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Why Study OS? 

u  OS is a key part of a computer system 
l  It makes our life better (or worse)  
l  It is the “magic” that gives us the illusions we want 
l  It gives us “power” (reduce fear factor) 

u  Learn about concurrency 
l  Parallel programs run on OS 
l  OS runs on parallel hardware 
l  A good way to learn concurrent programming  

u  Understand how a system works 
l  How many procedures does a key stroke invoke? 
l  What happens when your application references 0 as a pointer? 
l  Real OS is huge and impossible to read everything, but building a 

small OS will go a long way 



Why Study OS? 

u  Basic knowledge for many areas 
l  Networking, distributed systems, security, … 

u  Employability 
l  Become someone who understand “systems” 
l  Become the top group of “athletes” 
l  Ability to build things from ground up 

u  Question: 
l  Why shouldn’t you study OS? 
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Does COS318 Require A Lot of Time? 

u  Yes 
l  But less than a couple of years ago 

u  To become a top athlete, you want to know the entire 
HW/SW stack, and spend 10,000 hours programming 
l  “Practice isn't the thing you do once you're good. It's the 

thing you do that makes you good.”  
l  “In fact, researchers have settled on what they believe is 

the magic number for true expertise: ten thousand 
hours.”  
― Malcolm Gladwell, Outliers: The Story of Success  
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Things to Have Done 

u  Last time’s material 
l  Read MOS 1.1-1.3 
l  Lecture available online 

u  Today’s material 
l  Read MOS 1.4-1.5 

u  Make “tent” with your name 
u  Use piazza to find a partner  

l  Find a partner before next lecture for projects 1, 2 and 3 



COS 318: Operating Systems 
 
Overview 

Jaswinder Pal Singh 
Computer Science Department 
Princeton University 
 
(http://www.cs.princeton.edu/courses/cos318/) 
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Important Times 

u  Precepts: 
l  Mon: 7:30-8:20pm, 105 CS building  
l  This week (9/15: TODAY): 

•  Tutorial of Assembly programming and kernel debugging 

u  Project 1 
l  Design review: 

•  9/23: 10:30am – 10:30pm (Signup online),  010 Friends center 
l  Project 1 due: 9/29 at 11:59pm 

u  To do: 
l  Lab partner?  Enrollment? 
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Today 

u  Overview of OS functionality 
u  Overview of OS components 
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Hardware of A Typical Computer  
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I/O bus 
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ROM 
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A Typical Computer System 
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Typical Unix OS Structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

User level 

Kernel level 
Portable OS Layer 
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Typical Unix OS Structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer 

User function calls 
written by programmers and 
compiled by programmers. 
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Typical Unix OS Structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer 

•  Written by elves 
•  Objects pre-compiled 
•  Defined in headers 
•  Input to linker 
•  Invoked like functions 
•  May be “resolved” when 
program is loaded 
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Pipeline of Creating An Executable File 

u  gcc can compile, assemble, and link together 
u  Compiler (part of gcc) compiles a program into assembly 
u  Assembler compiles assembly code into relocatable object file 
u  Linker links object files into an executable 
u  For more information: 

l  Read man page of a.out, elf, ld, and nm 
l  Read the document of ELF 

foo.c gcc as foo.s foo.o 

ld bar.c gcc as bar.s bar.o 

libc.a … 

a.out 
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Execution (Run An Application) 

u  On Unix, “loader” does the job 
l  Read an executable file 
l  Layout the code, data, heap and stack 
l  Dynamically link to shared libraries 
l  Prepare for the OS kernel to run the application 

a.out loader *.o, *.a ld Application 

Shared 
library 
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What’s An Application? 

u  Four segments 
l  Code/Text – instructions 
l  Data – initialized global 

variables 
l  Stack 
l  Heap 

u  Why? 
l  Separate code and data 
l  Stack and heap go 

towards each other 

 

Stack 

Heap 

Initialized data 

Code 

2n -1 

0 



In More Detail 
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Responsibilities 

u  Stack 
l  Layout by compiler 
l  Allocate/deallocate by process creation (fork) and termination 
l  Names are relative off of stack pointer and entirely local 

u  Heap 
l  Linker and loader say the starting address 
l  Allocate/deallocate by library calls such as malloc() and free()  
l  Application program use the library calls to manage 

u  Global data/code 
l  Compiler allocate statically 
l  Compiler emit names and symbolic references 
l  Linker translate references and relocate addresses 
l  Loader finally lay them out in memory 
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Typical Unix OS Structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer “Guts” of system calls 



Run Multiple Applications 

u  Use multiple windows 
l  Browser, shell, powerpoint, word, … 

 
u  Use command line to run multiple applications 

% ls –al | grep ‘^d’ 
% foo & 
% bar & 
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Support Multiple Processes 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer 

Application 

Libraries 

Application 

Libraries 
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OS Service Examples 

u  Examples that are not provided at user level 
l  System calls: file open, close, read and write 
l  Control the CPU so that users won’t stuck by running 

