
Computer Science 126
General Computer Science

Fall 2014

Robert Sedgewick

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

Prologue:
A Simple Machine

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

Prologue: A Simple Machine

•Brief introduction
•Secure communication with a one-time pad
•Linear feedback shift registers
•Implications

CS.0.A.Prologue.Introduction

Who are you?

4

Over 60% of all Princeton students take COS 126

none
some
lots

[data from 2011-12]

Programming experience

1st year
Sophomore
Junior
Senior

Class

Social Sciences
other Science/Math
other Engineering
Humanities
CS

Intended major

5

What is this course about?

Goals

• Demystify computer systems.

• Empower you to exploit available technology.

• Build awareness of substantial intellectual underpinnings.

Topics

• Programming in Java.

• Design and architecture of computers.

• Theory of computation.

• Applications in science and engineering.

 A broad introduction to computer science.

and art, music, finance,
and many other fields.

“ Science is everything we understand
 well enough to explain to a computer. ”

− Don Knuth

“ Computers are incredibly fast, accurate, and stupid;
 humans are incredibly slow, inaccurate, and brilliant;
 together they are powerful beyond imagination. ”

− Albert Einstein

S M T W T F S

9

10

11

1212

11

22

33

4

5

6

77

88

9

10

11

The basics

6

Piazza. [online discussion]

• Best chance of quick response to a question.

• Post to class or private post to staff.
See www.princeton.edu/~cos126

for full current details and office hours.

Precepts. [Gabai, Ginsburg and team]

• Tips on assignments / worked examples

• Questions on lecture material.

• Informal and interactive.

Lectures. [Sedgewick]

Friend 016/017 lab. [undergraduate assistants]

• Help with systems/debugging.

• No help with course material.

assignments due

RS office hours. everyone needs to meet me!

Opportunities for us to determine your level of achievement:

• 9 programming assignments.

• 2 written exams (in class, 10/9 and 12/11).

• 2 programming exams (evenings, 10/23 and 12/8).

• Final programming project (due Dean’s date − 1).

• Extra credit / staff discretion. Adjust borderline cases.

Grades
are based on achievement.

7

participation helps
frequent absence hurtsWe do not grade on a "curve".

you are already here

Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30
 1 2 3 4
 5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

JA
N

 D
EC

NO
V

OC
T

SE
P

Due dates

Course website

8

http://www.princeton.edu/~cos126 bookmark this page!

Textbook and Booksite

9

Textbook.

• Full introduction to course material.

• Developed for this course.

• For use while learning and studying.

Booksite.

• Summary of content.

• Code, exercises, examples.

• Supplementary material.

• NOT the textbook.

• (also not the course web page).

• For use while online.

http://introcs.cs.princeton.edu bookmark this page, too!

10

Programming assignments
are an essential part of the experience in learning CS.

estimate Avogadro's numberpluck a guitar stringN-body simulation

Desiderata

• Address an important scientific or commercial problem.

• Illustrate the importance of a fundamental CS concept.

• You solve the problem from scratch on your own computer!

What's Ahead?

Coming events

• Lecture 2. Basic programming concepts.

• Precept 1. Meets today/tomorrow.

• Not registered? Go to any precept now; officially register ASAP.

• Change precepts? Use SCORE.

11

see Colleen Kenny-McGinley in CS 210
if the only precept you can attend is closed

Things to do before attempting assignment

• Read Sections 1.1 and 1.2 in textbook.

• Read assignment carefully.

• Install introcs software as per instructions.

• Do a few exercises.

• Lots of help available, don't be bashful. http://introcs.cs.princeton.edu/assignments.php

END OF ADMINISTRATIVE STUFF

Assignment 0 due Monday 11:59PM

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

1. Prologue: A Simple Machine

•Brief introduction
•Secure communication with a one-time pad
•Linear feedback shift registers
•Implications

CS.1.B.Prologue.OneTimePad

13

Sending a secret message with a cryptographic key

Alice wants to send a secret message to Bob.

