
COS 318: Operating Systems

File Systems: Abstractions and
Protection

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

3

Topics

◆  What’s behind the file system: Storage hierarchy
◆  File system abstraction
◆  File system protection

4

Traditional Data Center Storage Hierarchy

LAN SAN

Clients Server

…

Storage

Storage

Onsite
Backup

Offsite
backup

WAN

Remote
mirror

5

Evolved Data Center Storage Hierarchy

LAN

Clients

Storage

…

Onsite
Backup

Offsite
backup

WAN

Remote
mirror Network

Attached
Storage
(NAS)

w/ snapshots
to protect data

6

Alternative with no Tape

LAN

Clients

…

Onsite
Backup

WAN

Remote
mirror Network

Attached
Storage
(NAS)

w/ snapshots
to protect data

WAN

Remote
Backup

“Deduplication”
Capacity and

bandwidth
optimization

7

“Public Cloud” Storage Hierarchy

WAN

Clients

…
 WAN

Interfaces Geo-plex

Examples: Google GFS, Spanner,
Apple icloud, Amazon S3,
Dropbox, Mozy, etc

Physical storage

8

Revisit File System Abstractions
◆  Network file system

●  Map to local file systems
●  Exposes file system API
●  NFS, CIFS, etc

◆  Local file system
●  Implement file system abstraction on

block storage
●  Exposes file system API

◆  Volume manager
●  Logical volume of block storage
●  Map to physical storage
●  RAID and reconstruction
●  Exposes block API

◆  Physical storage
●  Previous lectures

Volume Manager

Local File System

Network File System

Volume Manager
◆  Group multiple storage partitions into a logical volume

●  Grow or shrink without affecting existing data
●  Virtualization of capacity and performance

◆  Reliable block storage
●  Include RAID, tolerating device failures
●  Provide error detections at block level

◆  Remote abstraction
●  Block storage in the cloud
●  Remote volumes for disaster recovery
●  Remote mirrors can be split or merged for backups

◆  How to implement?
●  OS kernel: Windows, OSX, Linux, etc.
●  Storage subsystem: EMC, Hitachi, HP, IBM, NetApp

9

10

File versus Block Abstractions

Disk/Volume abstraction
◆  Block oriented
◆  Block numbers
◆  No protection among users of

the system
◆  Data might be corrupted if

machine crashes

◆  Support file systems, database
systems, etc.

File abstraction
◆  Byte oriented
◆  Named files
◆  Users protected from each

other
◆  Robust to machine failures

◆  Emulate block storage
interface

11

File Structures

◆  Byte sequence
●  Read or write N bytes
●  Unstructured or linear

◆  Record sequence
●  Fixed or variable length
●  Read or write a number of

records
◆  Tree

●  Records with keys
●  Read, insert, delete a record

(typically using B-tree)
…

… … …

12

File Types

◆  ASCII
◆  Binary data

●  Record
●  Tree
●  An Unix executable file

•  header: magic number, sizes, entry point, flags
•  text
•  data
•  relocation bits
•  symbol table

◆  Devices
◆  Everything else in the system

13

File Operations

◆  Operations for “sequence of bytes” files
●  Create: create a file (mapping from a name to a file)
●  Delete: delete a file
●  Open: authentication
●  Close: done with accessing a file
●  Seek: jump to a particular location in a file
●  Read: read some bytes from a file
●  Write: write some bytes to a file
●  A few more operations on directories: later

◆  Implementation challenges
●  Keep disk accesses low
●  Keep space overhead low

Access Patterns
◆  Sequential (the common pattern)

●  File data processed sequentially
●  Example: Editor writes out a file

◆  Random access
●  Access a block in file directly
●  Example: Read a message in an inbox file

◆  Keyed access
●  Search for a record with particular values
●  Usually not provided by today’s file systems
●  Examples: Database search and indexing

14

16

File System vs. Virtual Memory
◆  Similarity

●  Location transparency
●  Size "obliviousness"
●  Protection

◆  File system is easier than VM in some ways
●  File system mappings can be slow
●  Files are dense and mostly sequential, while page tables deal

with sparse address spaces and random accesses
◆  File system is more difficult than VM in some ways

