
COS 375 / ELE 375 	

Prof. August 	

Lab 1: PAW Functional Simulator
Due October 26, 2015.

Introduction

The purpose of the lab component of the class is to give you hands-on experience
with designing microprocessors and microprocessor-based systems. This first lab
assignment will help you become familiar with the instruction set for the
microprocessor you will design, implement, and test in the second lab assignment.
Your task in this first lab assignment is to write a C language program which will
read a binary file, interpret the bits in that file as instructions for the PAW
instruction set (described more below), and simulate the execution of those
instructions. Such a program is called a functional simulator.
As discussed in class, you will work in groups of four for the lab assignments.

ARM Subset: PAW

It is not uncommon for companies to develop extensions to or subsets of
instruction set architectures. For example, the x86 instruction set architecture was
modified in the 1980's to allow wider registers. In other cases, the extensions
reflect changes in expected application types or implementations. For example, the
ARM instruction set (used by the processors in many PDAs) has a commercially
available variant called “Thumb” that specifies a 16-bit encoding of instructions.
This 16-bit Thumb variant is commercially useful because it is aimed at embedded
systems where small code size is important (due to memory cost) and because
narrower instructions help reduce the number of pins required on the CPU
package.
You will be using PAW, a locally-derived subset of Thumb. The PAW instruction
set architecture is described in The PAW Architecture Reference Manual, which is
available on the course website. Read this manual thoroughly!

Building a Functional Simulator

The basic idea of a functional simulator is to execute repeatedly a loop in which
instructions are “fetched” by reading them from a simulated memory, then decoded
and executed.

The instruction decode portion of the simulator discerns the instruction type and
relevant fields and values from the binary encoding of the instructions. Once the
simulator has decoded an instruction, the simulator reads input, sets output, or
modifies state as “instructed” to do so by the instruction.
All of the state should be mimicked by having appropriate program variables. For
example, a bank of general purpose registers could be simulated using an array of
integers (if the integers on the system the simulator is running on are as wide as or
wider than the registers of the simulated processor):
 unsigned int GeneralRegs[NUMREGS];

Likewise, memory for an instruction set with a small address space can also be an
array:
 unsigned char Memory[MEMSIZE];

(why wouldn't you want to do this for a large (say greater than a few megabyte)
address space?)
You must simulate the full PAW instruction set as documented. In addition, to help
with grading, when the HALT instruction is executed, the simulator should print to
stdout the values of the register file and then should exit.
We suggest that you start your work by implementing the HALT instruction first.
Then implement easier instructions first, gradually adding more challenging
instructions. As you add instructions, write test cases (in PAW assembly) for those
instructions. You will find this useful not only now, but also in the second lab
assignment.

Memory-mapped I/O

For this assignment you are also required to simulate two memory mapped I/O:
Keyboard and Monitor using the libraries provided to you. The library is provided
as mmio.h located on Nobel in /u/hansenz/COS375_Project1. The test binary files
have also been provided, they are named monitor.bin and keyboard.bin and are
located in the same directory.

• Keyboard
The address space for the keyboard is 0xb000, which means that when a
instruction tries to read from memory address 0xb000, the simulator should load
the data from keyboard input buffer rather than from memory address.
When implementing the load instructions: LDR and LDRB. When the address
being read from is 0xb000, you will be using the Read_Keybord function provided

to acquired a character form keyboard input, read the provided code to figure out
the right way to do this.

• Monitor
The address space for the monitor is [0xc000, 0xffff], the monitor has a resolution
of 128x128 pixels, each pixel is encoded using 8bit RGB color. An illustration of
the monitor is shown below:

The pixel coordinates and their location in memory is shown above. You can
manipulate the color of a certain pixel by changing the data of its corresponding
memory locations. For example, by writing hex value 0xe0 (code for color red) to
memory address 0xc000, you are coloring the first pixel red. The same applies to
all the pixels.
You will need to make the following modifications to your code:
1, Initialize the memory locations used for Monitor and the monitor itself by
inserting the following code into your main function outside of the while true loop:

 struct monitor mn = Initialize_Monitor(Memory);

2, With the while true loop, call the Update_Monitor function every time the loop
re-iterates.

Update_Monitor(mn,Memory)

A potential (not the only) outline of your program would be:
 Main () {

 Initialize the Monitor

 Read bytes of a binary file into an array in memory

 Point the program counter to the first instruction

 while (TRUE) {

 Call Update_Monitor function

Read instruction from the array at the place pointed
to by the PC

 Determine the instruction type

 Get the operands

 switch (instruction type) {

 case HALT:

 print registers

 exit(0);

 case INSTR1:

 Perform operation and update destination

 register/memory/PC

 break;

 ...

 default:
 fprintf(stderr,”Illegal operation...”);

 exit(1);

}

}

 }

Warning: since the file you'll be reading from is a form of binary file, not a text
file, do not treat it as a text file. In other words, scanf is not the proper function
to use....

Mechanics

• Your simulator must work on the OIT Nobel cluster.  

• Your simulator should be written in C. gcc will be used as the compiler for
grading.

• Your simulator should take a command-line argument indicating the name of
the binary file to read in.  

• Use only one C source file and call it sim.c.  

Tools and Sample Inputs  	

To complete this assignment, you will need to use tools found on the OIT Nobel
cluster to prepare PAW binary files. You will need to first register for access with
this link: http://www.princeton.edu/researchcomputing/computational-
hardware/nobel/. The tools are described in full in the PAW Binutils
Documentation on the class website. A quick summary is given here:  

• paw-as is a PAW assembler, used to convert assembly language to object
files.  

• paw-ld is a PAW linker, used to link object files together  

• paw-objcopy is a format translation program used to convert object files to
binary files.  

Something must be pointed out about binary files. As mentioned in class, the files
you usually think of as “executable” files typically contain more information than
just the instructions and program data; they usually contain headers describing the
program and the structure of the binary file and symbol tables for the debugger.
They often are partitioned into sections so that discontiguous portions of memory
can be efficiently defined by the program. Such files are sometimes called binary
files, but the tool set which we use calls them “object” files. Because all of this
extra information is rather difficult to parse, we use paw-objcopy to strip all
that out and just form a “flat” image of what memory should look like as the
program begins execution. This is what we call a “binary” file for the lab
assignments.  
There are several sample PAW assembly files (and a few binary files). They can be
found in: 	

• ~ee375/public/share/samplepaw on the OIT Nobel cluster

Deliverables

You must turn in the sim.c file which you have written. It must compile
properly on the Nobel cluster using:
 gcc -g -o sim sim.c -lxcb

If we cannot compile your source file, we cannot grade your assigment and
you will have to resubmit; the delay will be taken as late days.
Turn in your C program by emailing sim.c as an attachment to:
Hansen Zhang (hansenz@princeton.edu).

Grading

Grading will consist mainly of running test PAW binaries (not necessarily the
sample binaries we give you) through your simulator. These test binaries will
thoroughly test the operation of instructions. Particular attention will be paid to
“corner cases”. You will get back a “score sheet” indicating what instructions had
problems and what kinds of problems.
We will also look at your source code to determine whether instructions are
implemented correctly (i.e. we will not rely solely on test cases). Code which is
difficult for us to understand (i.e. uncommented or incorrectly commented) will
lose some points.

Acknowledgements

Much of the text of this document comes from earlier years' versions written by
Prof August, Prof. Martonosi and David Penry.

