
COS 318: Operating Systems

File Layout and Directories

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Topics

◆  File system structure
◆  Disk allocation and i-nodes
◆  Directory and link implementations
◆  Physical layout for performance

Typical Layout of a Disk Partition
◆  Boot block

●  Code to load and boot OS
◆  Super-block defines a file system

●  File system info: type, no of blocks, ...
●  File metadata area
●  Information about free blocks

◆  File metadata
●  Each descriptor describes a file

◆  Directories
●  Directory data (directory and file names)

◆  File data
●  Data blocks

3

File metadata
(i-node in Unix)

Superblock

Directories

File data

Boot block

4

Software Components
◆  Naming

●  File name and directory
◆  File access

●  Read, write, other operations
◆  Buffer cache

●  Reduce client/server disk I/Os
◆  Disk allocation

●  Layout, mapping files to blocks
◆  Volume manager

●  Storage layer including RAID
●  Block storage interface

◆  Management
●  Tools for system administrators

to manage file systems

File naming

File access

Buffer cache

Disk allocation M
an

ag
em

en
t

Volume manager

5

Open A File: Open(fd, name, access)
◆  Various checking (directory and file name lookup, authenticate)
◆  Copy the file descriptors into the in-memory data structure
◆  Create an entry in the open file table (system wide)
◆  Create an entry in PCB
◆  Return user a pointer to “file descriptor”

Open-file table
(system-wide)

File
metadata

File system
info

Directories

File data

File
descriptors
(Metadata)

Process
control
block

. . .

Open
file

pointer
array

6

Data Structures for Storage Allocation

◆  A file
●  Metadata
●  A list of data blocks

◆  Free space data structure
●  Bit map indicating the status of

disk blocks
●  Linked list that chains free

blocks together
●  Buddy system
●  …

11111111111111111000000000000000
…

00000111111110000000000111111111

11000001111000111100000000000000

link
addr
size

link
addr
size

…

Free

7

Contiguous Allocation
◆  Allocate contiguous blocks on storage

●  Bitmap: find N contiguous 0’s
●  Linked list: find a region (size >= N)

◆  File metadata
●  First block in file
●  Number of blocks

◆  Pros
●  Fast sequential access
●  Easy random access

◆  Cons
●  External fragmentation

(what if file C needs 4 blocks)
●  Hard to grow files

3

File A File B

8

Linked Files (Alto)

◆  File structure
●  File metadata points to 1st

block on storage
●  A block points to the next
●  Last block has a NULL

pointer
◆  Pros

●  Can grow files dynamically
●  Free list is similar to a file

◆  Cons
●  Random access: bad
●  Unreliable: losing a block

means losing the rest

File header

null

. . .

9

File Allocation Table (FAT)
◆  Allocation table at the beginning of

each volume
◆  N entries for N blocks
◆  Want to keep it in memory

◆  File structure
●  A file is a linked list of blocks
●  File metadata points to the first block

of the file
●  The entry of first block points to the

next, …
◆  Pros

●  Simple
◆  Cons

●  Random access: bad
●  Waste space

217 619

399

foo 217

EOF

FAT Allocation Table

0

399

619

10

Single-Level Indexed Files

◆  File structure
●  User declares max size
●  A file header holds an array of

pointers to point to disk blocks
◆  Pros

●  Can grow up to a limit
●  Random access is fast

◆  Cons
●  Clumsy to grow beyond the limit

File header
Disk
blocks

11

DEMOS (Cray-1)

◆  Idea
●  Using contiguous allocation
●  Allow non-contiguous

◆  File structure
●  Small file metadata has 10

(base,size) pointers
●  Big file has 10 indirect

pointers
◆  Pros & cons

●  Can grow (max 10GB)
●  fragmentation

File metadata

size9

size1

size0

size9

size1

size0

size9

size1

size0

size9

size1

size0

12

Multi-Level Indexed Files (Unix)

◆  13 Pointers in a header
●  10 direct pointers
●  11: 1-level indirect
●  12: 2-level indirect
●  13: 3-level indirect

◆  Pros & Cons
●  In favor of small files
●  Can grow
●  Limit is 16G and lots of

seek
◆  How to reach block 23, 5,

340?

1
2

data

data
. . .
11
12
13

data
. . .

. . .

data
. . .

. . .

data
. . .
 . . .

13

Original Unix i-node

◆  Mode: file type, protection bits, setuid, setgid bits
◆  Link count: number of directory entries pointing to this
◆  Uid: uid of the file owner
◆  Gid: gid of the file owner
◆  File size
◆  Times (access, modify, change)

◆  10 pointers to data blocks
◆  Single indirect pointer
◆  Double indirect pointer
◆  Triple indirect pointer

14

Extents
◆  An extent is a variable

number of blocks
◆  Main idea

●  A file is a number of extents
●  XFS uses 8Kbyte blocks
●  Max extent size is 2M blocks

◆  Index nodes need to have
●  Block offset
●  Length
●  Starting block

◆  Pros and Cons?

Block offset
length

Starting block

 . . .

