COS 318: Operating Systems

File Layout and Directories

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Topics

File system structure

Disk allocation and i-nodes
Directory and link implementations
Physical layout for performance

Typical Layout of a Disk Partition

Boot block
e Code to load and boot OS
Super-block defines a file system Boot block
o File system info: type, no of blocks, ... Superblock
o File metadata area
o Information about free blocks File metadata
File metadata (i-node in Unix)
o Each descriptor describes a file Di :
_ _ 1rectories
Directories
e Directory data (directory and file names)
File data File data
o Data blocks

Software Components

Naming
e File name and directory

File access
o Read, write, other operations

Buffer cache
e Reduce client/server disk 1/Os

Disk allocation
o Layout, mapping files to blocks

Volume manager
e Storage layer including RAID
e Block storage interface

Management

e Tools for system administrators
to manage file systems

File naming

File access

Buffer cache

Disk allocation

Management

Volume manager

Open A File: Open(fd, name, access)
®

Various checking (directory and file name lookup, authenticate)
Copy the file descriptors into the in-memory data structure
Create an entry in the open file table (system wide)

Create an entry in PCB

Return user a pointer to “file descriptor”

File system
. info
Process File
control Open-file table descriptors File
block (system-wide) (Metadata) metadata
Directories
/
Open]
file < File data
pointer

array || -
b 5

Data Structures for Storage Allocation

A file

e Metadata
e A list of data blocks 11111111111111111000000000000000

00000111111110000000000111111111

Free space data structure
o Bit map indicating the status of

11000001111000111100000000000000

disk blocks
o Linked list that chains free Free
blocks together
o Buddy system ﬁ ~
o ... addr link \
size addr

size

Contiguous Allocation

Allocate contiguous blocks on storage
o Bitmap: find N contiguous O’s
e Linked list: find a region (size >= N)
File metadata
e First block in file
e Number of blocks
Pros
o Fast sequential access
e Easy random access
Cons

o External fragmentation
(what if file C needs 4 blocks)

o Hard to grow files

File A

File B

Linked Files (Alto)

File structure

o File metadata points to 1st
block on storage

o A block points to the next

e Last block has a NULL
pointer

Pros
e Can grow files dynamically
e Free listis similar to a file

Cons

e Random access: bad

e Unreliable: losing a block
means losing the rest

File header

N

null

File Allocation Table (FAT)

Allocation table at the beginning of
each volume
N entries for N blocks
Want to keep it in memory 0

File structure

e A file is a linked list of blocks

o File metadata points to the first block 217 619 ™~
of the file

e The entry of first block points to the 399 EOF
next, ...

Pros
e Simple 619 399 ./
cons

e Random access: bad
o Waste space FAT Allocation Table

9

foo 217

)c
[Ery IGET)

TR

Single-Level Indexed Files

File structure
e User declares max size
o A file header holds an array of

pointers to point to disk blocks Disk
Pros File header blocks
e Can grow up to a limit ~—
« Random access is fast ™
Cons \
e Clumsy to grow beyond the limit \

10

DEMOS (Cray-1)

+ ldea File metadata
e Using contiguous allocation :
_ —Sizeq|
o Allow non-contiguous __| size,
« File structure N
size,

o Small file metadata has 10
(base,size) pointers

e Big file has 10 indirect
pointers

—SiZ€5-
+ Pros & cons . size,
e Can grow (max 10GB) Size
o}
o fragmentation — [size,
—1size, size,
size,
Size,
size,

11

Multi-Level Indexed Files (Unix)

13 Pointers in a header
o 10 direct pointers

e 11: 1-level indirect data
o 12: 2-level indirect
o 13: 3-level indirect

/ dat
Pros & Cons = —
e In favor of small files ;//»
o Can grow = data
o Limitis 16G and lots of \

seek
data
How to reach block 23, 5,
3407
data

“
L Ery e

TR

12

Original Unix i-node

Mode: file type, protection bits, setuid, setgid bits
Link count: number of directory entries pointing to this
Uid: uid of the file owner

Gid: gid of the file owner

File size

Times (access, modify, change)

10 pointers to data blocks
Single indirect pointer
Double indirect pointer
Triple indirect pointer

13

Extents

An extent is a variable
number of blocks

. Block offset
Main idea p—
e A file is a number of extents _ 9
o XFS uses 8Kbyte blocks Starting block

e Max extent size is 2M blocks

Index nodes need to have
o Block offset

e Length

e Starting block

Pros and Cons?

