
COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

4. Arrays

Section 1.4

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

4. Arrays

•Basic concepts
•Typical array-processing code
•Two-dimensional arrays

CS.4.A.Arrays.Basics

Basic building blocks for programming

3

any program you might want to write

objects

functions and modules

arrays

conditionals and loops

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

Ability to store and process
huge amounts of data

arrays

4

Your first data structure

Main purpose. Facilitate storage and manipulation of data.

Examples.

• 52 playing cards in a deck.

• 100 thousand students in an online class.

• 1 billion pixels in a digital image.

• 4 billion nucleotides in a DNA strand.

• 73 billion Google queries per year.

• 86 billion neurons in the brain.

• 50 trillion cells in the human body.

• 6.02 × 1023 particles in a mole.

A data structure is an arrangement of data that enables efficient processing by a program.

index value

0 2♥

1 6♠

2 A♦

3 A♥

...

49 3♣

50 K♣

51 4♠

An array is an indexed sequence of values of the same type.

5

Processing many values of the same type

double a0 = 0.0;
double a1 = 0.0;
double a2 = 0.0;
double a3 = 0.0;
double a4 = 0.0;
double a5 = 0.0;
double a6 = 0.0;
double a7 = 0.0;
double a8 = 0.0;
double a9 = 0.0;
...
a4 = 3.0;
...
a8 = 8.0;
...
double x = a4 + a8;

10 values, without arrays

tedious and error-prone code

double[] a;
a = new double[10];
...
a[4] = 3.0;
...
a[8] = 8.0;
...
double x = a[4] + a[8];

10 values, with an array

an easy alternative

double[] a;
a = new double[1000000];
...
a[234567] = 3.0;
...
a[876543] = 8.0;
...
double x = a[234567] + a[876543];

1 million values, with an array

scales to handle huge amounts of data

Memory representation of an array

6

A computer's memory is also an indexed sequence of memory locations.

• Each primitive type value occupies a fixed number of locations.

• Array values are stored in contiguous locations.

An array is an indexed sequence of values of the same type.

a

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Critical concepts

• The array name a refers to the first value in the array.

• Indices start at 0.

• Given i, the operation of accessing the value a[i] is extremely efficient.

• The assignment b = a makes the names b and a refer to the same array.

stay tuned for many details

it does not copy the array,
as with primitive types
(stay tuned for details)

Java language support for arrays

7

operation typical code

Declare an array double[] a;

Create an array of a given length a = new double[1000];

Refer to an array entry by index a[i] = b[j] + c[k];

Refer to the length of an array a.length;

Basic support

operation typical code

Explicitly set all entries to some value for (int i = 0; i < a.length; i++)
 a[i] = 0.0;

Default initialization to 0 for numeric types a = new double[1000];

Declare, create and initialize in one statement double[] a = new double[1000];

Initialize to literal values double[] x = { 0.3, 0.6, 0.1 };

Initialization options

equivalent in Java

cost of creating an
array is proportional

to its length.

Copying an array

8

To copy an array, create a new array , then copy all the values.

a

0.3 0.6 0.99 0.01 0.5

b

0.3 0.6 0.99 0.01 0.5

double[] b = new double[a.length];
for (int i = 0; i < a.length; i++)
 b[i] = a[i];

i i

Important note: The code b = a does not copy an array (it makes b and a refer to the same array).

a

0.3 0.6 0.99 0.01 0.5

b

double[] b = new double[a.length];
b = a;

Pop quiz 1 on arrays

Q. What does the following code print?

9

public class PQarray1
{
 public static void main(String[] args)
 {
 int[] a;
 int[] b = new int[a.length];

 b = a;
 for (int i = 1; i < b.length; i++)
 b[i] = i;

 for (int i = 0; i < a.length; i++)
 System.out.print(a[i] + " ");
 System.out.println();

 for (int i = 0; i < b.length; i++)
 System.out.print(b[i] + " ");
 System.out.println();
 }
}

Programming with arrays: typical examples

10

double[] a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = Math.random();

Create an array with N random values

for (int i = 0; i < N; i++)
 System.out.println(a[i]);

Print array values, one per line

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += a[i];
double average = sum / N;

