
COS 318: Operating Systems

Virtual Memory Paging

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

u  Paging mechanism
u  Page replacement algorithms

3

Virtual Memory Paging

u  Simple world
l  Load entire process into memory. Run it. Exit.

u  Problems
l  Slow (especially with big processes)
l  Wasteful of space (doesn’t use all of its memory all the time)

u  Solution
l  Demand paging: only bring in pages actually used
l  Paging: only keep frequently used pages in memory

u  Mechanism:
l  Virtual memory maps some to physical pages, some to disk

4

VM Paging Steps

Steps
u  Memory reference

(may cause a TLB miss)
u  TLB entry invalid triggers a page

fault and VM handler takes over
u  Move page from disk to memory
u  Update TLB entry w/ pp#, valid bit
u  Restart the instruction
u  Memory reference again

. . .
subl $20 %esp

movl 8(%esp), %eax
. . . vp#

v vp#
i vp#
v vp#

v vp#

TLB

pp#
pp#
dp#
pp#

pp#

. . .

v

VM
system

pp# v

fa
ul

t

5

Virtual Memory Issues

u  How to switch a process after a fault?
l  Need to save state and resume
l  Is it the same as an interrupt?

u  What to page in?
l  Just the faulting page or more?
l  Want to know the future…

u  What to replace?
l  Cache (main memory) always too small, which page to

replace?
l  Want to know the future...

6

How Does Page Fault Work?

u  User program should not be aware of the page fault
u  Fault may have happened in the middle of the

instruction!
u  Can we skip the faulting instruction?
u  Is a faulting instruction always restartable?

 .
 .
 .
subl $20 %esp
movl 8(%esp), %eax
 .
 .
 .

VM fault handler()
{
 Save states
 .
 .
 .
 iret
}

7

What to Page In?

u  Page in the faulting page
l  Simplest, but each “page in” has substantial overhead

u  Page in more pages each time
l  May reduce page faults if the additional pages are used
l  Waste space and time if they are not used
l  Real systems do some kind of prefetching

u  Applications control what to page in
l  Some systems support for user-controlled prefetching
l  But, many applications do not always know

8

VM Page Replacement

u  Things are not always available when you want them
l  It is possible that no unused page frame is available
l  VM needs to do page replacement

u  On a page fault
l  If there is an unused frame, get it
l  If no unused page frame available,

•  Choose a used page frame
•  If it has been modified, write it to disk
•  Invalidate its current PTE and TLB entry

l  Load the new page from disk
l  Update the faulting PTE and remove its TLB entry
l  Restart the faulting instruction

Page
Replacement

9

Which “Used” Page Frame To Replace?

u  Random
u  Optimal or MIN algorithm
u  NRU (Not Recently Used)
u  FIFO (First-In-First-Out)
u  FIFO with second chance
u  Clock
u  LRU (Least Recently Used)
u  NFU (Not Frequently Used)
u  Aging (approximate LRU)
u  Working Set
u  WSClock

10

Optimal or MIN

u Algorithm:
l  Replace the page that won’t be

used for the longest time
(Know all references in the future)

u Example
l  Reference string:
l  4 page frames
l  6 faults

u  Pros
l  Optimal solution and can be used as an off-line analysis method

u  Cons
l  No on-line implementation

1 2 3 4 1 2 5 1 2 3 4 5

11

Revisit TLB and Page Table

u  Important bits for paging
l  Reference: Set when referencing a location in the page (can

clear every so often, e.g. on clock interrupt)
l  Modify: Set when writing to a location in the page

offset

Virtual address

. . .

PPage# ...

PPage# ...

PPage# …

PPage # offset

VPage #

TLB
Hit

Miss Page Table
VPage#
VPage#

VPage#

M R

12

Not Recently Used (NRU)
u  Algorithm

l  Randomly pick a page from the following (in this order)
•  Not referenced and not modified
•  Not referenced and modified
•  Referenced and not modified
•  Referenced and modified

l  Clear reference bits
u  Example

l  4 page frames
l  Reference string
l  8 page faults

u  Pros
l  Implementable

u  Cons
l  Require scanning through reference bits and modified bits

1 2 3 4 1 2 5 1 2 3 4 5

13

First-In-First-Out (FIFO)

u  Algorithm
l  Throw out the oldest page

u  Example
l  4 page frames
l  Reference string
l  10 page faults

u  Pros
l  Low-overhead implementation

u  Cons
l  May replace the heavily used pages

5 3 4 7 9 11 2 1 15 Page
out

Recently
loaded

1 2 3 4 1 2 5 1 2 3 4 5

14

More Frames → Fewer Page Faults?

u  Consider the following with 4 page frames
l  Algorithm: FIFO replacement
l  Reference string:
l  10 page faults

u  Same string with 3 page frames
l  Algorithm: FIFO replacement
l  Reference string:
l  9 page faults!

