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Basic building blocks for programming
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any program you might want to write

objects

functions and modules

arrays

conditionals and loops

Math text I/O

assignment statementsprimitive data types

graphics, sound, and image I/O

Ability to store and process 
huge amounts of data

arrays
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Your first data structure

Main purpose. Facilitate storage and manipulation of data.

Examples.

• 52 playing cards in a deck.

• 100 thousand students in an online class.

• 1 billion pixels in a digital image.

• 4 billion nucleotides in a DNA strand.

• 73 billion Google queries per year.

• 86 billion neurons in the brain.

• 50 trillion cells in the human body.

• 6.02 × 1023 particles in a mole.

A data structure is an arrangement of data that enables efficient processing by a program.

index value

0 2♥ 

1 6♠

2 A♦

3 A♥

...

49 3♣

50 K♣

51 4♠

An array is an indexed sequence of values of the same type.
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Processing many values of the same type

double a0 = 0.0;
double a1 = 0.0;
double a2 = 0.0;
double a3 = 0.0;
double a4 = 0.0;
double a5 = 0.0;
double a6 = 0.0;
double a7 = 0.0;
double a8 = 0.0;
double a9 = 0.0;
...
a4 = 3.0;
...
a8 = 8.0;
...
double x = a4 + a8;

10 values, without arrays

tedious and error-prone code

double[] a;
a = new double[10];
...
a[4] = 3.0;
...
a[8] = 8.0;
...
double x = a[4] + a[8];

10 values, with an array

an easy alternative

double[] a;
a = new double[1000000];
...
a[234567] = 3.0;
...
a[876543] = 8.0;
...
double x = a[234567] + a[876543];

1 million values, with an array

scales to handle huge amounts of data



Memory representation of an array
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A computer's memory is also an indexed sequence of memory locations.

• Each primitive type value occupies a fixed number of locations.

• Array values are stored in contiguous locations.

An array is an indexed sequence of values of the same type.

a

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

Critical concepts

• The array name a refers to the first value in the array.

• Indices start at 0.

• Given i, the operation of accessing the value a[i] is extremely efficient.

• The assignment b = a makes the names b and a refer to the same array.

stay tuned for many details

it does not copy the array, 
as with primitive types
(stay tuned for details)



Java language support for arrays
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operation typical code

Declare an array  double[] a;

Create an array of a given length  a = new double[1000];

Refer to an array entry by index  a[i] = b[j] + c[k];

Refer to the length of an array a.length;

Basic support

operation typical code

Explicitly set all entries to some value  for (int i = 0; i < a.length; i++)
     a[i] = 0.0;

Default initialization to 0 for numeric types  a = new double[1000];

Declare, create and initialize in one statement double[] a = new double[1000];

Initialize to literal values double[] x = { 0.3, 0.6, 0.1 };

Initialization options

equivalent in Java

cost of creating an 
array is proportional 

to its length.



Copying an array
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To copy an array, create a new array , then copy all the values.

a

0.3 0.6 0.99 0.01 0.5

b

0.3 0.6 0.99 0.01 0.5

double[] b = new double[a.length];
for (int i = 0; i < a.length; i++) 
   b[i] = a[i]; 

i i

Important note: The code b = a does not copy an array (it makes b and a refer to the same array).

a

0.3 0.6 0.99 0.01 0.5

b

double[] b = new double[a.length];
b = a; 



Pop quiz 1 on arrays

Q. What does the following code print?
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public class PQarray1
{
    public static void main(String[] args)
    {
        int[] a;
        int[] b = new int[a.length];

        b = a;
        for (int i = 1; i < b.length; i++)
            b[i] = i;

        for (int i = 0; i < a.length; i++)
            System.out.print(a[i] + " ");
        System.out.println();

        for (int i = 0; i < b.length; i++)
            System.out.print(b[i] + " ");
        System.out.println();
    }
}



Programming with arrays: typical examples
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double[] a = new double[N];
for (int i = 0; i < N; i++) 
   a[i] = Math.random(); 

Create an array with N random values

for (int i = 0; i < N; i++)
  System.out.println(a[i]);

Print array values, one per line

double sum = 0.0;
for (int i = 0; i < N; i++) 
   sum += a[i]; 
double average = sum / N; 

Compute the average of array values

double max = a[0];
for (int i = 1; i < N; i++) 
   if (a[i] > max) max = a[i]; 

Find the maximum of array values

double[] b = new double[N];
for (int i = 0; i < N; i++) 
   b[i] = a[i]; 

Copy to another array

For brevity, N is a.length and b.length in all this code.

int stake  = Integer.parseInt(args[0]);
int goal   = Integer.parseInt(args[1]);
int trials = Integer.parseInt(args[2]);

Access command-line args in system array



Programming with arrays: typical bugs
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a = new double[10];
for (int i = 0; i < 10; i++) 
  a[i] = Math.random(); 

What type of data does a refer to?