•  while ( 1 ) ; 

l  Protection:  
•  Keep user programs from crashing OS 
•  Keep user programs from crashing each other 

u  System calls are typically traps or exceptions 
l  System calls are implemented in the kernel 
l  Application “traps” to kernel to invoke a system call 
l  When finishing the service, a system returns to the user code 
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Interrupts 

u  Raised by external events 
u  Interrupt handler is in the 

kernel 
l  Switch to another process 
l  Overlap I/O with CPU 
l … 

u  Eventually resume the 
interrupted process 

u  A way for CPU to wait for 
long-latency events (like I/O) 
to happen 

0: 
1: 
… 
 
i: 
i+1: 
… 
 
N: 

Interrupt 
handler 
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Typical Unix OS Structure 

Application 

Libraries 

 
 
 

Machine-dependent layer 

Portable OS Layer 

•  Bootstrap 
•  System initialization 
•  Interrupt and exception  
•  I/O device driver 
•  Memory management 
•  Mode switching 
•  Processor management 
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Applications 
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Today 

u  Overview of OS functionalities 
u  Overview of OS components 
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Processor Management 

u  Goals 
l  Overlap between I/O and 

computation 
l  Time sharing 
l  Multiple CPU allocation 

u  Issues 
l  Do not waste CPU resources 
l  Synchronization and mutual 

exclusion 
l  Fairness and deadlock 

CPU I/O CPU 

CPU 

CPU 

CPU I/O 

CPU 

CPU 

CPU 

I/O 
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Memory Management 

u  Goals 
l  Support programs to be written 

easily 
l  Allocation and management 
l  Transfers from and to 

secondary storage 
u  Issues 

l  Efficiency & convenience 
l  Fairness 
l  Protection 

Register: 1x 

L1 cache: 2-4x 

L2 cache: ~10x 

L3 cache: ~50x 

DRAM: ~200-500x 

Disks: ~30M x 

Archive storage: >1000M x 
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I/O Device Management 

u  Goals 
l  Interactions between 

devices and applications 
l  Ability to plug in new 

devices 
u  Issues 

l  Efficiency 
l  Fairness 
l  Protection and sharing 

User 1 User n . . . 

Library support 

I/O 
device 

I/O 
device . . . 

Driver Driver 
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File System 
u  Goals: 

l  Manage disk blocks 
l  Map between files and disk 

blocks 
u  A typical file system   

l  Open a file with 
authentication 

l  Read/write data in files 
l  Close a file 

u  Issues 
l  Reliability 
l  Safety 
l  Efficiency 
l  Manageability 

 

User 1 User n . . . 

File system services 

File File . . . 
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Window Systems 

u  Goals 
l  Interacting with a user 
l  Interfaces to examine and 

manage apps and the system  
u  Issues 

l  Inputs from keyboard, mouse, 
touch screen, … 

l  Display output from applications 
and systems 

l  Division of labor 
•  All in the kernel (Windows) 
•  All at user level 
•  Split between user and kernel (Unix) 
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Bootstrap 

u  Power up a computer 
u  Processor reset 

l  Set to known state 
l  Jump to ROM code  

(BIOS is in ROM) 
u  Load in the boot loader from 

stable storage 
u  Jump to the boot loader 
u  Load the rest of the operating 

system 
u  Initialize and run 

 
u  Question: Can BIOS be on disk? 

Boot loader 

OS sector 1 

OS sector 2 

OS sector n 

. . . 

Boot loader 
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Develop An Operating System 

u  A hardware simulator 
u  A virtual machine 
u  A kernel debugger 

l  When OS crashes, always goes to the debugger 
l  Debugging over the network 

u  Smart people 

1972 1998 
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Summary 

u  Overview of OS functionalities 
l  Layers of abstractions 
l  Services to applications 
l  Manage resources 

u  Overview of OS components 
l  Processor management 
l  Memory management 
l  I/O device management 
l  File system 
l  Window system 
l … 



Appendix: Booting a System 
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Bootstrap 

u  Power up a computer 
u  Processor reset 

l  Set to known state 
l  Jump to ROM code (BIOS is 

in ROM) 
u  Load in the boot loader from 

stable storage 
u  Jump to the boot loader 
u  Load the rest of the operating 

system 
u  Initialize and run 
u  Question: Can BIOS be on disk? 

Boot 
loader 

OS 
sector 1 

OS 
sector 2 

OS 
sector n 

. . . 

Boot 
loader 
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System Boot 

u Power on (processor waits until Power Good 
Signal) 

u Processor jumps on a PC to a fixed address, which 
is the start of the ROM BIOS program 
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u POST (Power-On Self-Test) 
•  If pass then AX:=0; DH:=5 (586: Pentium); 
•  Stop booting if fatal errors, and report 

u  Look for video card and execute built-in ROM 
BIOS code (normally at C000h) 

u  Look for other devices ROM BIOS code 
•  IDE/ATA disk ROM BIOS at C8000h (=819,200d) 

u Display startup screen 
•  BIOS information 

u Execute more tests 
•  memory 
•  system inventory 

ROM Bios Startup Program (1) 
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ROM BIOS startup program (2) 

u  Look for logical devices 
l  Label them 

•  Serial ports 
•  COM 1, 2, 3, 4 

•  Parallel ports 
•  LPT 1, 2, 3 

l  Assign each an I/O address and interrupt numbers 

u Detect and configure Plug-and-Play (PnP) devices 
u Display configuration information on screen 
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ROM BIOS startup program (3) 

u Search for a drive to BOOT from 
l  Floppy or Hard disk 

•  Boot at cylinder 0, head 0, sector 1 

u  Load code in boot sector 
u Execute boot loader 
u Boot loader loads program to be booted 