Compute the average of array values

double max = a[0];
for (int i = 1; i < N; i++)
 if (a[i] > max) max = a[i];

Find the maximum of array values

double[] b = new double[N];
for (int i = 0; i < N; i++)
 b[i] = a[i];

Copy to another array

For brevity, N is a.length and b.length in all this code.

int stake = Integer.parseInt(args[0]);
int goal = Integer.parseInt(args[1]);
int trials = Integer.parseInt(args[2]);

Access command-line args in system array

Programming with arrays: typical bugs

11

a = new double[10];
for (int i = 0; i < 10; i++)
 a[i] = Math.random();

What type of data does a refer to?

Undeclared variable

double[] a;
for (int i = 0; i < 9; i++)
 a[i] = Math.random();

Never created the array

Uninitialized array

double[] a = new double[10];
for (int i = 1; i <= 10; i++)
 a[i] = Math.random();

No a[10] (and a[0] unused)

Array index out of bounds

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

4. Arrays

•Basic concepts
•Examples of array-processing code
•Two-dimensional arrays

CS.4.B.Arrays.Examples

13

Example of array use: create a deck of cards

Define three arrays

• Ranks.

• Suits.

• Full deck.

Use nested for loops to put all the cards in the deck.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ ...

String[] deck[52];

deck

String[] suit = { "♣ ", "♦ ", "♥ ", "♠ " };

0 1 2 3

♣ ♦ ♥ ♠suit

String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A" };

0 1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 J Q K Arank

for (int j = 0; j < 4; j++)
 for (int i = 0; i < 13; i++)
 deck[i + 13*j] = rank[i] + suit[j];

j

j

i

14

Example of array use: create a deck of cards

public class Deck
{
 public static void main(String[] args)
 {
 String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9", "10",
 "J", "Q", "K", "A" };
 String[] suit = { "♣ ", "♦ ", "♥ ", "♠ " };
 String[] deck = new String[52];

 for (int j = 0; j < 4; j++)
 for (int i = 0; i < 13; i++)
 deck[i + 13*j] = rank[i] + suit[j];

 for (int i = 0; i < 52; i++)
 System.out.print(deck[i]);
 System.out.println();
 }
}

% java Deck

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣
2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ A♦
2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ A♥
2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠
%

no color in Unicode;
artistic license for lecture

Pop quiz 2 on arrays

Q. What happens if the order of the for loops in Deck is switched?

15

for (int j = 0; j < 4; j++)
 for (int i = 0; i < 13; i++)
 deck[i + 13*j] = rank[i] + suit[j];

for (int i = 0; i < 13; i++)
 for (int j = 0; j < 4; j++)
 deck[i + 13*j] = rank[i] + suit[j];

Pop quiz 3 on arrays

Q. Change Deck to put the cards in rank order in the array.

16

% java Deck

2♣ 2♦ 2♥ 2♠ 3♣ 3♦ 3♥ 3♠ 4♣ 4♦ 4♥ 4♠ 5♣ 5♦ 5♥ 5♠ 6♣ 6♦ 6♥ 6♠ 7♣ 7♦ 7♥ 7♠ 8♣ 8♦
8♥ 8♠ 9♣ 9♦ 9♥ 9♠ 10♣ 10♦ 10♥ 10♠ J♣ J♦ J♥ J♠ Q♣ Q♦ Q♥ Q♠ K♣ K♦ K♥ K♠ A♣ A♦ A♥ A♠
%

17

18

Array application: take a card, any card

Problem: Print a random sequence of N cards.

for (int i = 0; i < N; i++)
 System.out.println(deck[(int) (Math.random() * 52)]);

Algorithm
Take N from the command line and do the following N times

• Calculate a random index p between 0 and 51.

• Print deck[p].

Implementation: Add this code instead of printing deck in Deck.

