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Parallelism
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• What is it? 

• Today's technology trends.

• Then:

– Why is it so much harder to program?

• (Is it actually so much harder to program?)

– Some preliminary linguistic constructs

• thread creation

• our first parallel functional abstraction:  futures 



PARALLELISM:  
WHAT IS IT?



Parallelism
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• What is it?

– doing many things at the same time instead of sequentially 
(one-after-the-other). 



Flavors of Parallelism
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Data Parallelism

– same computation being performed on a collection of 
independent items

– e.g., adding two vectors of numbers

Task Parallelism

– different computations/programs running at the same time

– e.g., running web server and database

Pipeline Parallelism

– assembly line:

sequential
f

sequential
g

map f over all items map g over all items



Parallelism vs. Concurrency
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Parallelism:  performs many tasks simultaneously

• purpose:  improves throughput

• mechanism:  

– many independent computing devices

– decrease run time of program by utilizing multiple cores or computers

• eg: running your web crawler on a cluster versus one machine.

Concurrency: mediates multi-party access to shared resources

• purpose: decrease response time

• mechanism:

– switch between different threads of control

– work on one thread when it can make useful progress; when it can't, 
suspend it and work on another thread

• eg:  running your clock, editor, chat at the same time on a single CPU.

– OS gives each of these programs a small time-slice (~10msec)

– often slows throughput due to cost of switching contexts

• eg:  don't block while waiting for I/O device to respond, but let another thread 
do useful CPU computation



Parallelism vs. Concurrency
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cpu cpu cpu

job

…

Parallelism:
perform several independent
tasks simultaneously

resource
(cpu, disk, server, 

data structure)

job …Concurrency:
mediate/multiplex 
access to  shared
resource

job job

many efficient programs use some parallelism and some concurrency



UNDERSTANDING TECHNOLOGY 
TRENDS



Moore's Law

• Moore's Law:  The number of transistors you can put on a 
computer chip doubles (approximately) every couple of years.

• Consequence for most of the history of computing:  All 
programs double in speed every couple of years.

– Why?  Hardware designers are wicked smart.

– They have been able to use those extra transistors to (for 
example) double the number of instructions executed per time 
unit, thereby processing speed of programs

• Consequence for application writers:

– watch TV for a while and your programs optimize themselves!

– perhaps more importantly:  new applications thought 
impossible became possible because of increased 
computational power



CPU Clock Speeds from 1993-2005
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CPU Clock Speeds from 1993-2005
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Next year’s machine 
is twice as fast!



CPU Clock Speeds from 1993-2005
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Oops!



CPU Power 1993-2005
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CPU Power 1993-2005
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But power 
consumption is only 

part of the 
problem…cooling is 

the other!



The Heat Problem
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The Problem
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1993 
Pentium 

Heat 
Sink

2005 
Cooler



Cray-4: 1994

17

Up to 64 processors
Running at 1 GHz
8 Megabytes of RAM
Cost:  roughly $10M

The CRAY 2,3, and 4 CPU and memory 
boards were immersed in a bath of 
electrically inert cooling fluid.



water cooled!
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Power Dissipation 

19



20

Darn!
Intel engineers no 
longer optimize my
programs while
I watch TV!

Power to chip
peaking
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But look:
Moore’s Law still
holds, so far, for 
transistors-per-chip.

What do we do
with all those transistors?

1. Multicore!

2. System-on-chip with
specialized coprocessors
(such as GPU)

Both of those are
PARALLELISM



Parallelism
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Why is it particularly important (today)?

– Roughly every other year, a chip from Intel would:

• halve the feature size (size of transistors, wires, etc.)

• double the number of transistors

• double the clock speed

• this drove the economic engine of the IT industry (and the US!)

– No longer able to double clock or cut voltage:  a processor won’t 
get any faster!

• (so why should you buy a new laptop, desktop, etc.?)

• power and heat are limitations on the clock

• errors, variability (noise) are limitations on the voltage

• but we can still pack a lot of transistors on a chip… (at least for 
another 10 to 15 years.)



Core

Multi-core h/w – common L2

L2 cache

Core

Main memory

L1 cache L1 cache

ALU

ALU

ALU

ALU
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Today… (actually 8 years ago!)
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GPUs

• There's nothing like video 
gaming to drive progress 
in computation!

