
INTER-PROCESS
COMMUNICATION
AND PROCESS
MANAGEMENT

DUE DATES, ETC.

WHAT YOU’LL BE
IMPLEMENTING
•  spawn(<process name>)

•  Message boxes
•  bounded buffer inter-process communication

•  Keyboard Input
•  putchar()	

•  do_getchar()	

•  kill(pid)

•  wait(pid)
•  This is a reasonable order to do it in!

GENERAL NOTES
•  Still need to think about interrupts

•  Use critical sections sparingly
•  The supplied scheduler uses lottery scheduling

•  Don’t break it (total_ready_priority)
•  Implement carefully

•  the given test cases won’t test everything

MESSAGE BOXES
•  Look to Tanenbaum (MOS)

•  Reclaim them
•  usage count

KEYBOARD HANDLIN’
•  Use a message box to capture keystrokes in putchar()	

•  Discard characters when the buffer is full
•  Read keystrokes from the message box in do_getchar()	

•  Initialize at kernel startup

•  The basic IRQ1 interrupt handling is setup in init_idt(),
entry.S:irq1_entry and keyboard.c

SPAWN
•  Collect information for the task

•  Entry point -> look at ramdisk_find()
•  What about field task_type = ?

•  Setting up resources and scheduling

•  Allocate a PCB
•  Assign a PID
•  Allocate stacks
•  Remember total_ready_priority	

KILL
•  A process should be killed immediately

•  Ready, blocked, or sleeping, doesn’t matter
•  If blocked on a synchronization primitive, other processes

should be unaffected by its death

•  But don’t recover locks
•  Reclaiming memory is important

•  PCB
•  Look at the robinhood test case, and think about why it

needs to have reclamation
•  total_ready_priority	

WAIT
•  Allows a process to block until a given process completes

execution

•  Basically, wake up on kill’s and exit’s
•  How could the PCB be changed to make this behavior

possible?

TESTING
•  tasks

DEMO