Undeclared variable

double[] a;
for (int i = 0; i < 9; i++) 
  a[i] = Math.random(); 

Never created the array

Uninitialized array

double[] a = new double[10];
for (int i = 1; i <= 10; i++) 
  a[i] = Math.random(); 

No a[10] (and a[0] unused)

Array index out of bounds
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Example of array use: create a deck of cards

Define three arrays

• Ranks.

• Suits. 

• Full deck. 

Use nested for loops to put all the cards in the deck.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣ 2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ ...

String[] deck[52];

deck

String[] suit = { "♣ ", "♦ ", "♥ ", "♠ " };

0 1 2 3

♣ ♦ ♥ ♠suit

String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A" };    

0 1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 8 9 10 J Q K Arank

for (int j = 0; j < 4; j++)
   for (int i = 0; i < 13; i++)
      deck[i + 13*j] = rank[i] + suit[j];

j

j

i
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Example of array use: create a deck of cards

public class Deck
{
    public static void main(String[] args)
    {
        String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9", "10",
                         "J", "Q", "K", "A" };
        String[] suit = { "♣ ", "♦ ", "♥ ", "♠ " };
        String[] deck = new String[52];

        for (int j = 0; j < 4; j++)
            for (int i = 0; i < 13; i++)
                deck[i + 13*j] = rank[i] + suit[j];

        for (int i = 0; i < 52; i++)
            System.out.print(deck[i]);
        System.out.println();
    }
}

% java Deck

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣ Q♣ K♣ A♣ 
2♦ 3♦ 4♦ 5♦ 6♦ 7♦ 8♦ 9♦ 10♦ J♦ Q♦ K♦ A♦ 
2♥ 3♥ 4♥ 5♥ 6♥ 7♥ 8♥ 9♥ 10♥ J♥ Q♥ K♥ A♥ 
2♠ 3♠ 4♠ 5♠ 6♠ 7♠ 8♠ 9♠ 10♠ J♠ Q♠ K♠ A♠
% 

no color in Unicode;
artistic license for lecture



Pop quiz 2 on arrays

Q. What happens if the order of the for loops in Deck is switched?
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for (int j = 0; j < 4; j++)
   for (int i = 0; i < 13; i++)
      deck[i + 13*j] = rank[i] + suit[j];

for (int i = 0; i < 13; i++)
   for (int j = 0; j < 4; j++)
      deck[i + 13*j] = rank[i] + suit[j];



Pop quiz 3 on arrays

Q. Change Deck to put the cards in rank order in the array.
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% java Deck

2♣ 2♦ 2♥ 2♠ 3♣ 3♦ 3♥ 3♠ 4♣ 4♦ 4♥ 4♠ 5♣ 5♦ 5♥ 5♠ 6♣ 6♦ 6♥ 6♠ 7♣ 7♦ 7♥ 7♠ 8♣ 8♦ 
8♥ 8♠ 9♣ 9♦ 9♥ 9♠ 10♣ 10♦ 10♥ 10♠ J♣ J♦ J♥ J♠ Q♣ Q♦ Q♥ Q♠ K♣ K♦ K♥ K♠ A♣ A♦ A♥ A♠
% 
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Array application: take a card, any card

Problem: Print a random sequence of N cards.

for (int i = 0; i < N; i++)
   System.out.println(deck[(int) (Math.random() * 52)]);

Algorithm 
Take N from the command line and do the following N times

• Calculate a random index p between 0 and 51.

• Print deck[p].

Implementation: Add this code instead of printing deck in Deck.