•  If  no OS: "Non-system disk or disk error - Replace and press 
any key when ready" 

u Transfer control to loaded program 



Appendix: History of Computers and OSes 
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Generations: 
 
•  (1945–55) Vacuum Tubes 
•  (1955–65) Transistors and Batch Systems 
•  (1965–1980) ICs and Multiprogramming 
•  (1980–Present) Personal Computers 

History of Computers and OSes 



u  Hardware very expensive, humans cheap 
u  When was the first functioning digital computer built? 
u  What was it built from? 
u  How was the machine programmed? 
u  What was the operating system? 
u  The big innovation: punch cards 
u  The really big one: the transistor 

l  Made computers reliable enough to be sold to and 
operated by customers 
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Phase 1: The Early Days 



u  Hardware still expensive, humans relatively cheap 
u  An early batch system 

u  Programmers bring cards to reader system 
u  Reader system puts jobs on tape 

Phase 2: Transistors and Batch Systems 



u  An early batch system 
u  Operator carries input tape to main computer 
u  Main computer computes and puts output on tape 
u  Operator carries output tape to printer system, which 

prints output 

Phase 2: Transistors and Batch Systems 



Punch cards and Computer Jobs 



u  Integrated circuits allowed families of computers to be 
built that were compatible 

u  Single OS to run on all (IBM OS/360): big and bloated 
u  Key innovation: multiprogramming 

u  What happens when a job is waiting on I/O 
u  What if jobs spend a lot of the time waiting on I/O? 

Phase 3: ICs and Multiprogramming 



u  Multiple jobs resident in computer’s memory 
u  Hardware switches between them (interrupts) 
u  Hardware protects from one another (mem protection) 
u  Computer reads jobs from cards as jobs finish (spooling) 
u  Still batch systems: can’t debug online 
u  Solution: time-sharing 

Phase 3: ICs and Multiprogramming 



u  Time-sharing: 
u  Users at terminals simultaneously 
u  Computer switches among active ‘jobs’/sessions 
u  Shorter, interactive commands serviced faster 

hardware 
Hardware 

App1 

Time-sharing OS 
App2 App2 . . . 

Phase 3: ICs and Multiprogramming 



Phase 3: ICs and Multiprogramming 
u  The extreme: computer as a utility: MULTICS (late 60s) 

u  Problem: thrashing as no. of users increases 
u  Didn’t work then, but idea may be back 
u  Let others administer and manage; I’ll just use 

u  ICs led to mini-computers: cheap, small, powerful 
u  Stripped down version of MULTICS, led to UNIX 
u  Two branches (Sys V, BSD), standardized as POSIX 
u  Free follow-ups: Minix (education), Linux (production) 
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Phase 4: HW Cheaper, Human More Costly 

u  Personal computer 
l  Altos OS, Ethernet, Bitmap display, laser printer 
l  Pop-menu window interface, email, publishing SW, 

spreadsheet, FTP, Telnet 
l  Eventually >100M units per year 

u  PC operating system 
l  Memory protection 
l  Multiprogramming 
l  Networking 
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Now: > 1 Machines per User 

u  Pervasive computers 
l  Wearable computers 
l  Communication devices 
l  Entertainment equipment 
l  Computerized vehicle 

u  OS are specialized 
l  Embedded OS 
l  Specially configured general-

purpose OS 
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Now: Multiple Processors per Machine 

u  Multiprocessors 
l  SMP: Symmetric MultiProcessor 
l  ccNUMA: Cache-Coherent Non-Uniform 

Memory Access  
l  General-purpose, single-image OS with 

multiproccesor support 
u  Multicomputers 

l  Supercomputer with many CPUs and high-
speed communication 

l  Specialized OS with special message-
passing support 

u  Clusters 
l  A network of PCs 
l  Commodity OS 
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Now: Multiple “Cores” per Processor 
u  Multicore or Manycore transition 

l  Intel and AMD have released 4-core and soon 6-core CPUs  
l  SUN’s Niagara processor has 8-cores 
l  Azul Vega8 now packs 24 cores onto the same chip 
l  Intel has a TFlop-chip with 80 cores 
l  Ambric  Am2045: 336-core Array (embedded, and accelerators) 

u  Accelerated need for software support 
l  OS support for many cores; parallel programming of applications 
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Summary: Evolution of Computers 

60’s-70’s - Mainframes 
u Rise of IBM 

70’s - 80’s – Minicomputers 
u Rise of Digital Equipment Corporation 
 

80’s - 90’s – PCs 
u Rise of Intel, Microsoft 

Now – Post-PC 
u Distributed applications 
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