
COS 318: Operating Systems

Processes and Threads

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

u  Concurrency
u  Processes
u  Threads

u  Reminder:
l  Hope you’re all busy working on your implementations

3

Concurrency and Processes

u  Concurrency
l  Hundreds of jobs going on in a system
l  CPU is shared, as are I/O devices

u  Concurrency via Processes
l  Decompose complex problems into simple ones
l  Make each simple one a process
l  Processes run ‘concurrently’ but each process feels like it has its own

computer

u  Example: gcc (via “gcc –pipe –v”) launches the following
l  /usr/libexec/cpp | /usr/libexec/cc1 | /usr/libexec/as | /usr/libexec/elf/ld

l  Each instance of cpp, cc1, as and ld running is a process

4

Process Concurrency

u  Virtualization
l  Processes interleaved on CPU

u  I/O concurrency
l  I/O for P1 overlapped with CPU

for P2
l  Each runs almost as fast as if it

has its own computer
l  Reduce total completion time

u  CPU parallelism
l  Multiple CPUs (such as SMP)
l  Processes running in parallel
l  Speedup

P1:
CPU

CPU CPU I/O

CPU I/O
3s 2s 3s

3s 2s

CPU1
3s

CPU2
3s

P2:

P1:

P2:

P1:

P2:

CPU CPU

5

Parallelism

u  Parallelism is common in real life
l  A single sales person sells $1M annually
l  Hire 100 sales people to generate $100M revenue

u  Speedup
l  Ideal speedup is factor of N
l  Reality: bottlenecks + coordination overhead reduce speedup

u  Questions
l  Can you speed up by working with a partner?
l  Can you speed up by working with 20 partners?
l  Can you get super-linear (more than a factor of N) speedup?

6

Simplest Process

u  Sequential execution
l  No concurrency inside a process
l  Everything happens sequentially
l  Some coordination may be required

u  Process state
l  Registers
l  Main memory
l  I/O devices

•  File system
•  Communication ports

l  …

7

Program and Process

main()
{
...
foo()
...
}

bar()
{
 ...
}

 Program

main()
{
...
foo()
...
}

bar()
{
 ...
}

 Process

heap

stack

registers
PC

8

Process vs. Program

u  Process > program
l  Program is just the code; just part of process state
l  Example: many users can run the same program

u  Process < program

l  A program can invoke more than one process
l  Example: Fork off processes
l  Many processes can be running the same program

9

Managing Processes: Process Control
Block (PCB)
u  Process management info

l  Identification
l  State

Ready: ready to run.
Running: currently running.
Blocked: waiting for resources

l  Registers, EFLAGS, EIP, and other CPU state
l  Stack, code and data segment
l  Parents, etc

u  Memory management info
l  Segments, page table, stats, etc

u  I/O and file management
l  Communication ports, directories, file descriptors, etc.

u  Resource allocation and accounting information

10

API for Process Management

u  Creation and termination
l  Exec, Fork, Wait, Kill

u  Signals
l  Action, Return, Handler

u  Operations
l  Block, Yield

u  Synchronization
l  We will talk about this a lot more later

11

Create A Process

u  Creation
l  Load code and data into memory
l  Create an empty call stack
l  Initialize state
l  Make the process ready to run

u  Cloning a process
l  Save state of current process
l  Make copy of current code, data, stack and OS state
l  Make the process ready to run

12

Unix Example

u  Methods to make processes:
l  fork clones a process
l  exec overlays the current process

pid = fork();
if (pid == 0)
 /* child process */
 exec(“foo”); /* does not return */
Else
 /* parent */
 wait(pid); /* wait for child to die */

Fork and Exec in Unix

13

pid = fork();
if (pid == 0)
 exec(“foo”);
else
 wait(pid);

pid = fork();
if (pid == 0)
 exec(“foo”);
else
 wait(pid);

Main()
{
…
}

foo:

pid = fork();
if (pid == 0)
 exec(“foo”);
else
 wait(pid);

Wait

More on Fork

u  Parent process has a
PCB and an address
space

u  Create and initialize PCB
u  Create an address space
u  Copy the content of the

parent address space to
the new address space

u  Inherit the execution
context of the parent

u  New process is ready

14

PCB

Parent
address
space

PCB

New
address
space

New
address
space

PCB

15

Process Context Switch

u  Save a context (everything that a process may damage)
l  All registers (general purpose and floating point)
l  All co-processor state
l  Save all memory to disk?
l  What about cache and TLB?

u  Start a context
l  Does the reverse

u  Challenge
l  OS code must save state without changing any state
l  E.g. how should OS run without touching any registers?

•  CISC machines have a special instruction to save and restore all
registers on stack

•  RISC: reserve registers for kernel or have way to carefully save
one and then continue

16

(Reduced) Process State Transition

Running

Blocked Ready

Resource becomes
available

Create

Terminate

17

Threads

u  Thread
l  A sequential execution stream within a process (also called

lightweight process)
l  Threads in a process share the same address space

u  Thread concurrency
l  Easier to program overlapping I/O and CPU with threads than

with signals
l  Human being likes to do several things at a time
l  A server (e.g. file server) serves multiple requests
l  Multiple CPUs sharing the same memory

18

Thread Control Block (TCB)

l  State
•  Ready: ready to run
•  Running: currently running
•  Blocked: waiting for resources

l  Registers
l  Status (EFLAGS)
l  Program counter (EIP)
l  Stack
l  Code

19

Typical Thread API

u Creation
l  Fork, Join

u Mutual exclusion
l  Acquire (lock), Release (unlock)

u Condition variables
l  Wait, Signal, Broadcast

u Alert
l  Alert, AlertWait, TestAlert

20

Revisit Process

u  Process
l  Threads
l  Address space
l  Environment for the threads to run on OS (open files, etc)

u  Simplest process has 1 thread

Process

21

Thread Context Switch

u  Save a context (everything that a thread may damage)
l  All registers (general purpose and floating point)
l  All co-processor state
l  Need to save stack?
l  What about cache and TLB?

u  Start a context
l  Does the reverse

u  May trigger a process context switch

22

Procedure Call

u  Caller or callee save some context (same stack)
u  Caller saved example:

save active caller registers
call foo

restore caller regs

foo() {
 do stuff

}

23

Threads vs. Procedures

u  Threads may resume out of order
l  Cannot use LIFO stack to save state
l  Each thread has its own stack

u  Threads switch less often
l  Do not partition registers
l  Each thread “has” its own CPU

u  Threads can be asynchronous
l  Procedure call can use compiler to save state synchronously
l  Threads can run asynchronously

u  Multiple threads
l  Multiple threads can run on multiple CPUs in parallel
l  Procedure calls are sequential

24

Process vs. Threads

u  Address space
l  Processes do not usually share memory
l  Process context switch page table and other memory

mechanisms
l  Threads in a process share the entire address space

u  Privileges
l  Processes have their own privileges (file accesses, e.g.)
l  Threads in a process share all privileges

u  Question
l  Do you really want to share the “entire” address space?

25

Real Operating Systems

u  One or many address spaces
u  One or many threads per address space

1 address space Many address spaces

1 thread per
address space

MSDOS
Macintosh

Traditional Unix

Many threads per
address spaces

Embedded OS,
Pilot

VMS, Mach (OS-X), OS/2,
Windows NT/XP/Vista/7,
Solaris, HP-UX, Linux

26

Summary

u  Concurrency
l  CPU and I/O
l  Among applications
l  Within an application

u  Processes
l  Abstraction for application concurrency

u  Threads
l  Abstraction for concurrency within an application