u  This is so called “Belady’s
anomaly” (Belady, Nelson, Shedler 1969)

1 2 3 4 1 2 5 1 2 3 4 5

1 2 3 4 1 2 5 1 2 3 4 5

15

FIFO with 2nd Chance

u  Algorithm
l  Check the reference-bit of the oldest page
l  If it is 0, then replace it
l  If it is 1, clear the reference bit, put the page to the end of

the list, and continue searching
l  Looking for an old page not referenced in current clock

interval, for example
u  Example

l  4 page frames
l  Reference string:
l  8 page faults

u  Pros
l  Simple to implement

u  Cons
l  The worst case may take a long time

5 3 4 7 9 11 2 1 15 Recently
loaded

Page
out

If ref bit = 1

1 2 3 4 1 2 5 1 2 3 4 5

16

Clock

u  FIFO clock algorithm
l  Hand points to the oldest page
l  On a page fault, follow the hand to

inspect pages
u  Second chance

l  If the reference bit is 1, set it to 0
and advance the hand

l  If the reference bit is 0, use it for
replacement

u  Compare with the FIFO with 2nd
chance
l  What’s the difference?

u  What if memory is very large
l  Take a long time to go around?

Oldest page

17

Least Recently Used

u  Algorithm
l  Replace page that hasn’t been used for the longest time

•  Order the pages by time of reference
•  Timestamp for each referenced page

u  Example
l  4 page frames
l  Reference string:
l  8 page faults

u  Pros
l  Good to approximate MIN

u  Cons
l  Difficult to implement

5 3 4 7 9 11 2 1 15 Recently
loaded

Least
Recently
used

1 2 3 4 1 2 5 1 2 3 4 5

18

Approximation of LRU

u  Use CPU ticks
l  For each memory reference, store the ticks in its PTE
l  Find the page with minimal ticks value to replace

u  Use a smaller counter
Most recently used Least recently used

N categories
Pages in order of last reference

LRU

Crude
LRU 2 categories

Pages referenced since
the last page fault

Pages not referenced
since the last page fault

8-bit
count 256 categories 254 255

19

Aging: Not Frequently Used (NFU)
u  Algorithm

l  Shift reference bits into counters
l  Pick the page with the smallest counter to replace

u  Old example
l  4 page frames
l  Reference string:
l  8 page faults

u  Main difference between NFU and LRU?
l  NFU has a short history (counter length)

u  How many bits are enough?
l  In practice 8 bits are quite good

00000000
00000000

10000000
00000000

10000000
00000000

11000000
00000000

01000000
10000000

11100000
00000000

10100000
01000000

01110000
10000000

01010000
10100000

00111000
01000000

1 2 3 4 1 2 5 1 2 3 4 5

20

Program Behavior (Denning 1968)

u  80/20 rule
l  > 80% memory references are

within <20% of memory space
l  > 80% memory references are

made by < 20% of code
u  Spatial locality

l  Neighbors are likely to be accessed

u  Temporal locality
l  The same page is likely to be

accessed again in the near future

Pages in memory

Pa

ge
 fa

ul
ts

21

Working Set

u  Main idea (Denning 1968, 1970)
l  Define a working set as the set of pages in the most recent K

page references
l  Keep the working set in memory will reduce page faults

significantly
u  Approximate working set

l  The set of pages of a process used in the last T seconds
u  An algorithm

l  On a page fault, scan through all pages of the process
l  If the reference bit is 1, record the current time for the page
l  If the reference bit is 0, check the “time of last use,”

•  If the page has not been used within T, replace the page
•  Otherwise, go to the next

l  Add the faulting page to the working set

22

WSClock

u Follow the clock hand
u  If the reference bit is 1

l  Set reference bit to 0
l  Set the current time for the page
l  Advance the clock hand

u  If the reference bit is 0, check “time of last use”
l  If the page has been used within δ, go to the next
l  If the page has not been used within δ and modify bit is 1

•  Schedule the page for page out and go to the next
l  If the page has not been used within δ and modify bit is 0

•  Replace this page

23

Replacement Algorithms

u  The algorithms
l  Random
l  Optimal or MIN algorithm
l  NRU (Not Recently Used)
l  FIFO (First-In-First-Out)
l  FIFO with second chance
l  Clock
l  LRU (Least Recently Used)
l  NFU (Not Frequently Used)
l  Aging (approximate LRU)
l  Working Set
l  WSClock

u  Which are your top two?

24

Summary

u  VM paging
l  Page fault handler
l  What to page in
l  What to page out

u  LRU is good but difficult to implement
u  Clock (FIFO with 2nd hand) is considered a good

practical solution
u  Working set concept is important

