
Project 6

Unix File System



Administrative

• No Design Review
– A design document instead

• 2 pages max

• No collaboration with peers
– Piazza is for clarifications

• Due on January 13 (Dean’s Date) @ 5 pm

• All virtual office hours

 



Overview

• Implement a UNIX-like file system
– In a 1MB file!

• Determined by FS_SIZE

• Pages are 512 bytes, so 2,048 sectors

 



API

• Disk format
• File

– open, close, read, write, seek
– link & unlink (which is how you delete a file)
– stat

• Directory operations
– make, remove

• Shell
– ls & chdir (cd)

 



Don’t Worry About

• Permissions
– Access Control Lists (ACLs)

• Concurrency

 



Disk Layout

Boot b
lock & OS stu

ffs

Super b
lock

inodes

Space between divisions is not representative of actual size

Block Allocatio
n M

ap

Data blocks

This project
in a 1MB file named “disk”

 



Contains metadata about the disk

Examples:
• Size
• # of inodes
• # of data blocks
• Where inodes start
• Where data blocks start

Super b
lock

 



Where do I go to find …?

inodes

inode array
d

ir
ec

t
inode

metadata

in
d

ir
ec

t

Only direct for 
this project

 



inode Metadata

Examples

• File or directory?

• Link count

• Size

• Etc..

inodes

 



fs_init

• A “constructor” for the FS code

• block_init

 



fs_mkfs

• “Makes” a file system
– Writes the super block

– Mark inodes and data blocks to be free

– Create root directory

– Initialize file descriptor table

 



File Creation & Deletion

• fs_open(), fs_link(), fs_unlink() 
• open: create a new file if it does not exist 
• link: hard link to a file

– create a link to an existing file
– hard vs. soft (symbolic) link? 

• unlink:
– delete a file if link count == 0
– delete directory entry
– files that are still open

 



File Access

• open: open existing file (allocate file 
descriptor) 

• read: read bytes from open file 

• write: write bytes to open file 

• lseek: change position in file 

• close: free file descriptor 

 



fs_lseek() Semantics

• Our fs_lseek() only takes two arguments
– fd, offset

• Unix lseek() takes three 
– fd, offset, whence

• Whence: SEEK_SET, SEEK_CUR, SEEK_END

• Our fs_lseek() assumes SEEK_SET

• What if lseek() wants to seek past the end of 
the file?

 



Directories, part 1

• Like a file: List of files and directories
– Name to inode number mapping

• Can read it like a file
– Use existing file I/O functions to do directory 

manipulation

• Always has at least two entries
– “..” parent directory

– “.” current directory

 



Directories, part 2

• mkdir: make a directory
– create an entry in parent directory

– create two directories: “..” and “.”

• rmdir: remove directory if empty

• cd: change the current directory
– For relative path names only

 



Example fs_mkdir

int fs_mkdir(char *file_name)
{

if (file_name exists) return ERROR;
/* allocate inode */
/* allocate data blocks */ 
/* set directory entries for “..” & “.” */
/* set inode entries appropriately */
/* update parent */
return SUCCESS 

} 
 



FAQ

 



Absolute Path names

• Do we need to support absolute path names?
– I.e., when I am in “/foo”, do I need to support: 

chdir /bar/tmp/? 

• No
– You would have to support absolute path names 

everywhere: open, link, mkdir, etc.

 



Removing a Directory

• Do I need to support recursive directory 
removal?
– I.e., remove all the subdirectories and files 

contained in a directory I am going to delete? 

• No
– Return an error if directory is not empty

 



File System Check (fsck)

• Useful for debugging

• Verifies integrity of:
– Superblock magic number

– Block allocations

– Inode allocations

– Block Allocation Map

– Directory content

– Etc.

 



Implementing the Project

• In Linux
– Uses a file to simulate a disk

– Code is provided

– ./lnxsh

• Shell supports
– System calls for File System

– Commands like “ls”, “cat foo”, “create foo200”

• 500-1,000 lines of code

 



Testing

• A python script to use in testing will be provided

• Multiple tests that each
– Execute the shell

– Open an existing file system (or format a new one)

– Write commands to shell (cat foo)

– Read output from shell (ABCDEFGHIJKL)

– Exit

• You should write your own test cases
– Submit them with your code

 



Design Document

• Sections on project page

• I like diagrams

• PDF

• Submit together with your implementation

• 2 pages

 