Note: Same method is effective for printing a random sequence from any data collection.

each value between 0 and 51 equally likely

19

Array application: random sequence of cards

public class DrawCards
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);

 String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9",
 "10", "J", "Q", "K", "A" };
 String[] suit = { "♣ ", "♦ ", "♥ ", "♠ " };
 String[] deck = new String[52];

 for (int i = 0; i < 13; i++)
 for (int j = 0; j < 4; j++)
 deck[i + 13*j] = rank[i] + " of " + suit[j];

 for (int i = 0; i < N; i++)
 System.out.print(deck[(int) (Math.random() * 52)]);
 System.out.println();

 }
}

% java DrawCards 10

6♥ K♦ 10♠ 8♦ 9♦ 9♥ 6♦ 10♠ 3♣ 5♦

% java DrawCards 10

2♦ A♠ 5♣ A♣ 10♣ Q♦ K♣ K♠ A♣ A♦

Note: Sample is with replacement (same card can appear multiple times).

appears twice

% java DrawCards 10

6♠ 10♦ 4♥ A♣ K♥ Q♠ K♠ 7♣ 5♦ Q♠

% java DrawCards 10

A♣ J♣ 5♥ K♥ Q♣ 5♥ 9♦ 9♣ 6♠ K♥

20

Array application: shuffle and deal from a deck of cards

Problem: Print N random cards from a deck.

Algorithm: Shuffle the deck, then deal.

• Consider each card index i from 0 to 51.

• Calculate a random index p between i and 51.

• Exchange deck[i] with deck[p]
• Print the first N cards in the deck.

for (int i = 0; i < 52; i++)
{
 int p = i + (int) (Math.random() * (52-i));
 String t = deck[p];
 deck[p] = deck[i];
 deck[i] = t;
}
for (int i = 0; i < N; i++) System.out.print(deck[i]);
System.out.println();

Implementation
each value

between i and 51
equally likely

21

Array application: shuffle a deck of 10 cards (trace)

for (int i = 0; i < 10; i++)
{
 int p = i + (int) (Math.random() * (10-i));
 String t = deck[p];
 deck[p] = deck[i];
 deck[i] = t;
}

i p
deckdeckdeckdeckdeckdeckdeckdeckdeckdeck

i p
0 1 2 3 4 5 6 7 8 9

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣

0 7 9♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 2♣ 10♣ J♣

1 3 9♣ 5♣ 4♣ 3♣ 6♣ 7♣ 8♣ 2♣ 10♣ J♣

2 9 9♣ 5♣ J♣ 3♣ 6♣ 7♣ 8♣ 2♣ 10♣ 4♣

3 9 9♣ 5♣ J♣ 4♣ 6♣ 7♣ 8♣ 2♣ 10♣ 3♣

4 6 9♣ 5♣ J♣ 4♣ 8♣ 7♣ 6♣ 2♣ 10♣ 3♣

5 9 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 6♣ 2♣ 10♣ 7♣

6 8 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 2♣ 6♣ 7♣

7 9 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 7♣ 6♣ 2♣

8 8 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 7♣ 6♣ 2♣

9 9 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 7♣ 6♣ 2♣

Q. Why does this method work?

• Uses only exchanges, so the deck after
the shuffle has the same cards as before.

• N −i equally likely values for deck[i].

• Therefore N ×(N −1)×(N −1)... ×2×1 = N !
equally likely values for deck[].

Initial order is immaterial.

Note: Same method is effective for randomly rearranging any type of data.

22

Array application: shuffle and deal from a deck of cards

public class DealCards
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);

 String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9",
 "10", "J", "Q", "K", "A" };
 String[] suit = { "♣ ", "♦ ", "♥ ", "♠ " };
 String[] deck = new String[52];

 for (int i = 0; i < 13; i++)
 for (int j = 0; j < 4; j++)
 deck[i + 13*j] = rank[i] + suit[j];

 for (int i = 0; i < 52; i++)
 {
 int p = i + (int) (Math.random() * (52-i));
 String t = deck[p];
 deck[p] = deck[i];
 deck[i] = t;
 }

 for (int i = 0; i < N; i++)
 System.out.print(deck[i]);
 System.out.println();
 }
}

% java DealCards 5
9♣ Q♥ 6♥ 4♦ 2♠

random poker hand

% java DealCards 13
3♠ 4♥ 10♦ 6♥ 6♦ 2♠ 9♣ 8♠ A♠ 3♥ 9♠ 5♠ Q♥

random bridge hand

Coupon collector

23

9♣ 5♠ 8♥ 10♦ 2♠ A♠ 10♥ Q♦ 3♠ 9♥ 5♦ 9♣ 7♦ 2♦ 8♣ 6♣ Q♥ K♣ 10♥ A♦ 4♦ J♥

2♠ 3♠ 4♦ 5♠ 6♣ 7♦ 8♥ 9♣ 10♦ J♥ Q♦ K♣ A♠

10♥9♥5♦

9♣

2♦ 8♣ Q♥

10♥

A♦

2 3 4 5 6 7 8 9 10 J Q K A

Example: Collect all ranks in a random sequence of cards (M = 13).

