
Parallelism and Concurrency

COS 326

Andrew W. Appel

Princeton University

slides copyright 2013-2015 David Walker and Andrew W. Appel

Parallelism

2

• What is it?

• Today's technology trends.

• Then:

– Why is it so much harder to program?

• (Is it actually so much harder to program?)

– Some preliminary linguistic constructs

• thread creation

• our first parallel functional abstraction: futures

PARALLELISM:
WHAT IS IT?

Parallelism

4

• What is it?

– doing many things at the same time instead of sequentially
(one-after-the-other).

Flavors of Parallelism

5

Data Parallelism

– same computation being performed on a collection of
independent items

– e.g., adding two vectors of numbers

Task Parallelism

– different computations/programs running at the same time

– e.g., running web server and database

Pipeline Parallelism

– assembly line:

sequential
f

sequential
g

map f over all items map g over all items

Parallelism vs. Concurrency

6

Parallelism: performs many tasks simultaneously

• purpose: improves throughput

• mechanism:

– many independent computing devices

– decrease run time of program by utilizing multiple cores or computers

• eg: running your web crawler on a cluster versus one machine.

Concurrency: mediates multi-party access to shared resources

• purpose: decrease response time

• mechanism:

– switch between different threads of control

– work on one thread when it can make useful progress; when it can't,
suspend it and work on another thread

• eg: running your clock, editor, chat at the same time on a single CPU.

– OS gives each of these programs a small time-slice (~10msec)

– often slows throughput due to cost of switching contexts

• eg: don't block while waiting for I/O device to respond, but let another thread
do useful CPU computation

Parallelism vs. Concurrency

7

cpu cpu cpu

job

…

Parallelism:
perform several independent
tasks simultaneously

resource
(cpu, disk, server,

data structure)

job …Concurrency:
mediate/multiplex
access to shared
resource

job job

many efficient programs use some parallelism and some concurrency

UNDERSTANDING TECHNOLOGY
TRENDS

Moore's Law

• Moore's Law: The number of transistors you can put on a
computer chip doubles (approximately) every couple of years.

• Consequence for most of the history of computing: All
programs double in speed every couple of years.

– Why? Hardware designers are wicked smart.

– They have been able to use those extra transistors to (for
example) double the number of instructions executed per time
unit, thereby processing speed of programs

• Consequence for application writers:

– watch TV for a while and your programs optimize themselves!

– perhaps more importantly: new applications thought
impossible became possible because of increased
computational power

CPU Clock Speeds from 1993-2005

10

CPU Clock Speeds from 1993-2005

11

Next year’s machine
is twice as fast!

CPU Clock Speeds from 1993-2005

12

Oops!

CPU Power 1993-2005

13

CPU Power 1993-2005

14

But power
consumption is only

part of the
problem…cooling is

the other!

The Heat Problem

15

The Problem

16

1993
Pentium

Heat
Sink

2005
Cooler

Cray-4: 1994

17

Up to 64 processors
Running at 1 GHz
8 Megabytes of RAM
Cost: roughly $10M

The CRAY 2,3, and 4 CPU and memory
boards were immersed in a bath of
electrically inert cooling fluid.

water cooled!

18

Power Dissipation

19

20

Darn!
Intel engineers no
longer optimize my
programs while
I watch TV!

Power to chip
peaking

21

But look:
Moore’s Law still
holds, so far, for
transistors-per-chip.

What do we do
with all those transistors?

1. Multicore!

2. System-on-chip with
specialized coprocessors
(such as GPU)

Both of those are
PARALLELISM

Parallelism

22

Why is it particularly important (today)?

– Roughly every other year, a chip from Intel would:

• halve the feature size (size of transistors, wires, etc.)

• double the number of transistors

• double the clock speed

• this drove the economic engine of the IT industry (and the US!)

– No longer able to double clock or cut voltage: a processor won’t
get any faster!

• (so why should you buy a new laptop, desktop, etc.?)