• GPUs can have hundreds 
or even thousands of 
cores

• Three of the 5 most 
powerful supercomputers 
in the world take 
advantage of GPU 
acceleration.

• Scientists use GPUs for 
simulation and modelling

– eg: protein folding and 
fluid dynamics 



GPUs

• There's nothing like video 
gaming to drive progress 
in computation!

• GPUs can have hundreds 
or even thousands of 
cores

• Three of the 5 most 
powerful supercomputers 
in the world take 
advantage of GPU 
acceleration.

• Scientists use GPUs for 
simulation and modelling

– eg: protein folding and 
fluid dynamics 

John Danskin, PhD Princeton 1994,
Vice President for GPU architecture, Nvidia
(what he does with his spare time … built this car himself)



So…
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Instead of trying to make your CPU go faster, Intel’s just going to 
pack more CPUs onto a chip.

– a few years ago: dual core (2 CPUs).

– a little more recently: 4, 6, 8 cores.

– Intel is testing 48-core chips with researchers now.

– Within 10 years, you’ll have ~1024 Intel CPUs on a chip.

In fact, that’s already happening with graphics chips (eg, Nvidia).

– really good at simple data parallelism (many deep pipes)

– but they are much dumber than an Intel core.

– and right now, chew up a lot of power.

– watch for GPUs to get “smarter” and more power efficient, while 
CPUs become more like GPUs.



STILL MORE PROCESSORS:  
THE DATA CENTER



Data Centers:  Generation Z Super Computers



Data Centers:  Lots of Connected Computers!



Data Centers

• 10s or 100s of thousands of computers

• All connected together

• Motivated by new applications and scalable web services:

– let's catalogue all N billion webpages in the world

– let's all allow anyone in the world to search for the page he or 
she needs

– let's process that search in less than a second

• It's Amazing!

• It's Magic!



Data Centers:  Lots of Connected Computers

Computer containers for plug-and-play parallelism:



Sounds Great!
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• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?



Sounds Great!
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• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

– no way!



Sounds Great!
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• So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

– no way!

– to upgrade from Intel 386 to 486, the app writer and compiler 
writer did not have to do anything (much)

• IA 486 interpreted the same sequential stream of instructions; it 
just did it faster

• this is why we could watch TV while Intel engineers optimized our 
programs for us

– to upgrade from Intel 486 to dual core, we need to figure out 
how to split a single stream of instructions in to two streams of 
instructions that collaborate to complete the same task.

• without work & thought, our programs don't get any faster at all

• it takes ingenuity to generate efficient parallel algorithms from 
sequential ones



What’s the answer?                 



In Part:  Functional Programming!

Dryad

Pig

Naiad



PARALLEL AND CONCURRENT
PROGRAMMING



Core

Multicore Hardware & Data Centers

L2 cache

Core

Main memory

L1 cache L1 cache

ALU

ALU

ALU

ALU
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Speedup
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• Speedup: the ratio of sequential program execution time to 
parallel execution time.

• If T(p) is the time it takes to run a computation on p processors

• A parallel program has perfect speedup (aka linear speedup) if

• Bad news:  Not every program can be effectively parallelized.

– in fact, very few programs will scale with perfect speedups.

– we certainly can't achieve perfect speedups automatically

– limited by sequential portions, data transfer costs, ...

speedup(p) = T(1)/T(p)

T(1)/T(p) = speedup = p



Most Troubling…
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Most, but not all, parallel and concurrent programming models 
are far harder to work with than sequential ones:

• They introduce nondeterminism

– the root of (almost all) evil

– program parts suddenly have many different outcomes

• they have different outcomes on different runs

• debugging requires considering all of the possible outcomes

• horrible heisenbugs hard to track down

• They are nonmodular

– module A implicitly influences the outcomes of module B

• They introduce new classes of errors

– race conditions, deadlocks

• They introduce new performance/scalability problems

– busy-waiting, sequentialization, contention,



Informal Error Rate Chart

regularity
with which
you shoot 
yourself
in the foot



Informal Error Rate Chart

regularity
with which
you shoot 
yourself
in the foot

null pointers,
paucity of types,
inheritence

manual
memory
management

kitchen
sink + 
manual
memory

heaven
on earth

unstructured
parallel
or concurrent
programming



Solid Parallel Programming Requires
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1. Good sequential programming skills.
– all the things we’ve been talking about: use modules, types, ...

