The architecture respects all dependences. The implementation of the
machine you are targeting has a 3-cycle LOAD-USE data hazard. No other
hazards exist.) The code segment above is a small part of a much larger
program which you cannot change. Registers r1-r9 are used after this code
segment. Registers r10-r20 are not used in this program at all. Write a more
efficient version of the code segment (leave room in your answer for part 3).
The resulting program which includes your new code segment must have
equivalent functionality.

 r1 = MEM[r3]

 r2 = r1 – 1

 MEM[r2] = r4

 r2 = r5 + 5

3. Draw all the register dependence arcs that exist in your optimized code
segment above.

QUESTION IV:

Consider the datapath on the last page. This machine does not support code
with branch delay slots. (It predicts not-taken with a 1-cycle penalty on
taken branches.)

For each control signal listed in the table on the next page, determine its
value at cycles 3 through 9, inclusive. Also, show the instruction occupying
each stage of the pipeline in all cycles. (Assume the IF/ID write-enable line
is set to the inverse of the Stall signal.)

The initial state of the machine is:
 PC = 0
 All pipeline registers contain 0s
 All registers in the register file contain 0s.
 The data memory contains 0s in all locations
 The instruction memory contains:
 00: addiu $3, $zero, 4
 04: lw $4, 100($3)
 08: addu $2, $4, $3
 0C: beq $4, $zero, 0x14
 10: addiu $3, $3, 1
 14: addu $2, $2, $3
 all other locations contain 0

Use data forwarding whenever possible. All mux inputs are numbered
vertically from “top” to “bottom” starting at 0 as you look at the datapath in
the proper landscape orientation. Also, the values for ALUOp are:

Value Desired ALU Action
00 Add
01 Subtract
10 Determine by decoding funct field

Instruction formats:

T
im

e

PC
W

ri
te

IF
.F

lu
sh

B
ra

nc
h

St
al

l

A
L

U
Sr

c

A
L

U
O

p

R
eg

D
st

Fo
rw

ar
dA

Fo
rw

ar
dB

M
em

R
ea

d

M
em

W
ri

te

M
em

to
R

eg

R
eg

W
ri

te

 IF ID EX M WB
00: addiu -- -- -- -- 0
1 0 0 0 0 00 0 00 00 0 0 0 0
04: lw 00: addiu -- -- -- 1
1 0 0 0 0 00 0 00 00 0 0 0 0
08: addu 04: lw 00: addiu -- -- 2
1 0 0 0 1 00 0 00 00 0 0 0 0
 3

 4

 5

 6

 7

 8

 9

00: addiu $3, $zero, 4
 04: lw $4, 100($3)
 08: addu $2, $4, $3
 0C: beq $4, $zero, 0x14
 10: addiu $3, $3, 1
 14: addu $2, $2, $3

NOT ON ACTUAL EXAM:

1. What is the final value of $2 after the above code sequence has executed?

2. If IF.Flush were stuck-at-zero, what would the final value of $2 be?