Note: Same method is effective for printing a random sequence from any data collection.

each value between 0 and 51 equally likely
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Array application: random sequence of cards

public class DrawCards
{
   public static void main(String[] args)
   {
      int N = Integer.parseInt(args[0]);

      String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9",
                         "10", "J", "Q", "K", "A" };
      String[] suit = { "♣ ", "♦ ", "♥ ", "♠ " };
      String[] deck = new String[52];

      for (int i = 0; i < 13; i++)
         for (int j = 0; j < 4; j++)
            deck[i + 13*j] = rank[i] + " of " + suit[j];

      for (int i = 0; i < N; i++)
         System.out.print(deck[(int) (Math.random() * 52)]); 
      System.out.println();

   }
}

% java DrawCards 10

6♥ K♦ 10♠ 8♦ 9♦ 9♥ 6♦ 10♠ 3♣ 5♦ 

% java DrawCards 10

2♦ A♠ 5♣ A♣ 10♣ Q♦ K♣ K♠ A♣ A♦

Note: Sample is with replacement (same card can appear multiple times).

appears twice

% java DrawCards 10

6♠ 10♦ 4♥ A♣ K♥ Q♠ K♠ 7♣ 5♦ Q♠ 

% java DrawCards 10

A♣ J♣ 5♥ K♥ Q♣ 5♥ 9♦ 9♣ 6♠ K♥
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Array application: shuffle and deal from a deck of cards

Problem: Print N random cards from a deck.

Algorithm: Shuffle the deck, then deal. 

• Consider each card index i from 0 to 51.

• Calculate a random index p between i and 51.

• Exchange deck[i] with deck[p]
• Print the first N cards in the deck.

for (int i = 0; i < 52; i++)
{
   int p = i + (int) (Math.random() * (52-i));
   String t = deck[p];
   deck[p] = deck[i];
   deck[i] = t;
}
for (int i = 0; i < N; i++) System.out.print(deck[i]);
System.out.println();

Implementation
each value

between i and 51
equally likely
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Array application: shuffle a deck of 10 cards (trace)

for (int i = 0; i < 10; i++)
{
   int p = i + (int) (Math.random() * (10-i));
   String t = deck[p];
   deck[p] = deck[i];
   deck[i] = t;
}

i p
deckdeckdeckdeckdeckdeckdeckdeckdeckdeck

i p
0 1 2 3 4 5 6 7 8 9

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ 10♣ J♣

0 7 9♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 2♣ 10♣ J♣

1 3 9♣ 5♣ 4♣ 3♣ 6♣ 7♣ 8♣ 2♣ 10♣ J♣

2 9 9♣ 5♣ J♣ 3♣ 6♣ 7♣ 8♣ 2♣ 10♣ 4♣

3 9 9♣ 5♣ J♣ 4♣ 6♣ 7♣ 8♣ 2♣ 10♣ 3♣

4 6 9♣ 5♣ J♣ 4♣ 8♣ 7♣ 6♣ 2♣ 10♣ 3♣

5 9 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 6♣ 2♣ 10♣ 7♣

6 8 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 2♣ 6♣ 7♣

7 9 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 7♣ 6♣ 2♣

8 8 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 7♣ 6♣ 2♣

9 9 9♣ 5♣ J♣ 4♣ 8♣ 3♣ 10♣ 7♣ 6♣ 2♣

Q. Why does this method work?

• Uses only exchanges, so the deck after
the shuffle has the same cards as before.

• N −i equally likely values for deck[i].

• Therefore N ×(N −1)×(N −1)... ×2×1 = N !
equally likely values for deck[].

Initial order is immaterial.

Note: Same method is effective for randomly rearranging any type of data.
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Array application: shuffle and deal from a deck of cards

public class DealCards
{
    public static void main(String[] args)
    {
        int N = Integer.parseInt(args[0]);

        String[] rank = {"2", "3", "4", "5", "6", "7", "8", "9",
                         "10", "J", "Q", "K", "A" };
        String[] suit = { "♣ ", "♦ ", "♥ ", "♠ " };
        String[] deck = new String[52];

        for (int i = 0; i < 13; i++)
            for (int j = 0; j < 4; j++)
                deck[i + 13*j] = rank[i] + suit[j];

        for (int i = 0; i < 52; i++)
            {
                int p = i + (int) (Math.random() * (52-i));
                String t = deck[p];
                deck[p] = deck[i];
                deck[i] = t;
            }

        for (int i = 0; i < N; i++)
            System.out.print(deck[i]);
        System.out.println();
    }
}