• Sometime in the past, they exchange a cryptographic key.

• Alice uses the key to encrypt the message.

• Bob uses the same key to decrypt the message.

“use yT25a5i/S if I ever send
you an encrypted message”

Alice

Q. How does the system work?

SENDMONEY

key: yT25a5i/S

Hey, Bob. Here's a secret message. Hey, Bob. Here's a secret message.

Hi Alice. OK, I'm ready.Hi Alice. OK, I'm ready.

gX76W3v7K

key: yT25a5i/S SENDMONEYsending gX76W3v7K

encrypted message is "in the clear" (anyone can read it)

Critical point: Without the key, Eve cannot understand the message.

gX76W3v7K ???

Eve

"OK"

Bob

Encrypt/decrypt methods

Goal. Design a method to encrypt and decrypt data.

14

Example 2. One-time pad [details to follow]

S E N D M O N E Y

g X 7 6 W 3 v 7 K

S E N D M O N E Y

encrypt

decrypt

Example 3. Linear feedback shift register [later this lecture]

Example 1. Enigma encryption machine [German code, WWII]
• Broken by Turing bombe (one of the first uses of a computer).
• Broken code helped win Battle of Atlantic by providing U-boat locations.

A digital world

A bit is a basic unit of information.

• Two possible values (0 or 1).

• Easy to represent in the physical world (on or off).

15

In modern computing and communications systems,
we represent everything as a sequence of bits.

• Text [details to follow in this lecture]

• Numbers

• Sound [details to follow in this course]

• Pictures [details to follow in this course]

• ...

• Programs [profound implications, stay tuned].

0 1 0 0 0 1 0 1

010001012 = 6910

Bottom line. If we can send and receive bits, we can send and receive anything.

16

Encoding text as a sequence of bits

000000 A 001000 I 010000 Q 011000 Y 100000 g 101000 o 110000 w 111000 4
000001 B 001001 J 010001 R 011001 Z 100001 h 101001 p 110001 x 111001 5
000010 C 001010 K 010010 S 011010 a 100010 i 101010 q 110010 y 111010 6
000011 D 001011 L 010011 T 011011 b 100011 j 101011 r 110011 z 111011 7
000100 E 001100 M 010100 U 011100 c 100100 k 101100 s 110100 0 111100 8
000101 F 001101 N 010101 V 011101 d 100101 l 101101 t 110101 1 111101 9
000110 G 001110 O 010110 W 011110 e 100110 m 101110 u 110110 2 111110 +
000111 H 001111 P 010111 X 011111 f 100111 n 101111 v 110111 3 111111 /

Base64 encoding of character strings
• A simple method for representing text.
• 64 different symbols allowed: A-Z, a-z, 0-9, +, /.
• 6 bits to represent each symbol.
• ASCII and Unicode methods used on your computer are similar.

 S E N D M O N E Y

Example:

010010

S

000100

E

001101

N

000011

D

001100

M

001110

O

001101

N

000100

E

011000

Y

bits symbols

Base64 6 64

ASCII 8 256

Unicode 16 65,536+

 110010010011110110111001011010111001100010111111010010

One-Time Pads

17

What is a one-time pad?
• A cryptographic key known only to the sender and receiver.
• Good choice: A random sequence of bits (stay tuned).
• Security depends on each sequence being used only once.

y T 2 5 a 5 i / S

y T 2 5 a 5 i / S

Note: Any sequence of bits can be decoded into a sequence of characters.

more convenient than bits
for initial exchange

Encryption with a one-time pad

18

Preparation
• Create a "random" sequence of bits (a one-time pad).
• Send one-time pad to intended recipient through a secure channel.

ciphertext

010010000100001101000011001100001110001101000100011000S E N D M O N E Ymessage

110010010011110110111001011010111001100010111111010010y T 2 5 a 5 i / Sone-time pad

g X 7 6 W 3 v 7 K 100000010111111011111010010110110111101111111011001010

a
simple

machine

Encryption
• Encode text as a sequence of N bits.
• Use the first N bits of the pad.
• Compute a new sequence of N bits from the message and the pad.
• Decode result to get a sequence of characters.
Result: A ciphertext (encrypted message).

