
1 

Why Study OS? 

u  OS is a key part of a computer system 
l  It makes our life better (or worse)  
l  It is the “magic” that gives us the illusions we want 
l  It gives us “power” (reduce fear factor) 

u  Learn about concurrency 
l  Parallel programs run on OS 
l  OS runs on parallel hardware 
l  A good way to learn concurrent programming  

u  Understand how a system works 
l  How many procedures does a key stroke invoke? 
l  What happens when your application references 0 as a pointer? 
l  Real OS is huge and impossible to read everything, but building a 

small OS will go a long way 



Why Study OS? 

u  Basic knowledge for many areas 
l  Networking, distributed systems, security, … 

u  Employability 
l  Become someone who understand “systems” 
l  Become the top group of “athletes” 
l  Ability to build things from ground up 

u  Question: 
l  Why shouldn’t you study OS? 
 

2 



Does COS318 Require A Lot of Time? 

u  Yes 
l  But less than a couple of years ago 

u  To become a top athlete, you want to know the entire 
HW/SW stack, and spend 10,000 hours programming 
l  “Practice isn't the thing you do once you're good. It's the 

thing you do that makes you good.”  
l  “In fact, researchers have settled on what they believe is 

the magic number for true expertise: ten thousand 
hours.”  
― Malcolm Gladwell, Outliers: The Story of Success  

3 



4 

Things to Have Done 

u  Last time’s material 
l  Read MOS 1.1-1.3 
l  Lecture available online 

u  Today’s material 
l  Read MOS 1.4-1.5 

u  Make “tent” with your name 
u  Use piazza to find a partner  

l  Find a partner before next lecture for projects 1, 2 and 3 



COS 318: Operating Systems 
 
Overview 

Jaswinder Pal Singh 
Computer Science Department 
Princeton University 
 
(http://www.cs.princeton.edu/courses/cos318/) 



6 

Important Times 

u  Precepts: 
l  Mon: 7:30-8:20pm, 105 CS building  
l  This week (9/15: TODAY): 

•  Tutorial of Assembly programming and kernel debugging 

u  Project 1 
l  Design review: 

•  9/23: 10:30am – 10:30pm (Signup online),  010 Friends center 
l  Project 1 due: 9/29 at 11:59pm 

u  To do: 
l  Lab partner?  Enrollment? 
 



7 

Today 

u  Overview of OS functionality 
u  Overview of OS components 
 



8 

Hardware of A Typical Computer  

CPU 

Chipset Memory 
I/O bus 

CPU . . . 

Network 

ROM 



9 

A Typical Computer System 

 
 
 
 
 
 
 
 

Memory CPU 

CPU 

. . . 

OS 
Apps 
Data 

Network 

Application 

Operating System 

ROM 

BIOS 



10 

Typical Unix OS Structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

User level 

Kernel level 
Portable OS Layer 



11 

Typical Unix OS Structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer 

User function calls 
written by programmers and 
compiled by programmers. 



12 

Typical Unix OS Structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer 

•  Written by elves 
•  Objects pre-compiled 
•  Defined in headers 
•  Input to linker 
•  Invoked like functions 
•  May be “resolved” when 
program is loaded 
 



13 

Pipeline of Creating An Executable File 

u  gcc can compile, assemble, and link together 
u  Compiler (part of gcc) compiles a program into assembly 
u  Assembler compiles assembly code into relocatable object file 
u  Linker links object files into an executable 
u  For more information: 

l  Read man page of a.out, elf, ld, and nm 
l  Read the document of ELF 

foo.c gcc as foo.s foo.o 

ld bar.c gcc as bar.s bar.o 

libc.a … 

a.out 



14 

Execution (Run An Application) 

u  On Unix, “loader” does the job 
l  Read an executable file 
l  Layout the code, data, heap and stack 
l  Dynamically link to shared libraries 
l  Prepare for the OS kernel to run the application 

a.out loader *.o, *.a ld Application 

Shared 
library 



15 

What’s An Application? 

u  Four segments 
l  Code/Text – instructions 
l  Data – initialized global 

variables 
l  Stack 
l  Heap 

u  Why? 
l  Separate code and data 
l  Stack and heap go 

towards each other 

 