14

Naming

Text name
o Need to map it to index

Index (i-node number)
o Ask users to specify i-node number

lcon
o Need to map it to index or map it to text then to index

15

Directory Organization Examples

Flat (CP/M)
o All files are in one directory
Hierarchical (Unix)

e /u/cos318/foo
o Directory is stored in a file containing (name, i-node) pairs
e The name can be either a file or a directory

Hierarchical (Windows)
o C:\windows\temp\foo
e Use the extension to indicate whether the entry is a directory

16

Mapping File Names to i-nodes

Create/delete
o Create/delete a directory
Open/close

e Open/close a directory for read and write
e Should this be the same or different from file open/close?

Link/unlink
e Link/unlink a file

Rename
e Rename the directory

17

Linear List

Method

o <FileName, i-node> pairs are
linearly stored in a file

o Create afile
* Append <FileName, i-node>
e Delete afile

 Search for FileName

 Remove its pair from the
directory

« Compact by moving the rest

Pros
o Space efficient
Cons

e Linear search
@ o Need to deal with fragmentation

/uljps
foo bar ...
veryLongFileName

<f00,1234> <bair,
1235> ... <very

LongFileName,
4567>

18

Tree Data Structure

Method

e Store <fileName, i-node> a tree data
structure such as B-tree

e Create/delete/search in the tree data

structure /
Pros

e Good for a large number of files

Cons

o Inefficient for a small number of files
o More space

o« Complex

)«
[Ery IGET)

TR

19

Hashing
Method

e Use a hash table to map
FileName to i-node

e Space for name and metadata
IS variable sized

o Create/delete will trigger
space allocation and free
Pros
e Fast searching and relatively
simple
Cons

e Not as efficient as trees for

very large directory (wasting
space for the hash table)

__»foo 1234
———~bar | 1235
~foobar | 4567

20

)c
[Ery IGET)

TR

|/Os for Read/Write A File

|/Os to access a byte of /u/cos318/foo

o Read the i-node and first data block of “/”

e Read the i-node and first data block of “u”

o Read the i-node and first data block of “cos318”
o Read the i-node and first data block of “foo”

|/Os to write a file

e Read the i-node of the directory and the directory file.

e Read or create the i-node of the file
e Read or create the file itself
o Write back the directory and the file

Too many 1/Os to traverse the directory
e Solution is to use Current Working Directory

21

Hard Links

Approach

e A link to a file with the same i-node
Iln source target

e Delete may or may not remove the
target depending on whether it is the
last one (link reference count)

Why hard links?
How would you implement them?
Main issue with hard links”?

Directory

22

Symbolic Links

Approach Directory

e A symbolic link is a pointer to a file

e Use a new i-node for the link
ln —-s source target

Why symbolic links? \'
How would you implement them?
Main issue with symbolic links?

Link

23

Original Unix File System

Simple disk layout

Block size is sector size (512 bytes)
I-nodes are on outermost cylinders
Data blocks are on inner cylinders

o Use linked list for free blocks

Issues
e Index is large
e Fixed max number of files
e i-nodes far from data blocks
¢ i-nodes for directory not close together
o Consecutive blocks can be anywhere

e Poor bandwidth (20Kbytes/sec even for
sequential access!)

I-node array

24

BSD FFS (Fast File System)

Use a larger block size: 4KB or 8KB

o Allow large blocks to be chopped into
fragments

o Used for little files and pieces at the
ends of files

Use bitmap instead of a free list
e Try to allocate contiguously

25

FFS Disk Layout

+ I-nodes are grouped together

e A portion of the i-node array on each
cylinder

e In same cylinder group as data for the files

e 10% reserved disk space, to keep room

+ Do you ever read i-nodes without
reading any file blocks?
e 4 times more often than reading together
o examples: Is, make

+ Overcome rotational delays

e Skip sector positioning to avoid the context
switch delay

o Read ahead: read next block right after the
first

I-node subarray

26

What Has FFS Achieved?

Performance improvements
o 20-40% of disk bandwidth for large files (10-20x original)

o Better small file performance (why?)

We can do better

e Extent based instead of block based

» Use a pointer and size for all contiguous blocks (XFS, Veritas file
system, etc)

e Synchronous metadata writes hurt small file performance
« Asynchronous writes with certain ordering (“soft updates”)
« Logging (talk about this later)
« Play with semantics (/tmp file systems)

27

Summary

File system structure
o Boot block, super block, file metadata, file data

File metadata
o Consider efficiency, space and fragmentation

Directories
e Consider the number of files

Links
e Soft vs. hard

Physical layout
o Where to put metadata and data

28

