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1 True/False

Are the following statements true or false? Indicate by circling TRUE or FALSE. If the answer is FALSE,
briefly describe why.

1. TRUE FALSE The MIPS CPU has a CISC ISA.

2. TRUE FALSE For a computer to multiply two numbers, the processor must have a multipli-
cation unit.

3. TRUE FALSE A IEEE denormalized floating point number is a floating point number that is
in the form (−1)a × 0.b× 2c, where a is the sign bit, b is the mantissa represented in binary, and c is
the exponent represented in binary.

4. TRUE FALSE A 2-way set associative cache will always have the same number or fewer misses
than a direct-mapped cache of the same size.

5. TRUE FALSE A DMA controller can be used to speed the loading of programs into memory
from disk prior to execution.

6. TRUE FALSE Pipeline registers are a part of MIPS architectural state.

7. TRUE FALSE Booth’s algorithm speeds addition when long runs of 1’s and 0’s are present.

8. TRUE FALSE Tomasulo’s algorithm eliminates the need for compiler scheduling.
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2 Caches

int i; int a[1024*1024]; int x=0;

for(i=0;i<1024;i++)
{

x+=a[i]+a[1024*i];
}

Figure 1: Code Snippet

2.1 Misses and Hits

Consider the code snippet in Figure 1. Suppose that it is executed on a system with a 2-way set-associative
16KB data cache with 32-byte blocks, 32-bit words, and an LRU replacement policy. Assume that int is
word-sized. Also assume that the address of a is 0x0, that i and x are in registers, and that the cache is
initially empty. How many data cache misses are there? How many hits are there?

2.2 MIPS

Compile the code snippet in Figure 1 into MIPS assembly. Put i into r1 and x into r2. (You may find it
useful, for the subsequent questions involving execution time, to avoid pseudo-ops here.)
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2.3 Execution Time

Assume that

• Instructions execute at a rate of 1 IPC,

• the system has perfect branch prediction,

• the pipeline is five stages deep,

• there are no data hazards except due to cache misses,

• and that data cache misses incur a 10 cycle penalty.

How long will the aforementioned code take to execute (include fill/drain time)? What percentage of the
execution time is taken up by data-memory stalls (leave as fraction)?

2.4 Prefetching

The Pentium 4 uses a prefetching scheme to improve performance in certain situations. It works as follows.
Suppose a program has 3 successive cache misses of the form a, a+ b, a+2b. Then the system automatically
begins fetching a + 3b, a + 4b, a + 5b,. . . How long does the program take to execute with this prefetching?
What percentage of the execution time is taken up by stalls (leave as fraction)? Assume that prefetching
ahead does not evict any data which will be accessed.
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3 Branch Handling

3.1 Branch Prediction

Consider adding branch prediction to the standard 5-stage MIPS pipeline (originally without branch pre-
diction). Assume that the pipeline does not use delayed branching. Further assume that branches are
dynamically predicted in the ID stage of the pipeline and that branches are resolved (i.e. the true outcome
of the branch is identified) in the MEM stage of the pipeline.

Answer the following questions and provide explanations for each. Provide any diagrams you think will
be helpful to explain your answer. Remember that the processor is not using delayed branches. You can
assume all bubbles are due to the branch instructions.

1. How many bubbles must be inserted if a branch is correctly predicted not taken?

2. How many bubbles must be inserted if a branch is correctly predicted taken?

3. How many bubbles must be inserted if a branch is incorrectly predicted not taken?

4. How many bubbles must be inserted if a branch is incorrectly predicted taken?
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3.2 Delayed Branching

Assume the machine from problem 3.1 is extended to use delayed branching. The machine will use 1 delay
slot. That is to say, the instruction after any branch is always executed regardless of whether the branch is
taken or not. For each of the four cases from 3.1, will the number of bubbles be reduced? If so, why is it
reduced and how many bubbles remain in the new scenario?
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3.3 Dynamic Branch Prediction

Consider the following code sequence.

bne r10, r11, .L1
add r3, r1, r2
j .L2

.L1: sub r3, r1, r2

.L2: bne r10, r11, .L3
add r4, r5, r6
j .L4

.L3: sub r4, r5, r6

.L4: bne r10, r11, .L5
add r7, r3, r4
j .L6

.L5: sub r7, r3, r4

.L6:

Assume that this code sequence is part of some larger program and is frequently executed. Further
assume that each of the branches in this code sequence is unbiased; that is to say, it is equally likely that
they are taken or not taken. Would a GAg branch predictor or a GAp branch predictor better predict the
branches in this sequence? Why? Assume that the history register is 1-bit long and there exists no aliasing
between any branches in the program.
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4 Virtual Memory

4.1 32-bit Virtual Address Spaces

Consider a machine with 32-bit virtual addresses, 32-bit physical addresses, and a 4KB page size. Consider
a two-level page table system where each table occupies one full page. Assume each page table entry is 32
bits long. To map the full virtual address space, how much memory will be used by the page tables?

