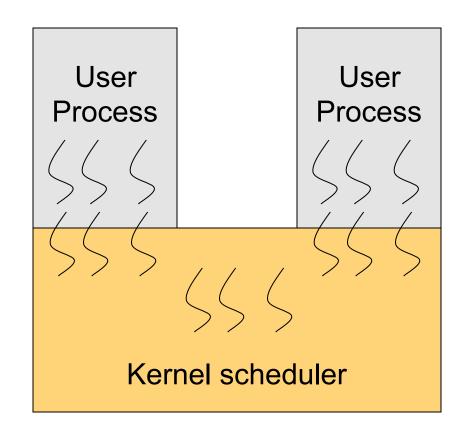
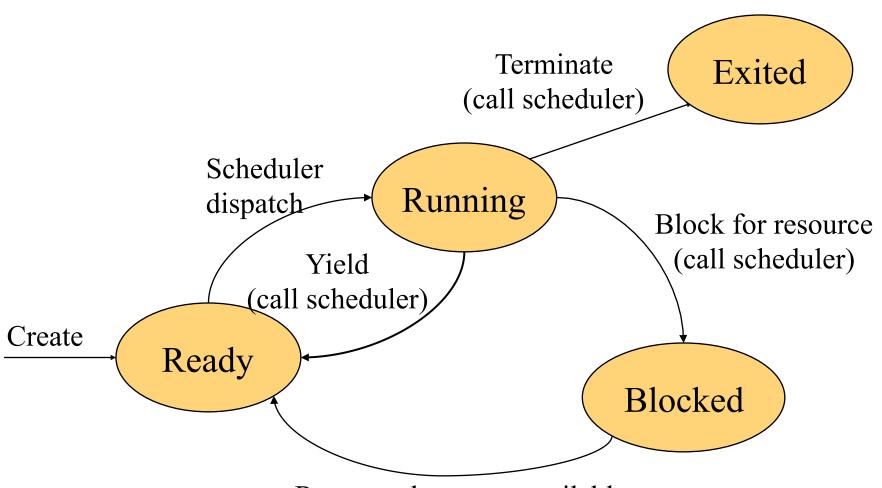
COS 318: Operating Systems Implementing Threads

Jaswinder Pal Singh Computer Science Department **Princeton University**

(http://www.cs.princeton.edu/courses/cos318/)


Today's Topics

- Non-preemptive versus preemptive threads
- Kernel vs. user threads
- Too many cookies problem


Revisit Monolithic OS Structure

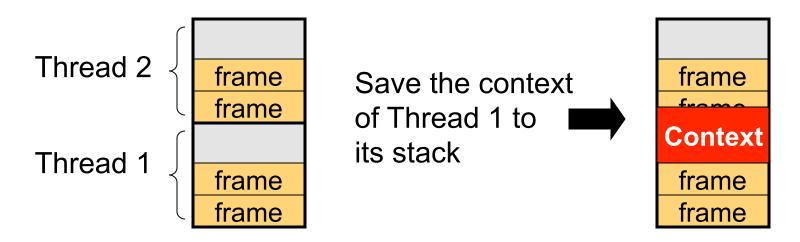
- Kernel has its address space, shared with all processes
- Kernel consists of
 - Boot loader
 - BIOS
 - Key drivers
 - Threads
 - Scheduler
- Scheduler
 - Use a ready queue to hold all ready threads
 - Schedule in a thread with the same address space (thread context switch)
 - Schedule in a thread with a different address space (process context switch)

Non-Preemptive Scheduling

Resource becomes available (move to ready queue)

Scheduler

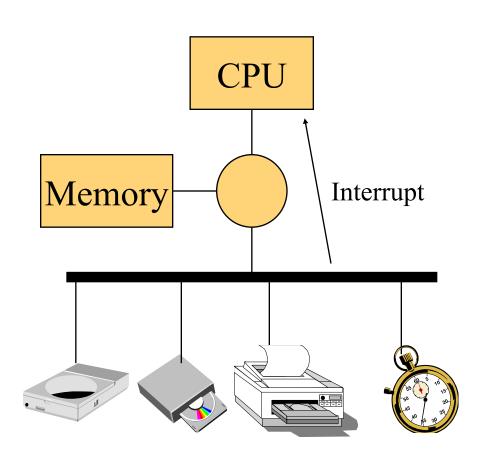
- A non-preemptive scheduler invoked by calling
 - block()
 - yield()
- The simplest form
 Scheduler:


save current process/thread state choose next process/thread to run dispatch (load PCB/TCB and jump to it)