Stack 

Heap 

Initialized data 

Code 

2n -1 

0 



In More Detail 

16 



17 

Responsibilities 

u  Stack 
l  Layout by compiler 
l  Allocate/deallocate by process creation (fork) and termination 
l  Names are relative off of stack pointer and entirely local 

u  Heap 
l  Linker and loader say the starting address 
l  Allocate/deallocate by library calls such as malloc() and free()  
l  Application program use the library calls to manage 

u  Global data/code 
l  Compiler allocate statically 
l  Compiler emit names and symbolic references 
l  Linker translate references and relocate addresses 
l  Loader finally lay them out in memory 



18 

Typical Unix OS Structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer “Guts” of system calls 



Run Multiple Applications 

u  Use multiple windows 
l  Browser, shell, powerpoint, word, … 

 
u  Use command line to run multiple applications 

% ls –al | grep ‘^d’ 
% foo & 
% bar & 
 
 
 
 
 
 

 
 

19 



20 

Support Multiple Processes 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer 

Application 

Libraries 

Application 

Libraries 
… 



21 

OS Service Examples 

u  Examples that are not provided at user level 
l  System calls: file open, close, read and write 
l  Control the CPU so that users won’t stuck by running 

•  while ( 1 ) ; 

l  Protection:  
•  Keep user programs from crashing OS 
•  Keep user programs from crashing each other 

u  System calls are typically traps or exceptions 
l  System calls are implemented in the kernel 
l  Application “traps” to kernel to invoke a system call 
l  When finishing the service, a system returns to the user code 



22 

Interrupts 

u  Raised by external events 
u  Interrupt handler is in the 

kernel 
l  Switch to another process 
l  Overlap I/O with CPU 
l … 

u  Eventually resume the 
interrupted process 

u  A way for CPU to wait for 
long-latency events (like I/O) 
to happen 

0: 
1: 
… 
 
i: 
i+1: 
… 
 
N: 

Interrupt 
handler 



23 

Typical Unix OS Structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer 

•  Bootstrap 
•  System initialization 
•  Interrupt and exception  
•  I/O device driver 
•  Memory management 
•  Mode switching 
•  Processor management 



24 

Applications 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Software “Onion” Layers 

Libraries 
 
 
 
 
 
 
 
 
 
 
 

OS Services 
 
 
 
 
 
 
 
 

Device 
 
 
 
 

Driver 

Kernel 
 

 

User and Kernel 
boundary 

HW 



25 

Today 

u  Overview of OS functionalities 
u  Overview of OS components 
 



26 

Processor Management 

u  Goals 
l  Overlap between I/O and 

computation 
l  Time sharing 
l  Multiple CPU allocation 

u  Issues 
l  Do not waste CPU resources 
l  Synchronization and mutual 

exclusion 
l  Fairness and deadlock 

CPU I/O CPU 

CPU 

CPU 

CPU I/O 

CPU 

CPU 

CPU 

I/O 



27 

Memory Management 

u  Goals 
l  Support programs to be written 

easily 
l  Allocation and management 
l  Transfers from and to 

secondary storage 
u  Issues 

l  Efficiency & convenience 
l  Fairness 
l  Protection 

Register: 1x 

L1 cache: 2-4x 

L2 cache: ~10x 

L3 cache: ~50x 

DRAM: ~200-500x 

Disks: ~30M x 

Archive storage: >1000M x 



28 

I/O Device Management 

u  Goals 
l  Interactions between 

devices and applications 
l  Ability to plug in new 

devices 
u  Issues 

l  Efficiency 
l  Fairness 
l  Protection and sharing 

User 1 User n . . . 

Library support 

I/O 
device 

I/O 
device . . . 

Driver Driver 



29 

File System 
u  Goals: 

l  Manage disk blocks 
l  Map between files and disk 

blocks 
u  A typical file system   

l  Open a file with 
authentication 

l  Read/write data in files 
l  Close a file 

u  Issues 
l  Reliability 
l  Safety 
l  Efficiency 
l  Manageability 

 

User 1 User n . . . 

File system services 

File File . . . 