2. Deep knowledge of the application.

3. Pick a correct-by-construction parallel programming model
– whenever possible, a parallel model with semantics that coincides 

with sequential semantics
• whenever possible, reuse well-tested libraries that hide parallelism

– whenever possible, a model that cuts down non-determinism
– whenever possible, a model with fewer possible concurrency bugs
– if bugs can arise, know and use safe programming patterns

4. Careful engineering to ensure scaling.
– unfortunately, there is sometimes a tradeoff:

• reduced nondeterminism can lead to reduced resource utilization

– synchronization, communication costs may need optimization



OUR FIRST PARALLEL 
PROGRAMMING MODEL:  THREADS



Threads: A Warning

• Concurrent Threads with Locks:  the classic shoot-yourself-in-
the-foot concurrent programming model

– all the classic error modes

• Why Threads?

– almost all programming languages will have a threads library

• OCaml in particular!

– you need to know where the pitfalls are

– the assembly language of concurrent programming paradigms

• we’ll use threads to build several higher-level programming 
models



Threads
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• Threads:  an abstraction of a processor.

– programmer (or compiler) decides that some work can be done 
in parallel with some other work, e.g.:

– we fork a thread to run the computation in parallel, e.g.:

let _ = compute_big_thing() in

let y = compute_other_big_thing() in

...

let t = Thread.create compute_big_thing () in

let y = compute_other_big_thing () in

...



Intuition in Pictures
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let t = Thread.create f () in

let y = g () in

...

Thread.create

execute g ()

...

processor 1

(* doing nothing *)

execute f ()

...

processor 2

time 1

time 2

time 3



Of Course…

49

Suppose you have 2 available cores and you fork 4 threads.  In a 
typical multi-threaded system, 

– the operating system provides the illusion that there are an 
infinite number of processors.

• not really:  each thread consumes space, so if you fork too many 
threads the process will die.

– it time-multiplexes the threads across the available processors.

• about every 10 msec, it stops the current thread on a processor, 
and switches to another thread.

• so a thread is really a virtual processor.



OCaml, Concurrency and Parallelism

Unfortunately, even if your computer has 2, 4, 6, 8 cores, OCaml
cannot exploit them.  It multiplexes all threads over a single core

Hence, OCaml provides concurrency, but not parallelism. Why? Because OCaml (like 
Python) has no parallel “runtime system” or garbage collector.  Lots of other 

functional languages (Haskell, F#, ...) do. 

Fortunately, when thinking about program correctness, it doesn’t 
matter that OCaml is not parallel -- I will often pretend that it is.  

You can hide I/O latency, do multiprocess programming or distribute 
tasks amongst multiple computers in OCaml.

core

thread …thread thread



Coordination
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How do we get back the result that t is computing?

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in

let y = g () in

...



First Attempt
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

match !r with 

| Some v -> (* compute with v and y *)

| None -> ???

What’s wrong with this?



Second Attempt
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() = 

match !r with 

| Some v -> v

| None -> wait()

in

let v = wait() in

(* compute with v and y *)



Two Problems
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First, we are busy-waiting.  

• consuming cpu without doing something useful.

• the processor could be either running a useful thread/program or power 
down.  

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() = 

match !r with 

| Some v -> v

| None -> wait()

in

let v = wait() in

(* compute with v and y *)



Two Problems

55

Second, an operation like r := Some v may not be atomic.
• r := Some v  requires us to copy the bytes of Some v into the ref r

• we might see part of the bytes (corresponding to Some) before we’ve 
written in the other parts (e.g., v).

• So the waiter might see the wrong value.

let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

let rec wait() = 

match !r with 

| Some v -> v

| None -> wait()

in

let v = wait() in

(* compute with v and y *)



Atomicity
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Consider the following:

and suppose two threads are incrementing the same ref r:

Thread 1 Thread 2

inc(r); inc(r);

!r !r

If r initially holds 0, then what will Thread 1 see when it reads r?  

let inc(r:int ref) = r := (!r) + 1



Atomicity
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The problem is that we can’t see exactly what instructions the 
compiler might produce to execute the code.

