COS 318: Operating Systems
 CPU Scheduling

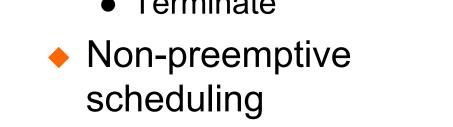
Jaswinder Pal Singh Computer Science Department Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Today's Topics

- CPU scheduling basics
- CPU Scheduling algorithms

When to Schedule?


- Process/thread creation
- Process/thread exit
- Blocking on I/O or synchronization
- I/O interrupt
- Clock interrupt (pre-emptive scheduling)

Preemptive scheduling Terminate Exited • Running \Rightarrow ready (call scheduler) • Blocked \Rightarrow ready Scheduler • Running \Rightarrow blocked dispatch + Running • Terminate Block for resource (call scheduler) Non-preemptive Yield, Interrupt scheduling (call scheduler) Ready • Running \Rightarrow blocked Blocked • Terminate Create Resource free,

Preemptive vs. Non-Preemptive Scheduling

I/O completion interrupt (move to ready queue)

Batch vs interactive vs real-time

Scheduling Criteria

Assumptions

- One program per user and one thread per program
- Programs are independent
- Goals for batch and interactive systems
 - Provide fairness
 - Everyone makes some progress; no one starves
 - Maximize CPU utilization
 - Not including idle process
 - Maximize throughput
 - Operations/second (min overhead, max resource utilization)
 - Minimize turnaround time
 - Batch jobs: time to execute (from submission to completion)
 - Shorten response time
 - Interactive jobs: time response (e.g. typing on a keyboard)
 - Proportionality
 - Meets user's expectations

Scheduling Criteria

Questions:

- What are the goals for PCs versus servers?
- Average response time vs. throughput
- Average response time vs. fairness

Problem Cases

- Completely blind about job types
 - No CPU and I/O overlap.
- Optimization involves favoring jobs of type "A" over "B"
 - Lots of A's? B's starve.
- Interactive process trapped behind others
 - Response time bad for no good reason.
- Priorities: A depends on B and A's priority > B's
 - B never runs.

Scheduling Algorithms

Simplified view of scheduling:

- Save process state (to PCB)
- Pick which process to run next
- Dispatch process

First-Come-First-Serve (FCFS) Policy

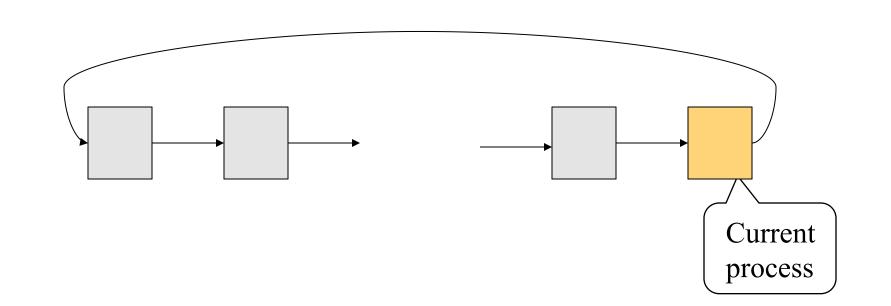
- What does it mean?
 - Run to completion (old days)
 - Run until blocked or yields
- Example 1
 - P1 = 24sec, P2 = 3sec, and P3 = 3sec, submitted together
 - Average response time = (24 + 27 + 30) / 3 = 27

- Same jobs but come in different order: P2, P3 and P1
- Average response time = (3 + 6 + 30) / 3 = 13

P2 P3 P1

(Gantt Graph)

STCF and SRTCF


- Shortest Time to Completion First
 - Non-preemptive
- Shortest Remaining Time to Completion First
 - Preemptive version
- Example
 - P1 = 6sec, P2 = 8sec, P3 = 7sec, P4 = 3sec
 - All arrive at the same time

- Can you do better than SRTCF in terms of average response time?
- Issues with this approach?