• power and heat are limitations on the clock

• errors, variability (noise) are limitations on the voltage

• but we can still pack a lot of transistors on a chip… (at least for
another 10 to 15 years.)

Core

Multi-core h/w – common L2

L2 cache

Core

Main memory

L1 cache L1 cache

ALU

ALU

ALU

ALU

23

Today… (actually 8 years ago!)

24

GPUs

• There's nothing like video
gaming to drive progress
in computation!

• GPUs can have hundreds
or even thousands of
cores

• Three of the 5 most
powerful supercomputers
in the world take
advantage of GPU
acceleration.

• Scientists use GPUs for
simulation and modelling

– eg: protein folding and
fluid dynamics

GPUs

• There's nothing like video
gaming to drive progress
in computation!

• GPUs can have hundreds
or even thousands of
cores

• Three of the 5 most
powerful supercomputers
in the world take
advantage of GPU
acceleration.

• Scientists use GPUs for
simulation and modelling

– eg: protein folding and
fluid dynamics

John Danskin, PhD Princeton 1994,
Vice President for GPU architecture, Nvidia
(what he does with his spare time … built this car himself)

So…

27

Instead of trying to make your CPU go faster, Intel’s just going to
pack more CPUs onto a chip.

– a few years ago: dual core (2 CPUs).

– a little more recently: 4, 6, 8 cores.

– Intel is testing 48-core chips with researchers now.

– Within 10 years, you’ll have ~1024 Intel CPUs on a chip.

In fact, that’s already happening with graphics chips (eg, Nvidia).

– really good at simple data parallelism (many deep pipes)

– but they are much dumber than an Intel core.

– and right now, chew up a lot of power.

– watch for GPUs to get “smarter” and more power efficient, while
CPUs become more like GPUs.

STILL MORE PROCESSORS:
THE DATA CENTER

Data Centers: Generation Z Super Computers

Data Centers: Lots of Connected Computers!

Data Centers

• 10s or 100s of thousands of computers

• All connected together

• Motivated by new applications and scalable web services:

– let's catalogue all N billion webpages in the world

– let's all allow anyone in the world to search for the page he or
she needs

– let's process that search in less than a second

• It's Amazing!

• It's Magic!

Data Centers: Lots of Connected Computers

Computer containers for plug-and-play parallelism:

Sounds Great!

33

• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

Sounds Great!

34

• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

– no way!

Sounds Great!

35

• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

– no way!

– to upgrade from Intel 386 to 486, the app writer and compiler
writer did not have to do anything (much)

• IA 486 interpreted the same sequential stream of instructions; it
just did it faster

• this is why we could watch TV while Intel engineers optimized our
programs for us

– to upgrade from Intel 486 to dual core, we need to figure out
how to split a single stream of instructions in to two streams of
instructions that collaborate to complete the same task.

• without work & thought, our programs don't get any faster at all

• it takes ingenuity to generate efficient parallel algorithms from
sequential ones

What’s the answer?

In Part: Functional Programming!

Dryad

Pig

Naiad

PARALLEL AND CONCURRENT
PROGRAMMING

Core

Multicore Hardware & Data Centers

L2 cache

Core

Main memory

L1 cache L1 cache

ALU

ALU

ALU

ALU

39

Speedup

40

• Speedup: the ratio of sequential program execution time to
parallel execution time.

• If T(p) is the time it takes to run a computation on p processors

• A parallel program has perfect speedup (aka linear speedup) if

• Bad news: Not every program can be effectively parallelized.

– in fact, very few programs will scale with perfect speedups.