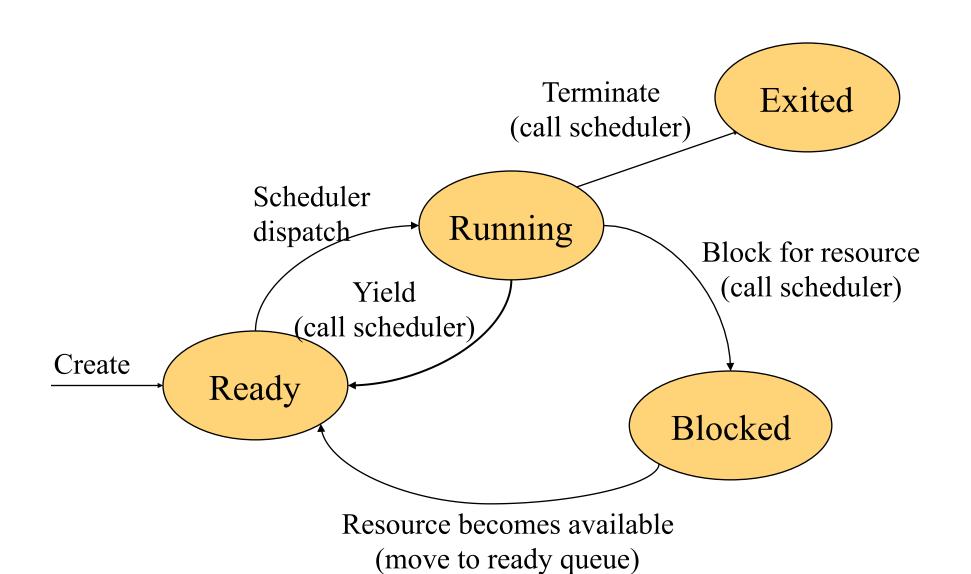
Scheduler can be viewed as just another kernel thread

Where and How to Save Thread Context?

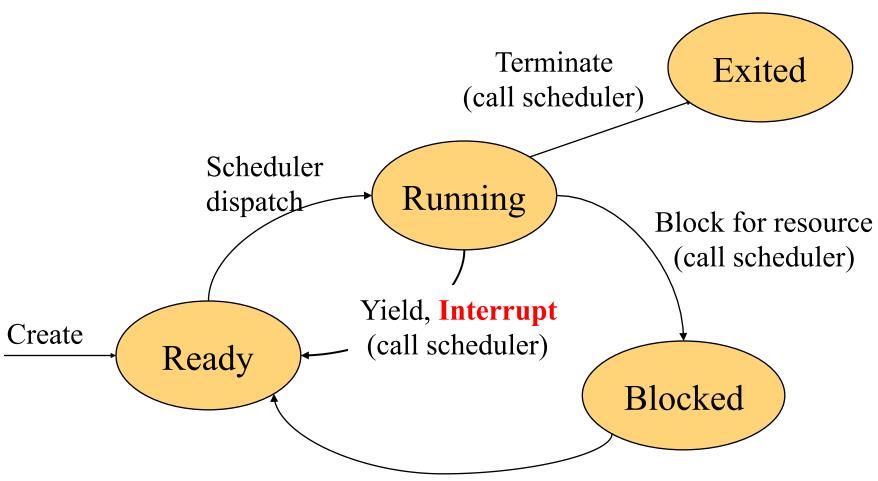
- Save the context on the thread's stack
 - Many processors have a special instruction to do it efficiently
 - But, need to deal with the overflow problem



- Check before saving
 - Make sure that the stack has no overflow problem
 - Copy it to the TCB residing in the kernel heap
 - Not so efficient, but no overflow problems


Preemption

- Why
 - Timer interrupt for CPU management
 - Asynchronous I/O completion
- Interrupts
 - Between instructions
 - Within an instruction, except atomic ones
- Manipulate interrupts
 - Disable (mask) interrupts
 - Enable interrupts
 - Non-Masking Interrupts



State Transition for Non-Preemptive Scheduling

State Transition for Preemptive Scheduling

Resource free, I/O completion interrupt (move to ready queue)

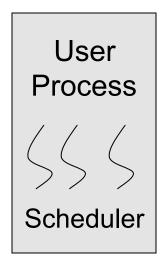
Interrupt Handling for Preemptive Scheduling

- Timer interrupt handler:
 - Save the current process / thread to its PCB / TCB
 - Call scheduler
- I/O interrupt handler:
 - Save the current process / thread to its PCB / TCB
 - Do the I/O job
 - Call scheduler
- Issues
 - Disable/enable interrupts
 - Make sure that it works on multiprocessors

