
COS/ELE 375 Assignment 1

Fall 2015, Princeton University

Due date: 10/07/15

Submission guidelines

Your course enrollment (COS/ELE 375) should be listed with your name on the front page of your submission.
Please submit your assignment in class.
LATE SUBMISSIONS: Record the date and time of your submission.

Problem 1

In MIPS assembly (documented thoroughly in Appendix A), write an assembly language version of the following
C code segment:
for(i = 0; i < 98; i ++) {
C[i] = A[i + 1] - A[i] * B[i + 2];

}
Arrays A, B and C start at memory location A000

hex

, B000
hex

, and C000
hex

respectively. Try to reduce the total
number of instructions and the number of expensive instructions such as multiplies.

Problem 2

[Taken from P&H] Implement the following C code in MIPS, assuming that setarray is the first function called:
int i;

void setarray (int num) {
int array[10];

for (i=0; i<10; i++) {
array[i] = compare(num, i);

}
}

int compare(int a, int b) {
if (sub(a, b) >= 0)

return 1;

else

return 0;

}

int sub (int a, int b) {
return a-b;

}

Be sure to handle the stack and frame pointers appropriately. The variable code font is allocated on the stack, and
i corresponds to $s0. Draw the status of the stack before calling setarray and during each function call. Indicate
the names of registers and variables stored on the stack and mark the location of $sp and $fp.

1

Problem 3

Pseudo-instructions are not part of the MIPS instruction set but often appear in MIPS programs. For each pseudo-
instruction in the following table, produce a minimal sequence of actual MIPS instructions to accomplish the same
thing. You may need to use $at for some of the sequences. In the following table, big refers to a specific number
that requires 32 bits to represent and small to a number that can be expressed using 16 bits.

Pseudo-instruction What it accomplishes
move $t5, $t3 $t5 = $t3

clear $t5 $t5 = 0

li $t5, small $t5 = small

li $t5, big $t5 = big

lw $t5, big($t3) $t5 = Memory[$t3 + big]

addi $t5, big($t3) $t5 = $t3 + big

beq $t5, small, L if($t5 = small) go to L

beq $t5, big, L if($t5 = big) go to L

ble $t5, $t3, L if($t5 <= $t3) go to L

bgt $t5, $t3, L if($t5 > $t3) go to L

bge $t5, $t3, L if($t5 >= $t3) go to L

Problem 4

[Taken from P&H] Given your understanding of PC-relative addressing, explain why an assembler might have
problems directly implementing the branch instruction in the following code sequence:

here: beq $t1, $t2, there

. . .

there: add $t1, $t1, $t1

Problem 5

Assume the following instruction mix for a MIPS-like RISC instruction set: 10% stores, 30% loads, 15% branches,
35% integer arithmetic, 5% integer shift, and 5% integer multiply. Given that load instructions require 2 cycles,
branches require 4 cycles, integer ALU and store instructions require one cycle, and integer multiplies require 10
cycles, compute the overall CPI.

Problem 6

A designer wants to improve the overall performance of a given machine with respect to a target benchmark suite
and is considering an enhancement X that applies to 55% of the original dynamically-executed instructions, and
speeds each of them up by a factor of 3. The designer’s manager has some concerns about the complexity and the
cost-e↵ectiveness of X and suggests that the designer should consider an alternative enhancement Y . Enhancement
Y , if applied only to some (as yet unknown) fraction of the original dynamically-executed instructions, would make
them only 75% faster. Determine what percentage of all dynamically-executed instructions should be optimized
using enhancement Y in order to achieve the same overall speedup as obtained using enhancement X.

2