30 

Window Systems 

u  Goals 
l  Interacting with a user 
l  Interfaces to examine and 

manage apps and the system  
u  Issues 

l  Inputs from keyboard, mouse, 
touch screen, … 

l  Display output from applications 
and systems 

l  Division of labor 
•  All in the kernel (Windows) 
•  All at user level 
•  Split between user and kernel (Unix) 



31 

Bootstrap 

u  Power up a computer 
u  Processor reset 

l  Set to known state 
l  Jump to ROM code  

(BIOS is in ROM) 
u  Load in the boot loader from 

stable storage 
u  Jump to the boot loader 
u  Load the rest of the operating 

system 
u  Initialize and run 

 
u  Question: Can BIOS be on disk? 

Boot loader 

OS sector 1 

OS sector 2 

OS sector n 

. . . 

Boot loader 



32 

Develop An Operating System 

u  A hardware simulator 
u  A virtual machine 
u  A kernel debugger 

l  When OS crashes, always goes to the debugger 
l  Debugging over the network 

u  Smart people 

1972 1998 



33 

Summary 

u  Overview of OS functionalities 
l  Layers of abstractions 
l  Services to applications 
l  Manage resources 

u  Overview of OS components 
l  Processor management 
l  Memory management 
l  I/O device management 
l  File system 
l  Window system 
l … 



Appendix: Booting a System 

34 



35 

Bootstrap 

u  Power up a computer 
u  Processor reset 

l  Set to known state 
l  Jump to ROM code (BIOS is 

in ROM) 
u  Load in the boot loader from 

stable storage 
u  Jump to the boot loader 
u  Load the rest of the operating 

system 
u  Initialize and run 
u  Question: Can BIOS be on disk? 

Boot 
loader 

OS 
sector 1 

OS 
sector 2 

OS 
sector n 

. . . 

Boot 
loader 



COS318 Lec 2 36 

System Boot 

u Power on (processor waits until Power Good 
Signal) 

u Processor jumps on a PC to a fixed address, which 
is the start of the ROM BIOS program 



COS318 Lec 2 37 

u POST (Power-On Self-Test) 
•  If pass then AX:=0; DH:=5 (586: Pentium); 
•  Stop booting if fatal errors, and report 

u  Look for video card and execute built-in ROM 
BIOS code (normally at C000h) 

u  Look for other devices ROM BIOS code 
•  IDE/ATA disk ROM BIOS at C8000h (=819,200d) 

u Display startup screen 
•  BIOS information 

u Execute more tests 
•  memory 
•  system inventory 

ROM Bios Startup Program (1) 



COS318 Lec 2 38 

ROM BIOS startup program (2) 

u  Look for logical devices 
l  Label them 

•  Serial ports 
•  COM 1, 2, 3, 4 

•  Parallel ports 
•  LPT 1, 2, 3 

l  Assign each an I/O address and interrupt numbers 

u Detect and configure Plug-and-Play (PnP) devices 
u Display configuration information on screen 



COS318 Lec 2 39 

ROM BIOS startup program (3) 

u Search for a drive to BOOT from 
l  Floppy or Hard disk 

•  Boot at cylinder 0, head 0, sector 1 

u  Load code in boot sector 
u Execute boot loader 
u Boot loader loads program to be booted 

•  If  no OS: "Non-system disk or disk error - Replace and press 
any key when ready" 

u Transfer control to loaded program 



Appendix: History of Computers and OSes 

40 



Generations: 
 
•  (1945–55) Vacuum Tubes 
•  (1955–65) Transistors and Batch Systems 
•  (1965–1980) ICs and Multiprogramming 
•  (1980–Present) Personal Computers 

History of Computers and OSes 



u  Hardware very expensive, humans cheap 
u  When was the first functioning digital computer built? 
u  What was it built from? 
u  How was the machine programmed? 
u  What was the operating system? 
u  The big innovation: punch cards 
u  The really big one: the transistor 

l  Made computers reliable enough to be sold to and 
operated by customers 

42 

Phase 1: The Early Days 



u  Hardware still expensive, humans relatively cheap 
u  An early batch system 

u  Programmers bring cards to reader system 
u  Reader system puts jobs on tape 

Phase 2: Transistors and Batch Systems 



u  An early batch system 
u  Operator carries input tape to main computer 
u  Main computer computes and puts output on tape 
u  Operator carries output tape to printer system, which 

prints output 

Phase 2: Transistors and Batch Systems 



Punch cards and Computer Jobs 



u  Integrated circuits allowed families of computers to be 
built that were compatible 

u  Single OS to run on all (IBM OS/360): big and bloated 
u  Key innovation: multiprogramming 

u  What happens when a job is waiting on I/O 
u  What if jobs spend a lot of the time waiting on I/O? 