% java DealCards 5
9♣ Q♥ 6♥ 4♦ 2♠ 

random poker hand

% java DealCards 13
3♠ 4♥ 10♦ 6♥ 6♦ 2♠ 9♣ 8♠ A♠ 3♥ 9♠ 5♠ Q♥

random bridge hand



Coupon collector
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9♣ 5♠ 8♥ 10♦ 2♠ A♠ 10♥ Q♦ 3♠ 9♥ 5♦ 9♣ 7♦ 2♦ 8♣ 6♣ Q♥ K♣ 10♥ A♦ 4♦ J♥

2♠ 3♠ 4♦ 5♠ 6♣ 7♦ 8♥ 9♣ 10♦ J♥ Q♦ K♣ A♠

10♥9♥5♦

9♣

2♦ 8♣ Q♥

10♥

A♦

2 3 4 5 6 7 8 9 10 J Q K A

Example: Collect all ranks in a random sequence of cards (M = 13).

Collection

Sequence

22 cards needed
to complete 
collection

Coupon collector problem

• M different types of coupons.

• Collector acquires random coupons, one at a time, each type equally likely.
Q. What is the expected number of coupons needed to acquire a full collection?



Array application: coupon collector
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public class Coupon
{
   public static void main(String[] args)
   {
      int M = Integer.parseInt(args[0]);
      int cardcnt = 0; // number of cards collected
      int cnt = 0;     // number of distinct cards
      
      boolean[] found = new boolean[M];
      while (cnt < M)
      {
         int r = (int) (Math.random() * M);
         cardcnt++;
         if (!found[r])
         {
            cnt++;
            found[r] = true;
         }
      }

      System.out.println(cardcnt);
   }
}

Key to the implementation

• Create a boolean array of length M.
(Initially all false by default.)

• When r generated, check the r th 
value in the array.

• If true, ignore it (not new).

• If false, count it as new 
(and set r th entry to true)

% java Coupon 13
46

% java Coupon 13
22

% java Coupon 13
54

% java Coupon 13
27

Coupon collector simulation

• Generate random int values 
between 0 and M −1.

• Count number used to generate 
each value at least once.



25

Array application: coupon collector (trace for M = 6)

boolean[] found = new boolean[M];
while (cnt < M)
{
   int r = (int) (Math.random() * M);
   cardcnt++;
   if (!found[r])
   {
      cnt++;
      found[r] = true;
   }
}

r
foundfoundfoundfoundfoundfound

cnt cardcntr
0 1 2 3 4 5

cnt cardcnt

F F F F F F 0 0

2 F F T F F F 1 1

0 T F T F F F 2 2

4 T F T F T F 3 3

0 T F T F T F 3 4

1 T T T F T F 4 5

2 T T T F T F 4 6

5 T T T F T T 5 7

0 T T T F T T 5 8

1 T T T F T T 5 9

3 T T T T T T 6 10
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Simulation, randomness, and analysis (revisited)

Pierre-Simon Laplace
1749-1827

Remarks

• Computer simulation can help validate mathematical analysis.

• Computer simulation can also validate software behavior.

Coupon collector problem

• M different types of coupons.

• Collector acquires random coupons, one at a time, each type equally likely.
Q. What is the expected number of coupons needed to acquire a full collection?

% java Coupon 4
11

% java Coupon 13
38

% java Coupon 1200
8789

% java Coupon 12534
125671

type M expected wait

playing card suits 4 8

playing card ranks 13 41

baseball cards 1200 9201

Magic™ cards 12534 125508

Example: Is Math.random() 
simulating randomness?

A. (known via mathematical analysis for centuries) About M ln M + .57721M .



Simulation, randomness, and analysis (revisited)
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public class Gambler 
{
    public static void main(String[] args) 
    {
      int stake  = Integer.parseInt(args[0]);
      int goal   = Integer.parseInt(args[1]);
      int trials = Integer.parseInt(args[2]);
      
      int wins   = 0;
      for (int i = 0; i < trials; i++)
      {  
         int t = stake;
         while (t > 0 && t < goal)
         {  
            if (Math.random() < 0.5) t++;
            else                     t--;
         }
         if (t == goal) wins++;
      }
      System.out.println(wins + " wins of " + trials);
   }
} 

Gambler's ruin simulation, previous lecture

public class Collector
{
    public static void main(String[] args)
    {
        int M = Integer.parseInt(args[0]);
        int trials = Integer.parseInt(args[1]);
        int cardcnt = 0; 
        boolean[] found;

        for (int i = 0; i < trials; i++)
        {  
           int cnt = 0;
           found = new boolean[M];
           while (cnt < M)
           {
              int r = (int) (Math.random() * M);
              cardcnt++;
              if (!found[r])
                 { cnt++; found[r] = true; }
           }
        }
        System.out.println(cardcnt/trials);
    }
}

Analogous code for coupon collector, this lecture

Once simulation is debugged, experimental evidence is easy to obtain.