It might look like this:

Thread 1 Thread 2

EAX := load(r);     EAX := load(r);

EAX := EAX + 1;     EAX := EAX + 1;

store EAX into r    store EAX into r

EAX := load(r) EAX := load(r)



Atomicity
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But a clever compiler might optimize this to:

Thread 1 Thread 2

EAX := load(r);     EAX := load(r);

EAX := EAX + 1;     EAX := EAX + 1;

store EAX into r    store EAX into r

EAX := load(r) EAX := load(r)



Atomicity

59

Furthermore, we don’t know when the OS might interrupt one 
thread and run the other. 

Thread 1 Thread 2

EAX := load(r);     EAX := load(r);

EAX := EAX + 1;     EAX := EAX + 1;

store EAX into r    store EAX into r

EAX := load(r) EAX := load(r)

(The situation is similar, but not quite the same on multi-
processor systems.)



The Happens Before Relation

We don’t know exactly when each instruction will execute, but 
there are some constraints:  the Happens Before relation

Rule 1:  Given two expressions (or instructions) in sequence, e1; 
e2 we know that e1 happens before e2.

Rule 2:  Given a program:

let t = Thread.create f x in

....

Thread.join t;

e

we know that (f x) happens before e.



Atomicity
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One possible interleaving of the instructions:

Thread 1 Thread 2

EAX := load(r);     EAX := load(r);

EAX := EAX + 1;     EAX := EAX + 1;

store EAX into r    store EAX into r

EAX := load(r) EAX := load(r)

What answer do we get?



Atomicity
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Another possible interleaving:

Thread 1 Thread 2

EAX := load(r);     EAX := load(r);

EAX := EAX + 1;     EAX := EAX + 1;

store EAX into r    store EAX into r

EAX := load(r) EAX := load(r)

What answer do we get this time?



Atomicity
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Another possible interleaving:

Thread 1 Thread 2

EAX := load(r);     EAX := load(r);

EAX := EAX + 1;     EAX := EAX + 1;

store EAX into r    store EAX into r

EAX := load(r) EAX := load(r)

What answer do we get this time?

Moral: The system is responsible for scheduling execution of 
instructions.

Moral: This can lead to an enormous degree of nondeterminism.



Atomicity
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In fact, today’s multicore processors don’t treat memory in a 
sequentially consistent fashion.

Thread 1 Thread 2

EAX := load(r);     EAX := load(r);

EAX := EAX + 1;     EAX := EAX + 1;

store EAX into r    store EAX into r

EAX := load(r) EAX := load(r)

That means that we can’t even assume that what we will see 
corresponds to some interleaving of the threads’ instructions!

Beyond the scope of this class!  But the take-away is this: It’s not a good idea 
to use ordinary loads/stores to synchronize threads; you should use explicit synchronization 
primitives so the hardware and optimizing compiler don’t optimize them away.



Atomicity
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In fact, today’s multicore processors don’t treat memory in a 
sequentially consistent fashion. That means that we can’t even 
assume that what we will see corresponds to some interleaving 
of the threads’ instructions!

Beyond the scope of this class!  But the take-away is this: It’s not a good idea 

to use ordinary loads/stores to synchronize threads; you should use explicit synchronization 
primitives so the hardware and optimizing compiler don’t optimize them away.

Core 1

L2 cache

Core 2

L1 cache L1 cache

ALU ALU

Core 3 Core 4

L1 cache L1 cache

ALU ALU
When Core1 stores to 

“memory”, it lazily
propagates to Core2’s L1 
cache.  The load at Core2 
might not see it, unless 

there is an explicit
synchronization.



Summary: Interleaving & Race Conditions
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Calculate possible outcomes for a program by considering all of the possible 
interleavings of the atomic actions performed by each thread.

– Subject to the happens-before relation.

• can’t have a child thread’s actions happening before a parent forks it.

• can’t have later instructions execute earlier in the same thread.

– Here, atomic means indivisible actions.

• For example, on most machines reading or writing a 32-bit word is atomic.

• But, writing a multi-word object is usually not atomic.

• Most operations like “b := b - w” are implemented in terms of a series of 
simpler operations such as 

– r1 = read(b); r2 = read(w); r3 = r1 – r2; write(b, r3)

Reasoning about all interleavings is hard. just about impossible for people

– Number of interleavings grows exponentially with number of statements.

– It’s hard for us to tell what is and isn’t atomic in a high-level language.

