COS 318: Operating Systems

Mutex Implementation

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Revisit Mutual Exclusion (Mutex)

Critical section

Acquire (lock) ;
if (noCookies)

buy cookies;
Release (lock),;

. Critical section

Requirements
e Only one process/thread inside a critical section
e No assumption about CPU speeds

e A process/thread inside a critical section should not be blocked by any
processes/threads outside the critical section

e No one waits forever

e Works for multiprocessors
e Same code for all processes/threads

Today’ s Topics

Mutex problem
Ways of implementing mutual exclusion

Simple Lock Variables

Acquire (lock) {

while (lock.value == 1)
; }

lock.value = 1;

}

Release(lock) {
lock.value = 0;

Thread 1: Thread 2:
Acquire (lock) {
while (lock.value == 1)

.
14

{context switch)

> Acquire (lock) {
while (lock.value == 1)

é/////”’,,,,,’«ficontext switch)
lock.value = 1;
}

{context switch)

—> lock.value = 1;

}
A :

A G

®

Interrupt in A Simplified System

Central
Processing Memory
Unit

‘ I/O bus

Interrupt

|/O devices can rupts to CPU

Instruction Execution with Interrupt

User l
Program
Fetch
d
add 1
IP—| st Decode Save context
mul 1 v
Id Get INTR ID
Execute
sub ¥ Interrupt handler
bne } Lookup ISR | A
add Advance IP | / :
jmp Execute ISR
@ yes
Nno I: iret

}
Most instructions can be interrupted in the middle

Exceptions

Interrupts are asynchronous
e From external sources
e Examples: alarm clock, I/O bus signals from devices

Other exceptions are synchronous (more later)

e Processor-detected or programmed exceptions
 Faults — correctable; offending instruction is retried
« Traps — often for debugging; instruction is not retried
* Aborts — errors when executing instructions

Why Enable or Disable Interrupts

Enable interrupts
e Process I/O requests (e.g. keyboard)
e Implement preemptive CPU scheduling

Disable interrupts

e Introduce uninterruptible code regions
e Think sequentially most of the time

e Delay handling of external events

Uninterruptible
region

Disablelnt()

{ Enabielnt()

\/

Disabling Interrupts for Critical Section?

Acquire () : disable interrupts

Release () : enable interrupts Acquire()

critical section?

Release()

_

Issues:
e Kernel cannot let users disable interrupts
e Critical sections can be arbitrarily long

e Used on uniprocessors, but does not work on
multiprocessors

“Disable Interrupts” to Implement Mutex

Acquire (lock) { Release (lock) {
disable interrupts;

disable interrupts;
while (lock.value != 0)

lock.value = 0;

’ enable interrupts;
lock.value = 1; }

enable interrupts;

}

Issues:
e May disable interrupts forever
e Not designed for user code to use

[Ery (IGET)

A G

Fix “Disable Forever” problem?

Acquire (lock) {

disable interrupts;

while (lock.value !'= 0){
enable interrupts;
disable interrupts;
}

lock.value = 1;

enable interrupts;

}

Issues
e Consume CPU cycles

e Won’ t work with multiprocessors

“
L Ery e

A G

®

Release(lock) {
disable interrupts;
lock.value = 0;
enable interrupts;

}

11

Another Implementation

Acquire (lock) { Release(lock) {
disable interrupts; disable interrupts;
while (lock.value == 1) if (anyone in queue) {
{ Dequeue a thread;

Enqueue me for lock; make it ready;
Yield() ; }
} lock.value = O;
lock.value = 1; enable interrupts;
enable interrupts; }
}
Issues

e Working for multiprocessors

12

Peterson’'s Algorithm

See textbook

int turn;
int interested|[N];

void enter region(int process)

{

int other;

other = 1 - process;
interested|[process] = TRUE;
turn = process;

while (turn == process && interested[other] == TRUE) ;

}

L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM
Trans. on Computer Systems, 5(1):1-11, Feb 1987.

e 5 writes and 2 reads

[Ery (IGET)

TR

Atomic Read-Modify-Write Instructions

LOCK prefix in x86

e Make a specific set instructions atomic
e Together with BTS to implement Test&Set

Exchange (xchg, x86 architecture)

e Swap register and memory
e Atomic (even without LOCK)

Fetch&Add or Fetch&Op

e Atomic instructions for large shared memory multiprocessor
systems

Load linked and store conditional (LL-SC)

e Read value in one instruction (load linked)
Do some operations;

e \When store, check if value has been modified. If not, ok;
otherwise, jump back to start

14

A Simple Solution with Test&Set

Define TAS(lock)

e If successfully set, return 1;
e Otherwise, return O;

Any issues with the following solution?

Acquire (lock) {
while (!TAS(lock.wvalue))

14

}

Release (lock.value) {
lock.value = 0;

15

Mutex with Less Waiting?

Acquire (lock) { Releése(lock) {

while (!TAS (lock.guard)) while (!TAS(lock.guard))

if (lock.value) { if (anyone in queue) {
enqueue the thread; deque?e a thread;
block and lock.guard = 0; make it ready;

} else { } else
lock.value = 1; lock.value = 0;
lock.guard = 0; lock.guard = 0;

}

How long does the “busy wait” take?