Phase 3: ICs and Multiprogramming 



u  Multiple jobs resident in computer’s memory 
u  Hardware switches between them (interrupts) 
u  Hardware protects from one another (mem protection) 
u  Computer reads jobs from cards as jobs finish (spooling) 
u  Still batch systems: can’t debug online 
u  Solution: time-sharing 

Phase 3: ICs and Multiprogramming 



u  Time-sharing: 
u  Users at terminals simultaneously 
u  Computer switches among active ‘jobs’/sessions 
u  Shorter, interactive commands serviced faster 

hardware 
Hardware 

App1 

Time-sharing OS 
App2 App2 . . . 

Phase 3: ICs and Multiprogramming 



Phase 3: ICs and Multiprogramming 
u  The extreme: computer as a utility: MULTICS (late 60s) 

u  Problem: thrashing as no. of users increases 
u  Didn’t work then, but idea may be back 
u  Let others administer and manage; I’ll just use 

u  ICs led to mini-computers: cheap, small, powerful 
u  Stripped down version of MULTICS, led to UNIX 
u  Two branches (Sys V, BSD), standardized as POSIX 
u  Free follow-ups: Minix (education), Linux (production) 



50 

Phase 4: HW Cheaper, Human More Costly 

u  Personal computer 
l  Altos OS, Ethernet, Bitmap display, laser printer 
l  Pop-menu window interface, email, publishing SW, 

spreadsheet, FTP, Telnet 
l  Eventually >100M units per year 

u  PC operating system 
l  Memory protection 
l  Multiprogramming 
l  Networking 
 



51 

Now: > 1 Machines per User 

u  Pervasive computers 
l  Wearable computers 
l  Communication devices 
l  Entertainment equipment 
l  Computerized vehicle 

u  OS are specialized 
l  Embedded OS 
l  Specially configured general-

purpose OS 



52 

Now: Multiple Processors per Machine 

u  Multiprocessors 
l  SMP: Symmetric MultiProcessor 
l  ccNUMA: Cache-Coherent Non-Uniform 

Memory Access  
l  General-purpose, single-image OS with 

multiproccesor support 
u  Multicomputers 

l  Supercomputer with many CPUs and high-
speed communication 

l  Specialized OS with special message-
passing support 

u  Clusters 
l  A network of PCs 
l  Commodity OS 



53 

Now: Multiple “Cores” per Processor 
u  Multicore or Manycore transition 

l  Intel and AMD have released 4-core and soon 6-core CPUs  
l  SUN’s Niagara processor has 8-cores 
l  Azul Vega8 now packs 24 cores onto the same chip 
l  Intel has a TFlop-chip with 80 cores 
l  Ambric  Am2045: 336-core Array (embedded, and accelerators) 

u  Accelerated need for software support 
l  OS support for many cores; parallel programming of applications 

Scalable On Scalable On DieFabricDieFabric

HighHigh
BW BW 

MemoryMemory
I/FI/F

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

Fixed Fixed 
Function Function 

UnitsUnits
Last Level CacheLast Level Cache

Scalable On Scalable On DieFabricDieFabric

HighHigh
BW BW 

MemoryMemory
I/FI/F

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

Fixed Fixed 
Function Function 

UnitsUnits
Last Level CacheLast Level Cache



Summary: Evolution of Computers 

60’s-70’s - Mainframes 
u Rise of IBM 

70’s - 80’s – Minicomputers 
u Rise of Digital Equipment Corporation 
 

80’s - 90’s – PCs 
u Rise of Intel, Microsoft 

Now – Post-PC 
u Distributed applications 

54 