– we certainly can't achieve perfect speedups automatically

– limited by sequential portions, data transfer costs, ...

speedup(p) = T(1)/T(p)

T(1)/T(p) = speedup = p

Most Troubling…

41

Most, but not all, parallel and concurrent programming models
are far harder to work with than sequential ones:

• They introduce nondeterminism

– the root of (almost all) evil

– program parts suddenly have many different outcomes

• they have different outcomes on different runs

• debugging requires considering all of the possible outcomes

• horrible heisenbugs hard to track down

• They are nonmodular

– module A implicitly influences the outcomes of module B

• They introduce new classes of errors

– race conditions, deadlocks

• They introduce new performance/scalability problems

– busy-waiting, sequentialization, contention,

Informal Error Rate Chart

regularity
with which
you shoot
yourself
in the foot

Informal Error Rate Chart

regularity
with which
you shoot
yourself
in the foot

null pointers,
paucity of types,
inheritence

manual
memory
management

kitchen
sink +
manual
memory

heaven
on earth

unstructured
parallel
or concurrent
programming

Solid Parallel Programming Requires

44

1. Good sequential programming skills.
– all the things we’ve been talking about: use modules, types, ...

2. Deep knowledge of the application.

3. Pick a correct-by-construction parallel programming model
– whenever possible, a parallel model with semantics that coincides

with sequential semantics
• whenever possible, reuse well-tested libraries that hide parallelism

– whenever possible, a model that cuts down non-determinism
– whenever possible, a model with fewer possible concurrency bugs
– if bugs can arise, know and use safe programming patterns

4. Careful engineering to ensure scaling.
– unfortunately, there is sometimes a tradeoff:

• reduced nondeterminism can lead to reduced resource utilization

– synchronization, communication costs may need optimization

OUR FIRST PARALLEL
PROGRAMMING MODEL: THREADS

Threads: A Warning

• Concurrent Threads with Locks: the classic shoot-yourself-in-
the-foot concurrent programming model

– all the classic error modes

• Why Threads?

– almost all programming languages will have a threads library

• OCaml in particular!

– you need to know where the pitfalls are

– the assembly language of concurrent programming paradigms

• we’ll use threads to build several higher-level programming
models

Threads

47

• Threads: an abstraction of a processor.

– programmer (or compiler) decides that some work can be done
in parallel with some other work, e.g.:

– we fork a thread to run the computation in parallel, e.g.:

let _ = compute_big_thing() in

let y = compute_other_big_thing() in

...

let t = Thread.create compute_big_thing () in

let y = compute_other_big_thing () in

...

Intuition in Pictures

48

let t = Thread.create f () in

let y = g () in

...

Thread.create

execute g ()

...

processor 1

(* doing nothing *)

execute f ()

...

processor 2

time 1

time 2

time 3

Of Course…

49

Suppose you have 2 available cores and you fork 4 threads. In a
typical multi-threaded system,

– the operating system provides the illusion that there are an
infinite number of processors.

• not really: each thread consumes space, so if you fork too many
threads the process will die.

– it time-multiplexes the threads across the available processors.

• about every 10 msec, it stops the current thread on a processor,
and switches to another thread.

• so a thread is really a virtual processor.

OCaml, Concurrency and Parallelism

Unfortunately, even if your computer has 2, 4, 6, 8 cores, OCaml
cannot exploit them. It multiplexes all threads over a single core

Hence, OCaml provides concurrency, but not parallelism. Why? Because OCaml (like
Python) has no parallel “runtime system” or garbage collector. Lots of other

functional languages (Haskell, F#, ...) do.

Fortunately, when thinking about program correctness, it doesn’t
matter that OCaml is not parallel -- I will often pretend that it is.

You can hide I/O latency, do multiprocess programming or distribute
tasks amongst multiple computers in OCaml.

core

thread …thread thread

Coordination

51

How do we get back the result that t is computing?

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in

let y = g () in

...

First Attempt

52

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

match !r with

| Some v -> (* compute with v and y *)

| None -> ???

What’s wrong with this?

Second Attempt

53

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() =

match !r with

| Some v -> v

| None -> wait()

in

let v = wait() in

(* compute with v and y *)

Two Problems

54

First, we are busy-waiting.

• consuming cpu without doing something useful.

• the processor could be either running a useful thread/program or power
down.