16

Example: Protect a Shared Variable

Acquire (lock) ; /* system call */
count++;
Release (lock) /* system call */

Acquire(mutex) system call

Pushing parameter, sys call # onto stack
Generating trap/interrupt to enter kernel

Jump to appropriate function in kernel

Verify process passed in valid pointer to mutex
Minimal spinning

Block and unblock process if needed

Get the lock

Execute “count++;”
Release(mutex) system call

17

Available Primitives and Operations

Test-and-set
e \Works at either user or kernel

System calls for block/unblock
e Block takes some token and goes to sleep
e Unblock “wakes up” a waiter on token

18

Block and Unblock System Calls

Block(lock) Unblock(lock)
e Spin on lock.guard e Spin on lock.guard
Save the context to TCB Dequeue a TCB from lock.q

L
Enqueue TCB to lock.q e Put TCB in ready queue
Clear lock.guard e Clear lock.guard

Call scheduler

19

Always Block

Acquire (lock) { Release (lock) {
while (!'TAS(lock.value)) lock.value = 0;
Block(lock); Unblock(lock);
} }
Good
e Acquire won’ t make a system call if TAS succeeds
Bad

e TAS instruction locks the memory bus
e Block/Unblock still has substantial overhead

“
L Ery e

TR

Always Spin

Acquire (lock) { Release (lock) {
while (!'TAS(lock.value)) lock.value = 0;
while (lock.wvalue) }

o
4

}
Two spinning loops in Acquire () ?

CPU CPU CPU CPU
L1$ L1$ L1 $ o L19$
123 L2 $
P\%fz 3 —-e-
Memory
Multicore

SMP

21

Optimal Algorithms

What is the optimal solution to spin vs. block?
e Know the future

e Exactly when to spin and when to block
But, we don’ t know the future
e There is no online optimal algorithm \

\
'
3
/

Offline optimal algorithm

e Afterwards, derive exactly when to block or spin (“what if”)
e Useful to compare against online algorithms

)c
[Ery IGET)

TR

22

Competitive Algorithms

An algorithm is c-competitive if
for every input sequence o

CA(O) SCX Copt(o) + k

e C is a constant
e C,(0) is the cost incurred by algorithm A in processing o

o C,,(0)is the cost incurred by the optimal algorithm in
processing o

What we want is to have ¢ as small as possible
e Deterministic
e Randomized

)c
[Ery IGET)

TR

23

Constant Competitive Algorithms

Acquire (lock, N) {
int 1i;

while (!TAS(lock.value)) {
i = N;

while (!'lock.value && 1i)
i--;

if ('1)
Block (lock) ;

}
}

Spin up to N times if the lock is held by another thread
If the lock is still held after spinning N times, block

If spinning N times is equal to the context-switch time, what is the
competitive factor of the algorithm?

)c
[Ery IGET)

TR

Approximate Optimal Online Algorithms

Main idea
e Use past to predict future
Approach

e Random walk
« Decrement N by a unit if the last Acquire() blocked
 Increment N by a unit if the last Acquire() didn’ t block

e Recompute N each time for each Acquire() based on some
lock-waiting distribution for each lock

Theoretical results
E Cp(o (P)) = (el(e-1)) x E C,,(o(P))

The competitive factor is about 1.58.

)c
[Ery IGET)

TR

25

Empirical Results

/\ /\OC.

Block Spin Fixed C/2\ Fixed C Opt Online 3-samples /R-walk

Nub (2h) 1.943 2.962 | 1.503 1.559 1.078 1.225 | 1.093
Taos (24h) 1.715 3.366 | 1.492 1.757 1.141 1.212 | 1.213
Taos (M24) 1.776 3.535 | 1.483 1.750 1.106 1.177 | 1.160
Taos (Regsim) 1.578 3.293 | 1.499 1.748 1.161 1.260 | 1.268
Ivy (100m) 5171 2298 | 1.341 1.438 1.133 1.212 | 1.167
Ivy (18h) 7.243 1562 | 1.274 1.233 1.109 1.233 | 1.141
Galaxy 2.897 2.667 | 1.419 1.740 1.237 1.390 | 1.693
Hanoi 2.997 2976 | 1.418 1.726 1.200 1.366 | 1.642
Regsim 4.675 1.302 \1.423 1.374 1.183 1.393 \ 1.366

Table 1: Synchronization costs for eMogram relative to the optimal off-line a]gw

Max Flapsed time Improvement

spins (seconds)

Always-block N/A 10529.5 0.0%
Always-spin N/A 8256.3 21.5%
Fixed-spin 100 9108.0 13.5%)) _

200 8000.0 A. Karlin, K. Li, M. Manasse, and S. Owicki,
Opt-known 1008 7881.4 25.1% “Empirical Studies of Competitive Spinning
Opt-approx 1008 8171.2 922.3% for a Shared-Memory Multiprocessor,”
3-samples 1008 8011.6 23.9% Proceedings of the 13" ACM Symposium
Random-walk 1008 7929.7 [24.7% | on Operating Systems Principle, 1991.

Table 3: Elapsed times of Regsim using different spin-
ning strategies.

26

The Big Picture

OS codes and concurrent applications

High-Level
Atlgmic A\\/PI Mutex Semaphores Monitors Send/Recv
Low-Level Interrupt Other atomic
Load/store Test&Set : .
Atomic Ops disable/enable Instructions
Interrupts CPU

Multiprocessors

(I/O, timer) scheduling

27

Summary

Disabling interrupts for mutex

e There are many issues

e \WWhen making it work, it works for only uniprocessors
Atomic instruction support for mutex

e Atomic load and stores are not good enough

e Test&set and other instructions are the way to go
Competitive spinning

e Spin at the user level most of the time

e Make no system calls in the absence of contention
e Have more threads than processors

28