●  Each layer of translation causes potential I/Os
●  Memory space for caching is never enough
●  File size range vary: many < 10k, some > GB
●  Implementation must be reliable

15

VM Page Table vs. File System Metadata

Page table
◆  Manage the mappings of

an address space
◆  Map virtual page # to

physical page #
◆  Check access permission

and illegal addressing
◆  TLB does it all in one

cycle

File metadata
◆  Manage the mappings of

files
◆  Map byte offset to disk

block address
◆  Check access permission

and illegal addressing
◆  Implemented in software,

may cause I/Os

17

Protection: Policy vs. Mechanism

◆  Policy is about what
◆  Mechanism is about how
◆  A protection system is the mechanism to enforce a

security policy
●  Same set of choices, no matter what policies

◆  A security policy defines acceptable and unacceptable
behaviors. Examples:

•  A given user can only allocate 4GB of disk storage
•  No one but root can write to the password file
•  A user is not allowed to read others’ mail files

18

Protection Mechanisms
◆  Authentication

●  Identity check
•  Unix: password
•  Credit card: last 4 digits of credit card # + SSN + zipcode
•  Airport: driver’s license or passport

◆  Authorization
●  Determine if x is allowed to do y
●  Need a simple database

◆  Access enforcement
●  Enforce authorization decision
●  Must make sure there are no loopholes

19

Authentication

◆  Usually done with passwords
●  Relatively weak, because you must remember them

◆  Passwords are stored in an encrypted form
●  Use a “secure hash” (one way only)

◆  Issues
●  Passwords should be obscure, to prevent “dictionary

attacks”
●  Each user has many passwords

◆  Alternatives?

20

Protection Domain

◆  Once identity known, provides rules
●  E.g. what is Bob allowed to do?

◆  Protection matrix: domains vs. resources

File A Printer B File C

Domain 1 R W RW

Domain 2 RW W …

Domain 3 R … RW

21

By Columns: Access Control Lists (ACLs)

◆  Each object has a list of
<user, privilege> pairs

◆  ACL is simple, implemented in most systems
●  Owner, group, world

◆  Implementation considerations
●  Stores ACLs in each file
●  Use login authentication to identify
●  Kernel implements ACLs

◆  Any issues?

22

By Rows: Capabilities

◆  For each user, there is a capability list
●  A lists of <object, privilege> pairs

◆  Capabilities provide both naming and protection
●  Can only “see” an object if you have a capability

◆  Implementation considerations
●  Architecture support
●  Capabilities stored in the kernel
●  Capabilities stored in the user space in encrypted format

◆  Issues?

23

Access Enforcement

◆  Use a trusted party to
●  Enforce access controls
●  Protect authorization information

◆  Kernel is the trusted party
●  This part of the system can do anything it wants
●  If there is a bug, the entire system could be destroyed
●  Want it to be as small & simple as possible

◆  Security is only as strong as the weakest link in the
protection system

24

Some Easy Attacks

◆  Abuse of valid privilege
●  On Unix, super-user can do anything

•  Read your mail, send mail in your name, etc.
●  If you delete the code for COS318 project 5, your partner is not

happy
◆  Spoiler/Denial of service (DoS)

●  Use up all resources and make system crash
●  Run shell script to: “while(1) { mkdir foo; cd foo; }”

◆  Listener
●  Passively watch network traffic

No Perfect Protection System

◆  Cannot prevent bad things, can only make it
difficult to do them

◆  There are always ways to defeat protection
●  burglary, bribery, blackmail, bludgeoning, etc.

◆  Every system has holes

25

26

Summary

◆  Storage hierarchy can be complex
●  Reliability, security, performance and cost
●  Many things are hidden

◆  Key storage layers above hardware
●  Volume or block storage
●  Local file system
●  Network file system

◆  Protection
●  ACL is the default in file systems
●  More protection is needed in the cloud