Collection

Sequence

22 cards needed
to complete
collection

Coupon collector problem

• M different types of coupons.

• Collector acquires random coupons, one at a time, each type equally likely.
Q. What is the expected number of coupons needed to acquire a full collection?

Array application: coupon collector

24

public class Coupon
{
 public static void main(String[] args)
 {
 int M = Integer.parseInt(args[0]);
 int cardcnt = 0; // number of cards collected
 int cnt = 0; // number of distinct cards

 boolean[] found = new boolean[M];
 while (cnt < M)
 {
 int r = (int) (Math.random() * M);
 cardcnt++;
 if (!found[r])
 {
 cnt++;
 found[r] = true;
 }
 }

 System.out.println(cardcnt);
 }
}

Key to the implementation

• Create a boolean array of length M.
(Initially all false by default.)

• When r generated, check the r th
value in the array.

• If true, ignore it (not new).

• If false, count it as new
(and set r th entry to true)

% java Coupon 13
46

% java Coupon 13
22

% java Coupon 13
54

% java Coupon 13
27

Coupon collector simulation

• Generate random int values
between 0 and M −1.

• Count number used to generate
each value at least once.

25

Array application: coupon collector (trace for M = 6)

boolean[] found = new boolean[M];
while (cnt < M)
{
 int r = (int) (Math.random() * M);
 cardcnt++;
 if (!found[r])
 {
 cnt++;
 found[r] = true;
 }
}

r
foundfoundfoundfoundfoundfound

cnt cardcntr
0 1 2 3 4 5

cnt cardcnt

F F F F F F 0 0

2 F F T F F F 1 1

0 T F T F F F 2 2

4 T F T F T F 3 3

0 T F T F T F 3 4

1 T T T F T F 4 5

2 T T T F T F 4 6

5 T T T F T T 5 7

0 T T T F T T 5 8

1 T T T F T T 5 9

3 T T T T T T 6 10

26

Simulation, randomness, and analysis (revisited)

Pierre-Simon Laplace
1749-1827

Remarks

• Computer simulation can help validate mathematical analysis.

• Computer simulation can also validate software behavior.

Coupon collector problem

• M different types of coupons.

• Collector acquires random coupons, one at a time, each type equally likely.
Q. What is the expected number of coupons needed to acquire a full collection?

% java Coupon 4
11

% java Coupon 13
38

% java Coupon 1200
8789

% java Coupon 12534
125671

type M expected wait

playing card suits 4 8

playing card ranks 13 41

baseball cards 1200 9201

Magic™ cards 12534 125508

Example: Is Math.random()
simulating randomness?

A. (known via mathematical analysis for centuries) About M ln M + .57721M .

Simulation, randomness, and analysis (revisited)

27

public class Gambler
{
 public static void main(String[] args)
 {
 int stake = Integer.parseInt(args[0]);
 int goal = Integer.parseInt(args[1]);
 int trials = Integer.parseInt(args[2]);

 int wins = 0;
 for (int i = 0; i < trials; i++)
 {
 int t = stake;
 while (t > 0 && t < goal)
 {
 if (Math.random() < 0.5) t++;
 else t--;
 }
 if (t == goal) wins++;
 }
 System.out.println(wins + " wins of " + trials);
 }
}

Gambler's ruin simulation, previous lecture

public class Collector
{
 public static void main(String[] args)
 {
 int M = Integer.parseInt(args[0]);
 int trials = Integer.parseInt(args[1]);
 int cardcnt = 0;
 boolean[] found;

 for (int i = 0; i < trials; i++)
 {
 int cnt = 0;
 found = new boolean[M];
 while (cnt < M)
 {
 int r = (int) (Math.random() * M);
 cardcnt++;
 if (!found[r])
 { cnt++; found[r] = true; }
 }
 }
 System.out.println(cardcnt/trials);
 }
}

Analogous code for coupon collector, this lecture

Once simulation is debugged, experimental evidence is easy to obtain.