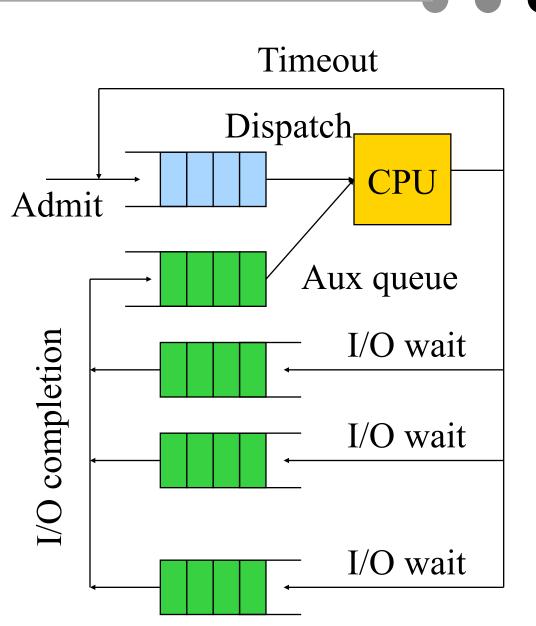
Round Robin

- Similar to FCFS, but add a time slice for timer interrupt
- FCFS for preemptive scheduling
- Real systems also have I/O interrupts in the mix
- How do you choose time slice?

FCFS vs. Round Robin

- Example
 - 10 jobs and each takes 100 seconds
- FCFS (non-preemptive scheduling)
 - job 1: 100s, job2: 200s, ... , job10: 1000s
- Round Robin (preemptive scheduling)
 - time slice 1sec and no overhead
 - job1: 991s, job2: 992s, ..., job10: 1000s
- Comparisons
 - Round robin is much worse (turnaround time) for jobs about the same length
 - Round robin is better for short jobs

Resource Utilization Example

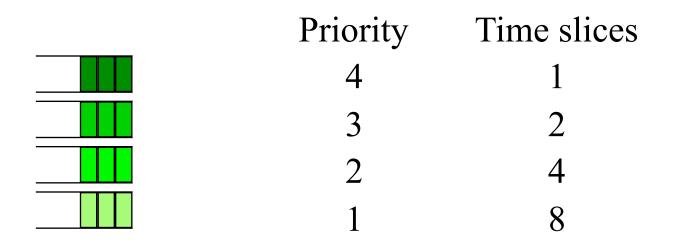

- A, B, and C run forever (in this order)
 - A and B each uses 100% CPU forever
 - C is a CPU plus I/O job (1ms CPU + 10ms disk I/O)
- Time slice 100ms
 - A (100ms CPU), B (100ms CPU), C (1ms CPU + 10ms I/O),
 ...
- Time slice 1ms
 - A (1ms CPU), B (1ms CPU), C (1ms CPU),
 A (1ms CPU), B (1ms CPU), C(10ms I/O) || A, B, ..., A, B

What do we learn from this example?

Virtual Round Robin

- Aux queue is FIFO
- I/O bound processes go to aux queue (instead of ready queue) to get scheduled
- Aux queue has preference over ready queue

Priority Scheduling


Not all processes are equal, so rank them

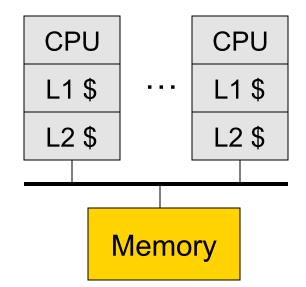
The method

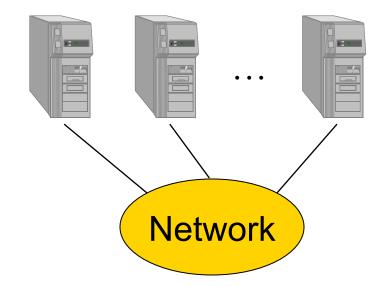
- Assign each process a priority
- Run the process with highest priority in the ready queue first
- Adjust priority dynamically (I/O wait raises the priority, reduce priority as process runs)
- Why adjusting priorities dynamically
 - T1 at priority 4, T2 at priority 1 and T2 holds lock L
 - Scenario
 - T1 tries to acquire L, fails, blocks.
 - T3 enters system at priority 3.
 - T2 never gets to run!