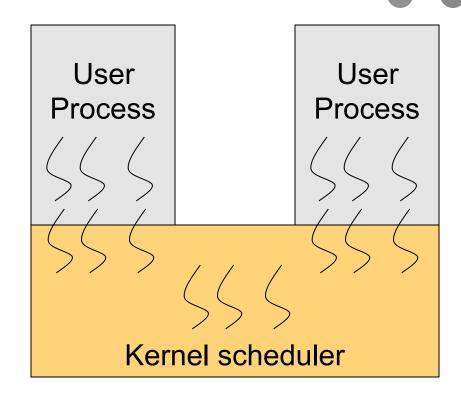
Dealing with Preemptive Scheduling

- Problem
 - Interrupts can happen anywhere
- An obvious approach
 - Worry about interrupts and preemptions all the time
- What we want
 - Worry less of the time
 - Low-level behavior encapsulated in "primitives"
 - Synchronization primitives worry about preemption
 - OS and applications use synchronization primitives

Concurrent applications


OS services

Synchronization primitives


Scheduling and interrupt handling

User Threads vs. Kernel Threads

- Context switch at user-level without a system call (Java threads)
- Is it possible to do preemptive scheduling?
- What about I/O events?

- A user thread
 - Makes a system call (e.g. I/O)
 - Gets interrupted
- Context switch in the kernel

Summary of User vs. Kernel Threads

User-level threads

- User-level thread package implements thread context switches
- OS doesn't know the process has multiple threads
- Timer interrupt (signal facility) can introduce preemption
- When a user-level thread is blocked on an I/O event, the whole process is blocked
- Allows user-level code to build custom schedulers

Kernel-threads

- Kernel-level threads are scheduled by a kernel scheduler
- A context switch of kernel-threads is more expensive than user threads due to crossing protection boundaries

Hybrid

It is possible to have a hybrid scheduler, but it is complex

Interactions between User and Kernel Threads

Two approaches

- Each user thread has its own kernel stack
- All threads of a process share the same kernel stack

	Private kernel stack	Shared kernel stack
Memory usage	More	Less
System services	Concurrent access	Serial access
Multiprocessor	Yes	Not within a process
Complexity	More	Less

"Too Many Cookies" Problem

- Want cookies, but don't want to buy too many cookies
- Any person can be distracted at any point

	RoomMate A	RoomMate B
15:00	Look in cabinet: out of cookies	
15:05	Leave for Wawa	
15:10	Arrive at Wawa	Look at fridge: out of cookies
15:15	Buy a bag of cookies	Leave for Wawa
15:20	Arrive home; put cookies away	Arrive at Wawa
15:25		Buy a bag of cookies
		Arrive home; put cookies away Oh No! Too many cookies.

Using A Note?

Thread A

```
if (noCookies) {
   if (noNote) {
     leave note;
     buy cookies;
     remove note;
   }
}
```

Thread B

```
if (noCookies) {
   if (noNote) {
     leave note;
     buy cookies;
     remove note;
   }
}
```


Any issue with this approach?

Another Possible Solution?

Thread A

```
leave noteA
if (noNoteB) {
  if (noCookies)
    buy cookies
  }
}
remove noteA
```



```
leave noteB
if (noNoteA) {
  if (noCookies)
{
    buy cookies
  }
}
```

remove noteB

Didn't buy cookies

Does this method work?

Didn't buy cookies

Yet Another Possible Solution?

Thread A

```
leave noteA
while (noteB)
  do nothing;
if (noCookies)
  buy cookies;
remove noteA
```

Thread B

```
leave noteB
if (noNoteA) {
   if (noCookies) {
     buy cookies
   }
}
remove noteB
```

Would this fix the problem?

Remarks

- The last solution works, but
 - Life is too complicated
 - A's code is different from B's
 - Busy waiting is a waste
- What we want is:

```
Acquire(lock);
if (noCookies)
buy cookies;
Release(lock);
```


What Is A Good Solution

- Only one process/thread inside a critical section
- No assumption about CPU speeds
- A process/thread inside a critical section should not be blocked by any process outside the critical section
- No one waits forever
- Works for multiprocessors
- Same code for all processes/threads

Summary

- Non-preemptive threads issues
 - Scheduler
 - Where to save contexts
- Preemptive threads
 - Interrupts can happen any where!
- Kernel vs. user threads
 - Main difference is which scheduler to use
- Too many cookies problem
 - What we want is mutual exclusion

