
COS 318: Operating Systems

Implementing Threads

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

u  Non-preemptive versus preemptive threads

u  Kernel vs. user threads

u  Too many cookies problem

3

Kernel scheduler

Revisit Monolithic OS Structure

u  Kernel has its address space,
shared with all processes

u  Kernel consists of
l  Boot loader
l  BIOS
l  Key drivers
l  Threads
l  Scheduler

u  Scheduler
l  Use a ready queue to hold all

ready threads
l  Schedule in a thread with the

same address space (thread
context switch)

l  Schedule in a thread with a
different address space
(process context switch)

User
Process

User
Process

4

Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

5

Scheduler

u  A non-preemptive scheduler invoked by calling
l  block()
l  yield()

u  The simplest form
 Scheduler:
 save current process/thread state

 choose next process/thread to run
 dispatch (load PCB/TCB and jump to it)

u  Scheduler can be viewed as just another kernel thread

6

Where and How to Save Thread Context?

u  Save the context on the thread’s stack
l  Many processors have a special instruction to do it efficiently
l  But, need to deal with the overflow problem

u  Check before saving
l  Make sure that the stack has no overflow problem
l  Copy it to the TCB residing in the kernel heap
l  Not so efficient, but no overflow problems

frame
frame

frame
frame

frame
frame

frame
frame Thread 2

Thread 1

Save the context
of Thread 1 to
its stack Context

7

Preemption

u  Why
l  Timer interrupt for

CPU management
l  Asynchronous I/O completion

u  Interrupts
l  Between instructions
l  Within an instruction,

except atomic ones
u  Manipulate interrupts

l  Disable (mask) interrupts
l  Enable interrupts
l  Non-Masking Interrupts

CPU

Memory Interrupt

8

State Transition for Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

9

State Transition for Preemptive Scheduling

Running

Blocked
Ready

Resource free, I/O completion interrupt
(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

10

Interrupt Handling for Preemptive Scheduling

u  Timer interrupt handler:
l  Save the current process / thread to its PCB / TCB
l  … (What to do here?)
l  Call scheduler

u  I/O interrupt handler:
l  Save the current process / thread to its PCB / TCB
l  Do the I/O job
l  Call scheduler

u  Issues
l  Disable/enable interrupts
l  Make sure that it works on multiprocessors

11

Dealing with Preemptive Scheduling

u  Problem
l  Interrupts can happen

anywhere
u  An obvious approach

l  Worry about interrupts and
preemptions all the time

u  What we want
l  Worry less of the time
l  Low-level behavior

encapsulated in “primitives”
l  Synchronization primitives

worry about preemption
l  OS and applications use

synchronization primitives

Concurrent applications

OS services

Synchronization
primitives

Scheduling
and interrupt handling

12

Kernel scheduler

User Threads vs. Kernel Threads

u  Context switch at user-level
without a system call (Java
threads)

u  Is it possible to do preemptive
scheduling?

u  What about I/O events?

u  A user thread
l  Makes a system call (e.g. I/O)
l  Gets interrupted

u  Context switch in the kernel

User
Process

User
Process

User

Process

Scheduler

13

Summary of User vs. Kernel Threads

u  User-level threads
l  User-level thread package implements thread context switches
l  OS doesn’t know the process has multiple threads
l  Timer interrupt (signal facility) can introduce preemption
l  When a user-level thread is blocked on an I/O event, the whole

process is blocked
l  Allows user-level code to build custom schedulers

u  Kernel-threads
l  Kernel-level threads are scheduled by a kernel scheduler
l  A context switch of kernel-threads is more expensive than user

threads due to crossing protection boundaries
u  Hybrid

l  It is possible to have a hybrid scheduler, but it is complex

14

Interactions between User and Kernel Threads

u  Two approaches
l  Each user thread has its own kernel stack
l  All threads of a process share the same kernel stack

Private kernel stack Shared kernel stack

Memory usage More Less

System services Concurrent access Serial access

Multiprocessor Yes Not within a process

Complexity More Less

15

“Too Many Cookies” Problem

u  Want cookies, but don’t want to buy too many cookies
u  Any person can be distracted at any point

RoomMate A RoomMate B

15:00 Look in cabinet: out of cookies

15:05 Leave for Wawa

15:10 Arrive at Wawa Look at fridge: out of cookies

15:15 Buy a bag of cookies Leave for Wawa

15:20 Arrive home; put cookies away Arrive at Wawa

15:25 Buy a bag of cookies

Arrive home; put cookies away
Oh No! Too many cookies.

16

Using A Note?

u Any issue with this approach?

Thread B

if (noCookies) {
 if (noNote) {
 leave note;
 buy cookies;
 remove note;
 }
}

Thread A

if (noCookies) {
 if (noNote) {
 leave note;
 buy cookies;
 remove note;
 }
}

17

Another Possible Solution?

u Does this method work?

Thread A

leave noteA
if (noNoteB) {
 if (noCookies) {
 buy cookies
 }
}
remove noteA

Thread B

leave noteB
if (noNoteA) {
 if (noCookies)
{
 buy cookies
 }
}
remove noteB

Didn’t buy
cookies

Didn’t buy
cookies

18

Yet Another Possible Solution?

u Would this fix the problem?

Thread A

leave noteA
while (noteB)
 do nothing;
if (noCookies)
 buy cookies;
remove noteA

Thread B

leave noteB
if (noNoteA) {
 if (noCookies) {
 buy cookies
 }
}
remove noteB

19

Remarks

u  The last solution works, but
l  Life is too complicated
l  A’s code is different from B’s
l  Busy waiting is a waste

u  What we want is:

Acquire(lock);
if (noCookies)
 buy cookies;
Release(lock);

Critical section

20

What Is A Good Solution

u  Only one process/thread inside a critical section
u  No assumption about CPU speeds
u  A process/thread inside a critical section should not be

blocked by any process outside the critical section
u  No one waits forever

u  Works for multiprocessors
u  Same code for all processes/threads

21

Summary

u  Non-preemptive threads issues
l  Scheduler
l  Where to save contexts

u  Preemptive threads
l  Interrupts can happen any where!

u  Kernel vs. user threads
l  Main difference is which scheduler to use

u  Too many cookies problem
l  What we want is mutual exclusion

