
ELE 375  
Fall, 2000 
Sample Midterm Questions 
Prof. Martonosi 
 
(Use these questions to help practice important concepts and to get a sense of the style of questions I write, 
but do not necessarily use this as a gauge of exam length.  The exam is geared to be done in 65 minutes.) 
 
1) Assume a 5-stage DLX pipeline as discussed in class, with an ideal CPI of 1.  Assume that instructions 

and data are fetched from the same memory, so that there is a structural hazard on every load or store 
instruction.  If loads and stores together represent 23% of the instructions executed, what is the real 
CPI of this pipeline? 
a) 1.00 cycles per instruction 
b) 1.23 cycles per instruction 
c) 1.12 cycles per instruction 
d) 1.46 cycles per instruction 

 
CPIreal = CPIbase + CPIstall 
CPIstall = probability of stall * number of stall cycles 
CPIstall = 0.23 * 1 = 0.23  
So the answer is b 
 
2) Name the 5 “classic components” of any computer 
 
Datapath, 
Control, 
Memory 
Input, 
Output, 
 
3) Distinguish between computer architectures and implementations 
 
Computer architecture defines an instruction set and interface that compilers and software writers use to 
program CPUs.  Implementations refer to individual chip implementations that implement a particular 
instruction set architecture.  Typically a successful architecture lasts decades, while good implementations 
are out of date in a couple of years, due to improvements in fabrication technology etc. 
 
4) Give an example in computers or in everyday life of latency vs. throughput. 
 
Computers:  Pipelining increases the instruction throughput of a machine, but does so without decreasing 
the latency of individual instructions. 
Everyday Life:  Adding a lane to the NJ turnpike improves the throughput of the highway.  It only improves 
the latency of my drive to Newark airport if congestion has been a problem. 
 
5) Computer A has an overall CPI of 1.3 and can be run at a clock rate of 600MHz.  Computer B has a 

CPI of 2.5 and can be run at a clock rate of 750 Mhz.  We have a particular program we wish to run.  
When compiled for computer A, this program has exactly 100,000 instructions.  How many 
instructions would the program need to have when compiled for Computer B, in order for the two 
computers to have exactly the same execution time for this program? 

 
Time = InstrCount * CPI * Clock Cycle Time 
Time for A = 100,000 * 1.3 * (1/600 MHz) 
Time for B = InstrCountB * 2.5 * (1/750 Mhz) 
 
If the two execution times should be equal, then: 
InstrCountB = (750Mhz * 1.3 * 100,000) / (600Mhz * 2.5) = 65,000 



(Note that the instruction count is much lower for computer B than for computer A on the same program.  
To achieve this in real life, one would need a dramatically different architecture (eg. B is a CISC machine) 
or a much more aggressive compiler for B.) 
 
6) Consider the MIPS datapath  as shown eg in Figure 5.25.  Consider the following timings given for 

different hardware elements. How many nanoseconds along the critical path through the hardware 
shown?  

Hardware type Delay 
Memory access 4 ns 

Register read/write 3 ns 
ALU operation 2 ns 

 
 
The critical path through this MIPS datapath is on a load instruction (although other datapaths or 
instruction sets might have a different critical path…)  A load instruction does the following: 
 Instruction fetch  Memory Access  4 ns 
 Register fetch  Register file read  3ns 
 Address calc  ALU op   2ns 
 Data load  memory access  4ns 
 Register write  register file write  3ns 
 
So the critical path is 16ns.  The clock rate should be no faster than 1/16ns = 62.5MHz.  (The GHz clocks 
on CPUs you can currently buy mean that these processors have single-cycle critical paths < 1ns!) 
 
7) Imagine that you are able to perform benchmarking “races” to compare two computers you are 

thinking about buying.  Come up with a list of 5 benchmark programs or usage scenarios you would 
use to create your own personalized benchmark suite.  For each program you select, justify it.  For the 
benchmark suite as a whole, discuss a method for calculated a weighted average of the different 
program run-times. 

 
Answers are obviously very individual.  The key thing would be to pick a mix of programs that you 
actually run in everyday life, eg Microsoft Word, Matlab, etc.  And try to stress the machine in different 
ways: accessing memory, accessing disk, benchmarks with heavy graphics use (eg computer games).  To 
calculate a weighted average, you’d probably want to guess at how you use the programs in real life.  Eg, 
30 percent email/netscape, 30 percent computer games, 30 percent Word, etc. 
 