important point: need to have as many bits
in the pad as there are in the message.

messageS E N D M O N E Y

A (very) simple machine for encryption

19

1 00000010111111011111010010110110111101111111011001010

y T 2 5 a 5 i / S

To compute a cyphertext from a message and a one-time pad
• Encode message and pad in binary.
• Each cyphertext bit is the bitwise exclusive or of corresponding bits in message and pad.

010010000100001101000011001100001110001101000100011000

S E N D M O N E Y

g X 7 6 W 3 v 7 K

g X 7 6 W 3 v 7 K

one-time pad

cyphertext

110010010011110110111001011010111001100010111111010010

y T 2 5 a 5 i / S

XOR

Def. The bitwise exclusive or of two bits is 1 if they differ, 0 if they are the same.

20

Self-assessment on bitwise XOR encryption

Q. Encrypt the message E A S Y with the pad 0 1 2 3.

21

Decryption with a one-time pad

A. Alice's device uses a "bitwise exclusive or" machine to encrypt the message.

A. The same one (!!)

Q. What kind of machine does Bob's device use to decrypt the message?

cyphertextg X 7 6 W 3 v 7 K

A (very) simple machine for encryption and decryption

22

0 10010000100001101000011001100001110001101000100011000

y T 2 5 a 5 i / S

To compute a message from a cyphertext and a one-time pad
• Use binary encoding of cyphertext and pad.
• Each message bit is the bitwise exclusive or of corresponding bits in cyphertext and pad.

100000010111111011111010010110110111101111111011001010

g X 7 6 W 3 v 7 K

one-time pad

S E N D M O N E Y

S E N D M O N E Y message (!)

110010010011110110111001011010111001100010111111010010

y T 2 5 a 5 i / S

1 if they differ; 0 if they are the same

XOR

Why does it work?

23

ciphertext

010010000100001101000011001100001110001101000100011000S E N D M O N E Ymessage

110010010011110110111001011010111001100010111111010010one-time pad

g X 7 6 W 3 v 7 K 100000010111111011111010010110110111101111111011001010

XOR

g X 7 6 W 3 v 7 K

y T 2 5 a 5 i / S

S E N D M O N E Y

XOR

Approach 2: Boolean algebra

Crucial property: Decrypted message is the same as the original message.
Let m be a bit of the message and k be the corresponding bit of the one-time pad.
To prove: (m ^ k) ^ k = m

 (k ^ k) = 0
 m ^ 0 = m
(m ^ k) ^ k = m ^ (k ^ k)
 = m ^ 0
 = m

Approach 1: Truth tables m k m ^ k (m ^ k) ^ k

0 0 0 0

0 1 1 0

1 0 1 1

1 1 0 1 ✓ ✓

Notation: m ^ k is equivalent to XOR(m, k)

y T 2 5 a 5 i / S 110010010011110110111001011010111001100010111111010010one-time pad

010010000100001101000011001100001110001101000100011000S E N D M O N E Ymessage

S E N D M O N E Y

XOR

q w D g b D u a v

101010110000000011100000011011000011101110011010101111wrong pad q w D g b D u a v

Decryption with the wrong pad

24

Eve cannot read a message without knowing the pad.

001010100111111000011010001101110100000001100001100101

100000010111111011111010010110110111101111111011001010g X 7 6 W 3 v 7 Kciphertext

g X 7 6 W 3 v 7 K

XOR

gibberish K n 4 a N 0 B h l

K n 4 a N 0 B h l

One-time pad is provably secure [Shannon, 1940s]
• IF each pad is used only once,
• AND the pad bits are random,
• THEN Eve cannot distinguish cyphertext from random bits.

Eve

My informant
tells me that

Alice and Bob's
one-time pad

might be
qwDgbDuav

foiled again

Kn4aN0Bhl ???