Simulation, randomness, and analysis (revisited)

28

% java Collector 4 1000000
8

% java Collector 13 1000000
41

% java Collector 52 100000
236

% java Collector 1200 10000
9176

% java Collector 12534 1000
125920

type M M ln M + .57721M

playing card suits 4 8

playing card ranks 13 41

playing cards 52 236

baseball cards 1200 9201

magic cards 12534 125508

Predicted by mathematical analysis Observed by computer simulation

and Math.random() simulates randomness.Hypothesis. Centuries-old analysis is correct

Coupon collector problem

• M different types of coupons.

• Collector acquires random coupons, one at a time, each type equally likely.
Q. What is the expected number of coupons needed to acquire a full collection?

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

4. Arrays

•Basic concepts
•Examples of array-processing code
•Two-dimensional arrays

CS.4.C.Arrays.2D

30

Two-dimensional arrays

Main purpose. Facilitate storage and manipulation of data.

Examples

• Matrices in math calculations.

• Grades for students in an online class.

• Outcomes of scientific experiments.

• Transactions for bank customers.

• Pixels in a digital image.

• Geographic data

• ...

0 1 2 3 4 5 ...

0 A A C B A C

1 B B B B A A

2 C D D B C A

3 A A A A A A

4 C C B C B B

5 A A A B A A

...

grade

st
ud

en
t

ID

x-coordinate

y-
co

or
di

na
te

A two-dimensional array is a doubly-indexed sequence of values of the same type.

Java language support for two-dimensional arrays (basic support)

31

operation typical code

Declare a two-dimensional array double[][] a;

Create a two-dimensional array of a given length a = new double[1000][1000];

Refer to an array entry by index a[i][j] = b[i][j] * c[j][k];

Refer to the number of rows a.length;

Refer to the number of columns a[i].length;

Refer to row i a[i]

can be different
for each row

a[][]

a[1]

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4] a[0][5] a[0][6] a[0][7] a[0][8] a[0][9]

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] a[1][5] a[1][6] a[1][7] a[1][8] a[1][9]

a[2][0] a[2][1] a[2][2] a[2][3] a[2][4] a[2][5] a[2][6] a[2][7] a[2][8] a[2][9]

no way to refer
to column j

Java language support for two-dimensional arrays (initialization)

32

operation typical code

Explicitly set all entries to 0
 for (int i = 0; i < a.length; i++)
 for (int j = 0; j < a[i].length; j++)
 a[i][j] = 0.0;

Default initialization to 0

for numeric types
 a = new double[1000][1000];

Declare, create and initialize

in a single statement
double[][] a = new double[1000][1000];

Initialize to literal values

 double[][] p =
 {
 { .92, .02, .02, .02, .02 },
 { .02, .92, .32, .32, .32 },
 { .02, .02, .02, .92, .02 },
 { .92, .02, .02, .02, .02 },
 { .47, .02, .47, .02, .02 },
 };

equivalent in Java

cost of creating an
array is proportional

to its size.

Application of arrays: vector and matrix calculations

33

Mathematical abstraction: matrix
Java implementation: 2D array

Vector addition

double[] c = new double[N];
for (int i = 0; i < N; i++)
 c[i] = a[i] + b[i];

Matrix addition

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 c[i][j] = a[i][j] + b[i][j];

.70 .20 .10

.30 .60 .10

.50 .10 .40

.80 .30 .50

.10 .40 .10

.10 .30 .40

1.5 .50 .60

.40 1.0 .20

.60 .40 .80

+ =.30 .60 .10 + =.50 .10 .40 .80 .70 .50

Mathematical abstraction: vector
Java implementation: 1D array

Application of arrays: vector and matrix calculations

34

Mathematical abstraction: matrix
Java implementation: 2D array

.70 .20 .10

.30 .60 .10

.50 .10 .40

.80 .30 .50

.10 .40 .10

.10 .30 .40

.59 .32 .41

.31 .36 .25

.45 .31 .42
* =

.30 .60 .10 .25· =.50 .10 .40

Vector dot product

double sum = 0.0;
for (int i = 0; i < N; i++)
 sum = sum + a[i]*b[i];