4.2 64-bit Virtual Address Spaces (Part 1)

Consider a machine with a 64-bit virtual addresses, 64-bit physical addresses, and a 4MB page size. Consider
a two-level page table system where each table occupies one full page. Assume each page table entry is 64
bits long. To map the full virtual address space, how much memory will be used by the page tables? (Hint:
you will need more than 1 top-level page table. For this question this is okay.)

4.3 64-bit Virtual Address Spaces (Part 2)

Rather than a two-level page table, what other page table architecture could be used to reduce the memory
foot print of page tables for the 64-bit address space from the last question? Assume that you do not need
to map the full address space, but some small fraction (people typically do not have 264 bytes of physical
memory). However, you should assume that the virtual pages that are mapped are uniformly distributed
across the virtual address space (i.e. it is not only the low addresses or high addresses that are mapped,
but rather a few pages from all ranges of memory). Explain how your solution works and how it conserves
memory.
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4.4 Caching and Virtual Memory

Consider an architecture that uses virtual memory, a two-level page table for address translation, as well as
a TLB to speed up address translations. Further assume that this machine uses caches to speed up memory
accesses. Recall that all addresses used by a program are virtual addresses. Further recall that main memory
in the microarchitecture is indexed using physical addresses.

The virtual memory subsystem and cache memories could interact in several ways. In particular, the
cache memories could be accessed using virtual addresses. We will refer to this scheme as a virtually indexed,
virtually tagged cache. The cache could be indexed using virtual addresses, but the tag compare could happen
with physical addresses (virtually indexed, physically tagged). Finally, the cache could be accessed using
only the physical address. Describe the virtues and drawbacks for each of these systems. Be sure to consider
the case where two virtual addresses map to the same physical address.
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5 Disk Technology

Suppose we have a magnetic disk (resembling an IBM Microdrive) with the following parameters. (You may
leave any answer as a fraction.)

Average seek time 12 ms
Rotation rate 3600 RPM
Transfer rate 3.5 MB/second
# sectors per track 64
Sector size 512 bytes
Controller overhead 5.5 ms

1. What is the average time to read a single sector?

2. What is the average time to read 8 KB in 16 consecutive sectors in the same cylinder?

3. Now suppose we have an array of 4 of these disks. They are all synchronized such that the arms on all
the disks are always on the same sector within the track. The data is striped across the 4 disks so that
4 logically consecutive sectors can be read in parallel. What is the average time to read 32 consecutive
KB from the disk array?
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6 Instruction-Level Parallelism

Consider the following program:

r2 = 8 * N
LOOP: r1 = MEM[r2]

r3 = r1 + 1
MEM[r2] = r3
r2 = r2 - 4
br r2 > 0, LOOP

Note: the loop always executes an even number of times

6.1 Pipeline Hazards

How many cycles does each iteration of the above loop take to execute (ignoring pipeline fill and drain time)
on a pipelined machine where each instruction takes one cycle to execute, except for loads which require
3 cycles? Note: Since the machine is pipelined, 3 loads can execute in successive cycles, but the load-use
latency is 3 cycles. This means that if a load begins execution in cycle 0, then the earliest a consumer can
begin execution is cycle 3.

6.2 ILP Optimizations

Apply ILP optimizations to the above program to improve the performance of the program on the same
machine as problem 6.1. Your optimized program should be faster than the original. You may use any
MIPS-like instruction.
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6.3 VLIW

Consider a pipelined VLIW machine that can execute two instructions each cycle. The machine is statically
scheduled so the compiler (that’s you!) must tell it which instructions to execute in parallel. The machine
can execute any pair of instructions, but only one branch may execute per cycle, and the branch must
be the second instruction in the pair (the first instruction will execute regardless of the branch outcome).
Registers for both instructions in the pair are read before the results for either instructions are written.
Two instructions in the same pair cannot write to the same register. Just like the previous machine, all
instructions take 1 cycle to execute except loads. Once again, loads take 3 cycles and can be pipelined, but
the load-use latency is 3 cycles.

Apply ILP optimizations to the original program to maximize its performance on this machine. Make
sure you provide the execution schedule of your optimized program (i.e. show which instructions run in
parallel, and which cycles are empty due to stalls). Your optimized program should run at least twice as
fast as the original, unmodified program on the basic pipelined machine.
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6.4 Exceptions

If the loop could execute an even or odd number of times (rather than just an even number of times), would
the code you provided for the VLIW machine be correct? Why or why not? (Hint: remember that these
memory instructions might generate exceptions!)
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