
COS 318: Operating Systems

Deadlocks

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

u  Conditions for a deadlock
u  Strategies to deal with deadlocks

3

Definitions

u  Use processes and threads interchangeably
u  Resources

l  Preemptable: CPU, Memory (can be taken away)
l  Non-preemptable: Disk, files, mutex, ... (can’t be taken away)

u  Operations with a resource
l  Request, Use, Release

More Definitions

u  Starvation
l  Processes wait indefinitely

u  Deadlock

l  A set of processes have a deadlock if each process is waiting
for an event that only another process in the set can cause

4

5

Resource Allocation Graph

u  Process A is holding
resource R

u  Process B requests
resource S

u  Example: A requests for S
while holding R, and B
requests for R while holding
S, then

u  A cycle in resource allocation
graph ⇒ deadlock

A R

B S

A S

B R

How do you deal with multiple instances of a resource?

6

An Example

u  A utility program
l  Copy a file from tape to disk
l  Print the file to printer

u  Resources
l  Tape
l  Disk
l  Printer

u  A deadlock
l  A holds tape and disk,
l  B holds printer,
l  A requests for a printer
l  B requests for tape and disk

A

B

Tape

7

Conditions for Deadlock

u  Mutual exclusion condition
l  A resource is assigned to exactly one process at a time

u  Hold and Wait
l  Processes holding resources can request new resources

u  No preemption
l  Resources cannot be taken away

u  Circular chain of requests
l  One process waits for another in a circular fashion

u  Question
l  Are all conditions necessary?

8

Eliminate Competition for Resources?

u  If running A to completion and
then running B, there will be no
deadlock

u  Generalize this idea for all
processes?

u  Is it a good idea to develop a
CPU scheduling algorithm that
causes no deadlock?

A S

B R

Previous example

S

R R

S

9

Strategies

u  Ostrich Algorithm
u  Detection and recovery

l  Fix the problem afterwards

u  Dynamic avoidance
l  Careful allocation

u  Prevention
l  Negate one of the four conditions

10

Ignore the Problem

u  The OS kernel locks up
l  Reboot

u  Device driver locks up
l  Remove the device
l  Restart

u  An application hangs (“not responding”)
l  Kill the application and restart
l  Familiar with this?

u  An application runs for a while and then hangs
l  Checkpoint the application
l  Change the environment (reboot OS)
l  Restart from the previous checkpoint

11

Detection and Recovery

u  Detection
l  Scan resource graph
l  Detect cycles

u  Recovery (difficult)
l  Kill process/threads (can you always do this?)
l  Roll back actions of deadlocked threads

12

Avoidance

u  Safety Condition:
l  It is not deadlocked
l  There is some scheduling order in which every process can

run to completion (even if all request their max resources)

u  Banker’s algorithm (Dijkstra 65)
l  Single resource

•  Each process has a credit
•  Total resources may not satisfy all credits
•  Track resources assigned and needed
•  Check on each allocation for safety

l  Multiple resources
•  Two matrices: allocated and needed
•  See textbook for details

13

Examples (Single Resource)

Has Max
P1 2 6
P2 2 3
P3 3 5

Total: 8

Free: 1

Has Max
P1 4 6
P2 1 3
P3 2 5

Free: 1

Free: 0 Free: 3 Free: 1

Has Max
P1 2 6
P2 3 3
P3 3 5

Has Max
P1 2 6
P2 0 0
P3 3 5

Has Max
P1 2 6
P2 0 0
P3 5 5

Has Max
P1 2 6
P2 0 0
P3 0 0

Free: 6

?

14

Prevention: Avoid Mutual Exclusion

u  Some resources are not physically
sharable
l  Printer, tape, etc

u  Some can be made sharable
l  Read-only files, memory, etc
l  Read/write locks

u  Some can be virtualized by spooling
l  Use storage to virtualize a resource into

multiple resources
l  Use a queue to schedule
l  Does this apply to all resources?

u  What about the tape-disk-printer
example?

A B

Spooling

15

Prevention: Avoid Hold and Wait

u  Two-phase locking
Phase I:
l  Try to lock all resources at the beginning
Phase II:
l  If successful, use the resources and release them
l  Otherwise, release all resources and start over

u  What about the tape-disk-printer example?

16

Prevention: No Preemption

u Make the scheduler be aware of resource allocation
u Method

l  If the system cannot satisfy a request from a process holding
resources, preempt the process and release all resources

l  Schedule it only if the system satisfies all resources
u Alternative

l  Preempt the process holding the requested resource
u Copying

l  Copying to a buffer to release the resource?
u What about the tape-disk-printer example?

17

Prevention: No Circular Wait

u  Impose an order of requests for all resources
u  Method

l  Assign a unique id to each resource
l  All requests must be in an ascending order of the ids

u  A variation
l  Assign a unique id to each resource
l  No process requests a resource lower than what it is holding

u  What about the tape-disk-printer example?
u  Can we prove that this method has no circular wait?

18

Which Is Your Favorite?

u  Ignore the problem
l  It is user’s fault

u  Detection and recovery
l  Fix the problem afterwards

u  Dynamic avoidance
l  Careful allocation

u  Prevention (Negate one of the four conditions)
l  Avoid mutual exclusion
l  Avoid hold and wait
l  No preemption
l  No circular wait

19

Tradeoffs and Applications

u  Ignore the problem for applications
l  It is application developers’ job to deal with their deadlocks
l  OS provides mechanisms to break applications’ deadlocks

u  Kernel should not have any deadlocks
l  Use prevention methods
l  Most popular is to apply no-circular-wait principle everywhere

u  Other application examples
l  Routers for a parallel machine (typically use the no-circular-

wait principle)
l  Process control in manufacturing

20

Summary

u  Deadlock conditions
l  Mutual exclusion
l  Hold and wait
l  No preemption
l  Circular chain of requests

u  Strategies to deal with deadlocks
l  Simpler ways are to negate one of the four conditions