Matrix multiplication

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k] * b[k][j];

i x[i] y[i] x[i]*y[i] sum

0 0.30 0.50 0.15 0.15

1 0.60 0.10 0.06 0.21

2 0.10 0.40 0.04 0.25

end-of-loop trace

Mathematical abstraction: vector
Java implementation: 1D array

Pop quiz 4 on arrays

Q. How many multiplications to multiply two N-by-N matrices?

35

1. N

2. N2

3. N3

4. N4

double[][] c = new double[N][N];

for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)

 c[i][j] += a[i][k] * b[k][j];

36

Self-avoiding random walks

Approach: Use Monte Carlo simulation, recording visited positions in an N-by-N array.

Q. What are the chances of reaching a dead end? dead end

escape
Model: a random process in an N-by-N lattice
• Start in the middle.
• Move to a random neighboring intersection

but do not revisit any intersection.
• Outcome 1 (escape): reach edge of lattice.
• Outcome 2 (dead end): no unvisited neighbors.

A dog walks around at
random in a city, never
revisiting any intersection.

Q. Does the dog escape?

37

Self-avoiding random walks

Application of 2D arrays: self-avoiding random walks

38

public class SelfAvoidingWalk
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 int trials = Integer.parseInt(args[1]);
 int deadEnds = 0;
 for (int t = 0; t < trials; t++)
 {
 boolean[][] a = new boolean[N][N];
 int x = N/2, y = N/2;

 while (x > 0 && x < N-1 && y > 0 && y < N-1)
 {
 if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1])
 { deadEnds++; break; }

 a[x][y] = true;
 double r = Math.random();
 if (r < 0.25) { if (!a[x+1][y]) x++; }
 else if (r < 0.50) { if (!a[x-1][y]) x--; }
 else if (r < 0.75) { if (!a[x][y+1]) y++; }
 else if (r < 1.00) { if (!a[x][y-1]) y--; }
 }
 }
 System.out.println(100*deadEnds/trials + "% dead ends");
 }
}

% java SelfAvoidingWalk 10 100000
5% dead ends

% java SelfAvoidingWalk 20 100000
32% dead ends

% java SelfAvoidingWalk 30 100000
58% dead ends

% java SelfAvoidingWalk 40 100000
77% dead ends

% java SelfAvoidingWalk 50 100000
87% dead ends

% java SelfAvoidingWalk 60 100000
93% dead ends

% java SelfAvoidingWalk 70 100000
96% dead ends

% java SelfAvoidingWalk 80 100000
98% dead ends

% java SelfAvoidingWalk 90 100000
99% dead ends

% java SelfAvoidingWalk 100 100000
99% dead ends

0%

25%

50%

75%

100%

10 20 30 40 50 60 70 80 90 100

39

Simulation, randomness, and analysis (revisited again)

Remark: Computer simulation is often the only effective way to study a scientific phenomenon.

Self-avoiding walk in an N-by-N lattice

• Start in the middle.

• Move to a random neighboring intersection (do not revisit any intersection).

A. 99+% for N >100 (clear from simulations). YOU can!

Applications

• Model the behavior of solvents and polymers.

• Model the physics of magnetic materials.

• (many other physical phenomena)

Computational models play
an essential role in modern
scientific research.

Paul Flory
1910-1985

Nobel Prize 1974Q. What is the probability of reaching a dead end?

A. Nobody knows (despite decades of study).
Mathematicians and
physics researchers
cannot solve the problem.

Your first data structure

40

Some applications in this course where you will use arrays:

LFSR

^

digital audio

digital images

Arrays: A basic building block in programming

• They enable storage of large amounts of data (values all of the same type).

• With an index, a program can instantly access a given value.

• Efficiency derives from low-level computer hardware organization (stay tuned).

N-body simulation

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

4. Arrays

Section 1.4

