Flipped Lecture
Concepts

Week 7
Ananda Guna
10.23.14

Topic this week

* Undirected graphs
— Why graphs
— API, representation
— DFS and BFS
— Connected components
— challenges

COS 226 - Fall 2014 - Princeton University

API

public class Graph

Graph(int V)
Graph(In in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int V()

int EQ)

create an empty graph with V vertices
create a graph from input stream
add an edge v-w
vertices adjacent to v
number of vertices

number of edges

Graph representations

Bag objects

adj[]

~[0
~ 5]~ 4

6 3
~3}=~[4]—~0
~[0}—~ 4

W 0o ~N S BowW N = O

=
==

Adjacency-list

ZAANNSSN

representations
of the same edge

o\\ 2 3 4 5 6 7
0 0 i X 0 1 5 | 0
1 1 0 O, 0| 0| O
2 1 0| O ONO O O O
3 0| 00| 0% Ix1| 0| 0
4 0 0] 0 1 1 O
5 1. 0@ 1| & 0
6 1 0 O 0O 1 O
. 0 0| 0| 0| 0] 0 0
8 o 0 O 0 O 0 0 m=
9 0| 0|0 0| 0| 0| 0] 0
al 0 0| O O O] O] O O

Adjacency-matrix

v={1,2,3,4}, E={(2,3),(1,2), (3,3)}
List of edges

o O O H O O O O O O O|®=

H O O O O O O O O O O|v

Representation criteria

e Sparse graphs
— Adjacency list

 Dense graphs

— Adjacency matrix

How to determine adjacency versus dense?

Complexity of operations

add edge edge between | iterate over vertices

representation space :
P P v and w? adjacent to v?

list of edges E | E E
adjacency matrix V2] * 1 V

adjacency lists E+V 1 degree(v) degree(v)

DFS

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

1 :@
®<®\@< >® Run DFS
B =.\j'!; :@

Exercise

0 v marked] edgeTo[]

’0 (D—)

Recursively visit all nodes reachable from 0

Paths API

public class Paths
Paths(Graph G, int s) find paths in G from source s
boolean hasPathTo(int v) is there a path from s 1o v?

Iterable<Integer> pathTo(int V‘)* path from s 1o v; nudl if no such path

DFS code

private void dfs(Graph G, int v)

{
marked[v] = true;
for (int w : G.adj(v))
if (Imarked[w])
{
dfs(G, w);
edgeTo[w] = v;
}
}

Rewrite the recursive dfs iteratively (using a stack)

BFS

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

O
l Run BFS
@)= © ®

L J

O——

Proposition

Proposition. In any connected graph G, BFS computes shortest paths
from s to all other vertices in time proportional to £+ V.

dist=0 dist=1 dist = 2

Connected components

public class CC

CC(Graph G) find connected components in G
boolean connected(int v, int w) are v and w connected?
int count() number of connected components

component identifier for v

int id(int v
() (between 0 and count() - 1)

algorithm

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

Challenge: connected components are implemented with DFS. Implement CC
class with a union-find data structure

Connected components

all vertices discovered in
same call of dfs have same id

Challenges

Problem. Is a graph bipartite? P
Definition o e o
* Divide the graph into two disjoint sets, Vand W o o
 Each edge in the graph connects a vertexin V to a
vertex in W 5

How difficult?

« Any programmer could do it.

v « Typical diligent algorithms student could do it.
« Hire an expert. \
 |ntractable. simple DFS-based solution

(see texthook)

No one knows.

Impossible.

Challenges

Problem. Find a cycle.

How difficult?

« Any programmer could do it.

v« Typical diligent algorithms student could do it.
« Hire an expert. \
« Intractable. simple DFS-based solution

(see textbook)
No one knows.

Impossible.

More Challenges

Euler cycle. Is there a (general) cycle that uses each edge exactly once?
Answer. A connected graph is Eulerian iff all vertices have even degree.

Problem. Find a (general) cycle that uses every edge exactly once.

v« Typical diligent algorithms student could do it.

3

Problem. Find a cycle that visits every vertex exactly once.

v« Intractable.
_ “\\ Hamilton cycle

(classical NP-complete problem)

Problem. Are two graphs identical except for vertex names?

v « No one knows.

More challenges

Problem. Lay out a graph in the plane without crossing edges?

linear-time DF5-based planarity algorithm
discovered by Tarjan in 1970s
(too complicated for most practitioners)

Summary

--

path between sand t

shortest path between s and t v E+V
connected components v v E+V
biconnected components v E+V
cycle v v E+V

Euler cycle v E+V

Hamilton cycle 91.657V
bipartiteness v v E+V
planarity v E+V

graph isomorphism gevViegV