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() =

match !r with

| Some v -> v

| None -> wait()

in

let v = wait() in

(* compute with v and y *)

Two Problems

55

Second, an operation like r := Some v may not be atomic.
• r := Some v requires us to copy the bytes of Some v into the ref r

• we might see part of the bytes (corresponding to Some) before we’ve
written in the other parts (e.g., v).

• So the waiter might see the wrong value.

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() =

match !r with

| Some v -> v

| None -> wait()

in

let v = wait() in

(* compute with v and y *)

Atomicity

56

Consider the following:

and suppose two threads are incrementing the same ref r:

Thread 1 Thread 2

inc(r); inc(r);

!r !r

If r initially holds 0, then what will Thread 1 see when it reads r?

let inc(r:int ref) = r := (!r) + 1

Atomicity

57

The problem is that we can’t see exactly what instructions the
compiler might produce to execute the code.

It might look like this:

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

Atomicity

58

But a clever compiler might optimize this to:

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

Atomicity

59

Furthermore, we don’t know when the OS might interrupt one
thread and run the other.

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

(The situation is similar, but not quite the same on multi-
processor systems.)

The Happens Before Relation

We don’t know exactly when each instruction will execute, but
there are some constraints: the Happens Before relation

Rule 1: Given two expressions (or instructions) in sequence, e1;
e2 we know that e1 happens before e2.

Rule 2: Given a program:

let t = Thread.create f x in

....

Thread.join t;

e

we know that (f x) happens before e.

Atomicity

61

One possible interleaving of the instructions:

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

What answer do we get?

Atomicity

62

Another possible interleaving:

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

What answer do we get this time?

Atomicity

63

Another possible interleaving:

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

What answer do we get this time?

Moral: The system is responsible for scheduling execution of
instructions.

Moral: This can lead to an enormous degree of nondeterminism.

Atomicity

64

In fact, today’s multicore processors don’t treat memory in a
sequentially consistent fashion.

Thread 1 Thread 2

EAX := load(r); EAX := load(r);

EAX := EAX + 1; EAX := EAX + 1;

store EAX into r store EAX into r

EAX := load(r) EAX := load(r)

That means that we can’t even assume that what we will see
corresponds to some interleaving of the threads’ instructions!

Beyond the scope of this class! But the take-away is this: It’s not a good idea
to use ordinary loads/stores to synchronize threads; you should use explicit synchronization
primitives so the hardware and optimizing compiler don’t optimize them away.

Atomicity

65

In fact, today’s multicore processors don’t treat memory in a
sequentially consistent fashion. That means that we can’t even
assume that what we will see corresponds to some interleaving
of the threads’ instructions!

Beyond the scope of this class! But the take-away is this: It’s not a good idea

to use ordinary loads/stores to synchronize threads; you should use explicit synchronization
primitives so the hardware and optimizing compiler don’t optimize them away.

Core 1

L2 cache

Core 2

L1 cache L1 cache

ALU ALU

Core 3 Core 4

L1 cache L1 cache

ALU ALU
When Core1 stores to

“memory”, it lazily
propagates to Core2’s L1
cache. The load at Core2
might not see it, unless

there is an explicit
synchronization.

Summary: Interleaving & Race Conditions

66

Calculate possible outcomes for a program by considering all of the possible
interleavings of the atomic actions performed by each thread.

– Subject to the happens-before relation.

• can’t have a child thread’s actions happening before a parent forks it.

• can’t have later instructions execute earlier in the same thread.

– Here, atomic means indivisible actions.

• For example, on most machines reading or writing a 32-bit word is atomic.

• But, writing a multi-word object is usually not atomic.

• Most operations like “b := b - w” are implemented in terms of a series of
simpler operations such as

– r1 = read(b); r2 = read(w); r3 = r1 – r2; write(b, r3)

Reasoning about all interleavings is hard. just about impossible for people

– Number of interleavings grows exponentially with number of statements.

– It’s hard for us to tell what is and isn’t atomic in a high-level language.