8) Name 3 key differences between a CISC instruction set like x86 and a RISC instruction set like MIPS. 
 
� RISC instruction encodings are typically a fixed width 
� RISC instructions have very regular encodings 
� RISC instruction sets have fewer different opcodes 
� RISC instruction sets have only a few addressing modes 
� RISC instruction sets are geared for compilers to manipulate, rather than for humans to program 
� RISC instruction sets have very regular register files, so that efficient register allocation can be done 

by the compiler 
 
9) Use the register and memory values in the table below for the next questions.  Assume a 32-bit 

machine with addressing modes as discussed in H&P.   Assume each of the following questions starts 
from the table values; that is, DO NOT use value changes from one question as propagating into future 
parts of the question. 

Register Value Memory Location Value 
R1 12 12 16 
R2 16 16 20 
R3 20 20 24 
R4 24 24 28 



 
a) Give the values of R1, R2, and R3 after this instruction : add R3, R2, R1 

 
12 + 16 = 28  => at end: R1=12, R2 = 16, R3 = 28 
 

b) What values will be in R1 and R3 after this instruction is executed: load R3, 12(R1) 
 

Address to load from = 12 + 12 = 24.  Value in mem location 24 = 28.  So at end: R1=12 still and R3=28 
 
 

c) What values will be in the registers after this instruction is executed: addi R2, R3, #16 
 
20 + 16 = 36.  So at end of instruction: R3=20, R2=36 
 
 
10 A) In the pipelined abstraction below, draw arrows to indicate instances where bypassing must be used 
to get the correct answer: 

1. Sub R4, R5, R7 IF ID EX M WB     
2. Load R8, 12(R4)  IF ID EX M WB    
3. Add R3, R7, R4   IF ID EX M WB   
4. Add R7, R8, R4    IF ID EX M WB  
5. Store R7, 16(R0)     IF ID EX M WB 

 
Bypassing is needed in 4 instances: 

1. R4: from 1. Sub Ex phase to 2. Load Ex phase 
2. R4: from 1. Sub Ex phase to 3. Add Ex phase 
3. R8: from 2. Load M phase to 4. Add Ex phase 
4. R7: from 4. Add Ex phase to 5. Store M phase 

 
b) Now consider a machine that only provides bypassing to the left side of the ALU but not to the right 
hand side of the ALU.  Instructions that would require bypassing for the RHS operand will need to stall 
instead.  Redraw the pipeline diagram to indicate these stalls.   
 
Assume that in an ALU instruction, the first source operand goes to the LHS of the ALU and the second 
source operand goes to the RHS of the ALU.  For example, in the first instruction above, R5  is on the LHS 
and R7  is on the RHS.  In memory operations, the address calculation is performed with the value from the 
register file on the LHS.   
 
The key thing here is to remember that separate physical wires are needed when bypassing to each side of 
the ALU.  The point of the question was to get rid of one set of wires (the ones to the RHS) but retain the 
other set of wires. 
 
So this pair of instructions executes without delay: 
Sub R1, R2, R3 
Add R4, R1, R2 
Because R1 is used on the LHS of the ALU in the add instruction, and that side of the ALU has bypassing. 
 
On the other hand, this pair of instructions must stall for the second instruction to wait until R1 is written 
back: 
Sub R1, R2, R3 
Add R4, R2, R1 
Because R1 is now used on the RHS of the ALU in the add instruction, and that side of the ALU DOES 
NOT HAVE bypassing into it, according to the problem statement. 
 
 
 



Diagram for the code above looks like: 
 

1. Sub R4, R5, R7 IF ID EX M WB      
2. Load R8, 12(R4)  IF ID EX M WB     
3. Add R3, R7, R4   stall IF ID EX M WB   
4. Add R7, R8, R4     IF ID EX M WB  
5. Store R7, 16(R0)      IF ID EX M WB 

 
Note that I’ve used boldface type to show the WB phase in instruction 1 (a subtract) that writes back the 
value of R4 that is then reg-fetched in the boldface ID phase of instruction 3 (an add). 
 