Multiple Queues

- Jobs start at highest priority queue
- If timeout expires, drop one level
- If timeout doesn't expire, stay or pushup one level

Lottery Scheduling


- Motivations
 - SRTCF does well with average response time, but unfair


Lottery method

- Give each job a number of tickets
- Randomly pick a winning ticket
- To approximate SRTCF, give short jobs more tickets
- To avoid starvation, give each job at least one ticket
- Cooperative processes can exchange tickets
- Question
 - How do you compare this method with priority scheduling?

Multiprocessor and Cluster

Multiprocessor architecture

- Cache coherence
- Single OS

Cluster or multicomputer

- Distributed memory
- An OS in each box

Multiprocessor/Cluster Scheduling

- Design issue
 - Process/thread to processor assignment
- Gang scheduling (co-scheduling)
 - Threads of the same process will run together
 - Processes of the same application run together
- Dedicated processor assignment
 - Threads will be running on specific processors to completion
 - Is this a good idea?

Real-Time Scheduling

- Two types of real-time
 - Hard deadline
 - Must meet, otherwise can cause fatal error
 - Soft Deadline
 - Meet most of the time, but not mandatory
- Admission control
 - Take a real-time process only if the system can guarantee the "real-time" behavior of all processes
 - The jobs are schedulable, if the following holds:

$$\sum \frac{C_i}{T_i} \le 1$$

where C_i = computation time, and T_i = period

Rate Monotonic Scheduling (Liu & Layland 73)

Assumptions

- Each periodic process must complete within its period
- No process is dependent on any other process
- Each process needs the same amount of CPU time on each burst
- Non-periodic processes have no deadlines
- Process preemption occurs instantaneously (no overhead)
- Main ideas of RMS
 - Assign each process a fixed priority = frequency of occurrence
 - Run the process with highest priority
- Example
 - P1 runs every 30ms gets priority 33 (33 times/sec)
 - P2 runs every 50ms gets priority 20 (20 times/sec)

Earliest Deadline Scheduling

Assumptions

- When a process needs CPU time, it announces its deadline
- No need to be periodic process
- CPU time needed may vary
- Main idea of EDS
 - Sort ready processes by their deadlines
 - Run the first process on the list (earliest deadline first)
 - When a new process is ready, it preempts the current one if its deadline is closer

Example

- P1 needs to finish by 30sec, P2 by 40sec and P3 by 50sec
- P1 goes first
- More in MOS 7.4.4

4.3 BSD Scheduling with Multi-Queue

- "1 sec" preemption
 - Preempt if a process doesn't block or complete within 1 second
- Priority is recomputed every second
 - $P_i = base + (CPU_i-1) / 2 + nice, where CPU_i = (U_i + CPU_i-1) / 2$
 - Base is the base priority of the process
 - U_i is process utilization in interval i
- Priorities
 - Swapper
 - Block I/O device control
 - File operations
 - Character I/O device control
 - User processes

Linux Scheduling

- Time-sharing scheduling
 - Each process has a priority and # of credits
 - I/O event will raise the priority
 - Process with the most credits will run next
 - A timer interrupt causes a process to lose a credit
 - If no process has credits, then the kernel issues credits to all processes: credits = credits/2 + priority
- Real-time scheduling
 - Soft real-time
 - Kernel cannot be preempted by user code

Windows Scheduling

Classes and priorities

- Real time: 16 static priorities
- Variable: 16 variable priorities, start at a base priority
 - If a process has used up its quantum, lower its priority
 - If a process waits for an I/O event, raise its priority

Priority-driven scheduler

- For real-time class, do round robin within each priority
- For variable class, do multiple queue

Multiprocessor scheduling

- For N processors, run N-1 highest priority threads on N-1 processors and run remaining threads on a single processor
- A thread will wait for processors in its affinity set, if there are other threads available (for variable priorities)

Summary

- Different scheduling goals
 - Depend on what systems you build
- Scheduling algorithms
 - Small time slice is important for improving I/O utilization
 - STCF and SRTCF give the minimal average response time
 - Priority and its variations are in most systems
 - Lottery scheduling is flexible
 - Admission control is important in real-time scheduling