Simulation, randomness, and analysis (revisited)
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% java Collector 4 1000000
8

% java Collector 13 1000000
41

% java Collector 52 100000
236

% java Collector 1200 10000
9176

% java Collector 12534 1000
125920

type M M ln M + .57721M

playing card suits 4 8

playing card ranks 13 41

playing cards 52 236

baseball cards 1200 9201

magic cards 12534 125508

Predicted by mathematical analysis Observed by computer simulation

and Math.random() simulates randomness.Hypothesis. Centuries-old analysis is correct

Coupon collector problem

• M different types of coupons.

• Collector acquires random coupons, one at a time, each type equally likely.
Q. What is the expected number of coupons needed to acquire a full collection?
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Two-dimensional arrays

Main purpose. Facilitate storage and manipulation of data.

Examples

• Matrices in math calculations.

• Grades for students in an online class.

• Outcomes of scientific experiments.

• Transactions for bank customers.

• Pixels in a digital image.

• Geographic data

• ...

0 1 2 3 4 5 ...

0 A A C B A C

1 B B B B A A

2 C D D B C A

3 A A A A A A

4 C C B C B B

5 A A A B A A

...

grade

st
ud

en
t 

ID

x-coordinate

y-
co

or
di

na
te

A two-dimensional array is a doubly-indexed sequence of values of the same type.



Java language support for two-dimensional arrays (basic support)
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operation typical code

Declare a two-dimensional array  double[][] a;

Create a two-dimensional array of a given length  a = new double[1000][1000];

Refer to an array entry by index  a[i][j] = b[i][j] * c[j][k];

Refer to the number of rows a.length;

Refer to the number of columns a[i].length;

Refer to row i a[i]

can be different
for each row 

a[][]

a[1]

a[0][0] a[0][1] a[0][2] a[0][3] a[0][4] a[0][5] a[0][6] a[0][7] a[0][8] a[0][9]

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4] a[1][5] a[1][6] a[1][7] a[1][8] a[1][9]

a[2][0] a[2][1] a[2][2] a[2][3] a[2][4] a[2][5] a[2][6] a[2][7] a[2][8] a[2][9]

no way to refer 
to column j



Java language support for two-dimensional arrays (initialization)
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operation typical code

Explicitly set all entries to 0
    for (int i = 0; i < a.length; i++)
       for (int j = 0; j < a[i].length; j++)
          a[i][j] = 0.0;

Default initialization to 0

for numeric types
 a = new double[1000][1000];

Declare, create and initialize

in a single statement
double[][] a = new double[1000][1000];

Initialize to literal values

   double[][] p = 
   { 
       { .92, .02, .02, .02, .02 },
       { .02, .92, .32, .32, .32 },
       { .02, .02, .02, .92, .02 },
       { .92, .02, .02, .02, .02 },
       { .47, .02, .47, .02, .02 },
   };

equivalent in Java

cost of creating an 
array is proportional 

to its size.



Application of arrays: vector and matrix calculations

33

Mathematical abstraction: matrix
Java implementation: 2D array

Vector addition

double[] c = new double[N];
for (int i = 0; i < N; i++)
   c[i] = a[i] + b[i];

Matrix addition

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
   for (int j = 0; j < N; j++)
      c[i][j] = a[i][j] + b[i][j];

.70 .20 .10

.30 .60 .10

.50 .10 .40

.80 .30 .50

.10 .40 .10

.10 .30 .40

1.5 .50 .60

.40 1.0 .20

.60 .40 .80

+ =.30 .60 .10 + =.50 .10 .40 .80 .70 .50

Mathematical abstraction: vector
Java implementation: 1D array



Application of arrays: vector and matrix calculations
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Mathematical abstraction: matrix
Java implementation: 2D array

.70 .20 .10

.30 .60 .10

.50 .10 .40

.80 .30 .50

.10 .40 .10

.10 .30 .40

.59 .32 .41

.31 .36 .25

.45 .31 .42
* =

.30 .60 .10 .25· =.50 .10 .40

Vector dot product

double sum = 0.0;
for (int i = 0; i < N; i++)
   sum = sum + a[i]*b[i];