15

Naming

◆  Text name
●  Need to map it to index

◆  Index (i-node number)
●  Ask users to specify i-node number

◆  Icon
●  Need to map it to index or map it to text then to index

16

Directory Organization Examples

◆  Flat (CP/M)
●  All files are in one directory

◆  Hierarchical (Unix)
●  /u/cos318/foo
●  Directory is stored in a file containing (name, i-node) pairs
●  The name can be either a file or a directory

◆  Hierarchical (Windows)
●  C:\windows\temp\foo
●  Use the extension to indicate whether the entry is a directory

17

Mapping File Names to i-nodes

◆  Create/delete
●  Create/delete a directory

◆  Open/close
●  Open/close a directory for read and write
●  Should this be the same or different from file open/close?

◆  Link/unlink
●  Link/unlink a file

◆  Rename
●  Rename the directory

18

Linear List
◆  Method

●  <FileName, i-node> pairs are
linearly stored in a file

●  Create a file
•  Append <FileName, i-node>

●  Delete a file
•  Search for FileName
•  Remove its pair from the

directory
•  Compact by moving the rest

◆  Pros
●  Space efficient

◆  Cons
●  Linear search
●  Need to deal with fragmentation

/u/jps
 foo bar …
 veryLongFileName

<foo,1234> <bar,
 1235> … <very
LongFileName,
4567>

19

Tree Data Structure

◆  Method
●  Store <fileName, i-node> a tree data

structure such as B-tree
●  Create/delete/search in the tree data

structure
◆  Pros

●  Good for a large number of files
◆  Cons

●  Inefficient for a small number of files
●  More space
●  Complex

…

20

Hashing
◆  Method

●  Use a hash table to map
FileName to i-node

●  Space for name and metadata
is variable sized

●  Create/delete will trigger
space allocation and free

◆  Pros
●  Fast searching and relatively

simple
◆  Cons

●  Not as efficient as trees for
very large directory (wasting
space for the hash table)

…

foo
bar

1234
1235

foobar 4567

21

I/Os for Read/Write A File
◆  I/Os to access a byte of /u/cos318/foo

●  Read the i-node and first data block of “/”
●  Read the i-node and first data block of “u”
●  Read the i-node and first data block of “cos318”
●  Read the i-node and first data block of “foo”

◆  I/Os to write a file
●  Read the i-node of the directory and the directory file.
●  Read or create the i-node of the file
●  Read or create the file itself
●  Write back the directory and the file

◆  Too many I/Os to traverse the directory
●  Solution is to use Current Working Directory

22

Hard Links

◆  Approach
●  A link to a file with the same i-node
ln source target

●  Delete may or may not remove the
target depending on whether it is the
last one (link reference count)

◆  Why hard links?
◆  How would you implement them?
◆  Main issue with hard links?

Directory

23

Symbolic Links

◆  Approach
●  A symbolic link is a pointer to a file
●  Use a new i-node for the link
ln –s source target

◆  Why symbolic links?
◆  How would you implement them?
◆  Main issue with symbolic links?

Directory

Link

24

Original Unix File System

◆  Simple disk layout
●  Block size is sector size (512 bytes)
●  i-nodes are on outermost cylinders
●  Data blocks are on inner cylinders
●  Use linked list for free blocks

◆  Issues
●  Index is large
●  Fixed max number of files
●  i-nodes far from data blocks
●  i-nodes for directory not close together
●  Consecutive blocks can be anywhere
●  Poor bandwidth (20Kbytes/sec even for

sequential access!)

i-node array

25

BSD FFS (Fast File System)

◆  Use a larger block size: 4KB or 8KB
●  Allow large blocks to be chopped into

fragments
●  Used for little files and pieces at the

ends of files
◆  Use bitmap instead of a free list

●  Try to allocate contiguously

foo

bar

26

FFS Disk Layout

◆  i-nodes are grouped together
●  A portion of the i-node array on each

cylinder
●  In same cylinder group as data for the files
●  10% reserved disk space, to keep room

◆  Do you ever read i-nodes without
reading any file blocks?
●  4 times more often than reading together
●  examples: ls, make

◆  Overcome rotational delays
●  Skip sector positioning to avoid the context

switch delay
●  Read ahead: read next block right after the

first

i-node subarray

27

What Has FFS Achieved?

◆  Performance improvements
●  20-40% of disk bandwidth for large files (10-20x original)
●  Better small file performance (why?)

◆  We can do better
●  Extent based instead of block based

•  Use a pointer and size for all contiguous blocks (XFS, Veritas file
system, etc)

●  Synchronous metadata writes hurt small file performance
•  Asynchronous writes with certain ordering (“soft updates”)
•  Logging (talk about this later)
•  Play with semantics (/tmp file systems)

28

Summary

◆  File system structure
●  Boot block, super block, file metadata, file data

◆  File metadata
●  Consider efficiency, space and fragmentation

◆  Directories
●  Consider the number of files

◆  Links
●  Soft vs. hard

◆  Physical layout
●  Where to put metadata and data