– YOU ARE DOOMED TO FAIL IF YOU HAVE TO WORRY ABOUT THIS STUFF!



Summary: Interleaving & Race Conditions
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Calculate possible outcomes for a program by considering all of the possible 
interleavings of the atomic actions performed by each thread.

– Subject to the happens-before relation.

• can’t have a child thread’s actions happening before a parent forks it.

• can’t have later instructions execute earlier in the same thread.

– Here, atomic means indivisible actions.

• For example, on most machines reading or writing a 32-bit word is atomic.

• But, writing a multi-word object is usually not atomic.

• Most operations like “b := b - w” are implemented in terms of a series of 
simpler operations such as 

– r1 = read(b); r2 = read(w); r3 = r1 – r2; write(b, r3)

Reasoning about all interleavings is hard. just about impossible for people

– Number of interleavings grows exponentially with number of statements.

– It’s hard for us to tell what is and isn’t atomic in a high-level language.

– YOU ARE DOOMED TO FAIL IF YOU HAVE TO WORRY ABOUT THIS STUFF!

WARNING
If you see people talk about interleavings, BEWARE!

It probably means they’re assuming 
“sequential consistency,”

which is an oversimplified, naïve model of what the 
parallel computer really does.

It’s actually more complicated than that.



A conventional solution for shared-memory parallelism

Thread 1 Thread 2

lock(mutex); lock(mutex);

inc(r); inc(r);

!r !r

unlock(mutex); unlock(mutex);

Guarantees mutual exclusion of these critical sections.

This solution works (even for real machines that are not 

sequentially consistent),   but…

Complex to program, subject to deadlock, prone to bugs,          
not fault-tolerant, hard to reason about.

let inc(r:int ref) = r := (!r) + 1



A conventional solution for shared-memory parallelism

Thread 1 Thread 2

lock(mutex); lock(mutex);

inc(r); inc(r);

!r !r

unlock(mutex); unlock(mutex);

Guarantees mutual exclusion of these critical sections.

This solution works (even for real machines that are not 

sequentially consistent),   but…

Complex to program, subject to deadlock, prone to bugs,          
not fault-tolerant, hard to reason about.

let inc(r:int ref) = r := (!r) + 1

Synchronization



Another approach to the coordination Problem
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How do we get back the result that t is computing?

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create f () in

let y = g () in

...



One Solution (using join)
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ; 

match !r with 

| Some v -> (* compute with v and y *)

| None -> failwith “impossible”



One Solution (using join)
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ; 

match !r with 

| Some v -> (* compute with v and y *)

| None -> failwith “impossible”

Thread.join t causes 
the current thread to wait

until the thread t
terminates.



One Solution (using join)
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let r = ref None

let t = Thread.create (fun _ -> r := Some(f ())) in

let y = g() in

Thread.join t ; 

match !r with 

| Some v -> (* compute with v and y *)

| None -> failwith “impossible”

So after the join, we know 
that any of the operations 

of t have completed.

Synchronization



In Pictures
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Thread 1
t=create f x
inst1,1; 
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1; 
inst2,2;
inst2,3;
…
inst2,m;

We know that for each
thread the previous
instructions must happen
before the later instructions.

So for instance, inst1,1 must
happen before inst1,2.



In Pictures
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Thread 1
t=create f x
inst1,1; 
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1; 
inst2,2;
inst2,3;
…
inst2,m;

We also know that the 
fork must happen before
the first instruction of the 
second thread.



In Pictures
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Thread 1
t=create f x
inst1,1; 
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1; 
inst2,2;
inst2,3;
…
inst2,m;

We also know that the 
fork must happen before
the first instruction of the 
second thread.

And thanks to the join, 
we know that all of the
instructions of the second
thread must be completed
before the join finishes.



In Pictures
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Thread 1
t=create f x
inst1,1; 
inst1,2;
inst1,3;
inst1,4;
…
inst1,n-1;

inst1,n;
join t

Thread 2

inst2,1; 
inst2,2;
inst2,3;
…
inst2,m;

However, in general, we
do not know whether
inst1,i executes before or 
after inst2,j.

In general, synchronization
instructions like fork and
join reduce the number of
possible interleavings.

Synchronization cuts down 
nondeterminism.

In the absence of 
synchronization we don’t
know anything…