– YOU ARE DOOMED TO FAIL IF YOU HAVE TO WORRY ABOUT THIS STUFF!

Summary: Interleaving & Race Conditions

67

Calculate possible outcomes for a program by considering all of the possible
interleavings of the atomic actions performed by each thread.

– Subject to the happens-before relation.

• can’t have a child thread’s actions happening before a parent forks it.

• can’t have later instructions execute earlier in the same thread.

– Here, atomic means indivisible actions.

• For example, on most machines reading or writing a 32-bit word is atomic.

• But, writing a multi-word object is usually not atomic.

• Most operations like “b := b - w” are implemented in terms of a series of
simpler operations such as

– r1 = read(b); r2 = read(w); r3 = r1 – r2; write(b, r3)

Reasoning about all interleavings is hard. just about impossible for people

– Number of interleavings grows exponentially with number of statements.

– It’s hard for us to tell what is and isn’t atomic in a high-level language.

– YOU ARE DOOMED TO FAIL IF YOU HAVE TO WORRY ABOUT THIS STUFF!

WARNING
If you see people talk about interleavings, BEWARE!

It probably means they’re assuming
“sequential consistency,”

which is an oversimplified, naïve model of what the
parallel computer really does.

It’s actually more complicated than that.

A conventional solution for shared-memory parallelism

Thread 1 Thread 2

lock(mutex); lock(mutex);

inc(r); inc(r);

!r !r

unlock(mutex); unlock(mutex);

Guarantees mutual exclusion of these critical sections.

This solution works (even for real machines that are not

sequentially consistent), but…

Complex to program, subject to deadlock, prone to bugs,
not fault-tolerant, hard to reason about.

let inc(r:int ref) = r := (!r) + 1

A conventional solution for shared-memory parallelism

Thread 1 Thread 2

lock(mutex); lock(mutex);

inc(r); inc(r);

!r !r

unlock(mutex); unlock(mutex);

Guarantees mutual exclusion of these critical sections.

This solution works (even for real machines that are not

sequentially consistent), but…

Complex to program, subject to deadlock, prone to bugs,
not fault-tolerant, hard to reason about.

let inc(r:int ref) = r := (!r) + 1

Synchronization

Another approach to the coordination Problem

70

How do we get back the result that t is computing?

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in

let y = g () in

...

One Solution (using join)

71

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ;

match !r with

| Some v -> (* compute with v and y *)

| None -> failwith “impossible”

One Solution (using join)

72

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ;

match !r with

| Some v -> (* compute with v and y *)

| None -> failwith “impossible”

Thread.join t causes
the current thread to wait

until the thread t
terminates.

One Solution (using join)

73

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ;

match !r with

| Some v -> (* compute with v and y *)

| None -> failwith “impossible”

So after the join, we know
that any of the operations

of t have completed.

Synchronization

In Pictures

74

Thread 1
t=create f x
inst1,1;
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1;
inst2,2;
inst2,3;
…
inst2,m;

We know that for each
thread the previous
instructions must happen
before the later instructions.

So for instance, inst1,1 must
happen before inst1,2.

In Pictures

75

Thread 1
t=create f x
inst1,1;
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1;
inst2,2;
inst2,3;
…
inst2,m;

We also know that the
fork must happen before
the first instruction of the
second thread.

In Pictures

76

Thread 1
t=create f x
inst1,1;
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1;
inst2,2;
inst2,3;
…
inst2,m;

We also know that the
fork must happen before
the first instruction of the
second thread.

And thanks to the join,
we know that all of the
instructions of the second
thread must be completed
before the join finishes.

In Pictures

77

Thread 1
t=create f x
inst1,1;
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1;
inst2,2;
inst2,3;
…
inst2,m;

However, in general, we
do not know whether
inst1,i executes before or
after inst2,j.

In general, synchronization
instructions like fork and
join reduce the number of
possible interleavings.

Synchronization cuts down
nondeterminism.

In the absence of
synchronization we don’t
know anything…