Matrix multiplication

double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
   for (int j = 0; j < N; j++)
      for (int k = 0; k < N; k++)
         c[i][j] += a[i][k] * b[k][j];

i x[i] y[i] x[i]*y[i] sum

0 0.30 0.50 0.15 0.15

1 0.60 0.10 0.06 0.21

2 0.10 0.40 0.04 0.25

end-of-loop trace

Mathematical abstraction: vector
Java implementation: 1D array



Pop quiz 4 on arrays

Q. How many multiplications to multiply two N-by-N matrices?

35

1. N

2. N2

3. N3

4. N4

double[][] c = new double[N][N];

for (int i = 0; i < N; i++)

   for (int j = 0; j < N; j++)

      for (int k = 0; k < N; k++)

         c[i][j] += a[i][k] * b[k][j];
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Self-avoiding random walks

Approach: Use Monte Carlo simulation, recording visited positions in an N-by-N array.

Q. What are the chances of reaching a dead end? dead end

escape
Model: a random process in an N-by-N lattice
• Start in the middle.
• Move to a random neighboring intersection

but do not revisit any intersection.
• Outcome 1 (escape): reach edge of lattice.
• Outcome 2 (dead end): no unvisited neighbors.

A dog walks around at 
random in a city, never 
revisiting any intersection. 

Q. Does the dog escape?
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Self-avoiding random walks



Application of 2D arrays: self-avoiding random walks
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public class SelfAvoidingWalk
{
   public static void main(String[] args)
   {
      int N = Integer.parseInt(args[0]); 
      int trials = Integer.parseInt(args[1]);  
      int deadEnds = 0;     
      for (int t = 0; t < trials; t++) 
      {
         boolean[][] a = new boolean[N][N]; 
         int x = N/2, y = N/2;  

         while (x > 0 && x < N-1 && y > 0 && y < N-1)
         {
            if (a[x-1][y] && a[x+1][y] && a[x][y-1] && a[x][y+1])
            {  deadEnds++;  break; }

            a[x][y] = true;
            double r = Math.random();
            if      (r < 0.25) { if (!a[x+1][y]) x++; }
            else if (r < 0.50) { if (!a[x-1][y]) x--; }
            else if (r < 0.75) { if (!a[x][y+1]) y++; }
            else if (r < 1.00) { if (!a[x][y-1]) y--; }
         }
      }
      System.out.println(100*deadEnds/trials + "% dead ends");
   }
} 

% java SelfAvoidingWalk 10 100000
5% dead ends

% java SelfAvoidingWalk 20 100000
32% dead ends

% java SelfAvoidingWalk 30 100000
58% dead ends

% java SelfAvoidingWalk 40 100000
77% dead ends

% java SelfAvoidingWalk 50 100000
87% dead ends

% java SelfAvoidingWalk 60 100000
93% dead ends

% java SelfAvoidingWalk 70 100000
96% dead ends

% java SelfAvoidingWalk 80 100000
98% dead ends

% java SelfAvoidingWalk 90 100000
99% dead ends

% java SelfAvoidingWalk 100 100000
99% dead ends

0%

25%

50%

75%

100%

10 20 30 40 50 60 70 80 90 100
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Simulation, randomness, and analysis (revisited again)

Remark: Computer simulation is often the only effective way to study a scientific phenomenon.

Self-avoiding walk in an N-by-N lattice

• Start in the middle.

• Move to a random neighboring intersection (do not revisit any intersection).

A. 99+% for N >100 (clear from simulations). YOU can!

Applications

• Model the behavior of solvents and polymers.

• Model the physics of magnetic materials.

• (many other physical phenomena)

Computational models play 
an essential role in modern 
scientific research.

Paul Flory
1910-1985

Nobel Prize 1974Q. What is the probability of reaching a dead end?

A. Nobody knows (despite decades of study).
Mathematicians and 
physics researchers 
cannot solve the problem.



Your first data structure
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Some applications in this course where you will use arrays:

LFSR

^

digital audio

digital images

Arrays: A basic building block in programming

• They enable storage of large amounts of data (values all of the same type).

• With an index, a program can instantly access a given value.

• Efficiency derives from low-level computer hardware organization (stay tuned).

N-body simulation



COMPUTER  SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

4. Arrays

Section 1.4