Eve's problem with one-time pads

25

Eve has a computer. Why not try all possibilities?

Much worse problem
• There are also 254 possible messages.
• If Eve were to check all the pads, she'd see all the messages.
• No way to distinguish the real one from any other.

Problem
• 54 bits, so there are 254 possible pad values.
• Suppose Eve could check a million values per second.
• It would still take 570+ years to check all possibilities.

One-time pad is provably secure.

pad value message?

AAAAAAAAA gX76W3v7K

AAAAAAAAB gX76W3v7L

AAAAAAAAC gX76W3v7I

...

qwDgbDuav Kn4aN0Bhl

...

...

yT25a5i/S SENDMONEY

...

////////+ fo7FpIQE0

///////// fo7FpIQE1

tTtpWk+1E NEWTATTOO

Eve

Goods and bads of one-time pads

Goods.

• Very simple encryption method.

• Decrypt with the same method.

• Provably unbreakable if bits are truly random.

• Widely used in practice.

26

Bads.

• Easily breakable if seed is re-used.

• Truly random bits are very hard to come by.

• Need separate secure channel to distribute key.

• Pad must be as long as the message.

“No room on my phone for
both the video and the key.”

“I'd like to send you a
secret video (1 GB)”

Alice

“ Where are you going to get
8 billion bits for the key? ”

Bob

a one-time pad

cold war hotline

Random bits are not so easy to find

27

You might look on the internet.

Next: Creating a (long) sequence of "pseudo-random" bits from a (short) key.

The randomness comes from atmospheric noise

... if you trust the internet.

“I think I'll call it
random.org”

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

Prologue: A Simple Machine

•Brief introduction
•Secure communication with a one-time pad
•Linear feedback shift registers
•Implications

CS.1.C.Prologue.LFSR

A pseudo-random number generator
is a deterministic machine that produces a long sequence of pseudo random bits.

29

Examples
Enigma.
Linear feedback shift register (next).
Blum-Blum-Shub generator.
...
[an early application of computing]
[research still ongoing]

“ Anyone who considers arithmetical
 methods of producing random
 digits is, of course, in a state of sin. ”

− John von Neumann

Appears to be random??
• A profound and elusive concept.
• For this lecture: "Has enough properties of a random sequence that Eve can't tell the difference".

A pseudo-random number generator
is a deterministic machine that produces a long sequence of pseudo random bits.

30

Deterministic: Given the current state of the machine, we know the next bit.

Random: We never know the next bit.

Ex. 1: No long repeats
Ex. 2: About the same number of 0s and 1s
Ex. 3: About the same number of 00s, 01s, 10s, and 11s.
...

An absolute requirement: Alice and Bob need the same sequence.

Pseudo-random: The sequence of bits appears to be random.

100000010111111011
111010010110110111
101111111011001010

???

Which of these sequences appear to be random?

31

1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0

0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0

1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 0

0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0

0 0

0 1 0 1

1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0

1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0

✗

✗
but # of 00s 01s 10s

and 11s are about equal

✗
but # of 0s and 1s

are about equal

✗ S E N D M O N E Y

✓ key for Alice and Bob

✓ ciphertext for SENDMONEY

✓ generated by coin flips

typed arbitrarily
(no long seqs of 0s or 1s)✗

Note: Any one of them could be random!

Linear feedback shift register

Terminology

• Bit: 0 or 1.

• Cell: storage element that holds one bit.

• Register: sequence of cells.

• Seed: initial sequence of bits.

• Feedback: Compute XOR of two bits and put result at right.

• Shift register: when clock ticks, bits propagate one position to left.

32

^

01000010110 1

More terminology

• Tap: Bit positions used for XOR (one must be leftmost).

• [N, k] LFSR: N-bit register with taps at N and k.

Numbered from right, starting at 1.

Not all values of k give desired effect (stay tuned).

11 10 9 8 7 6 5 4 3 2 1

An [11, 9] LFSR

Linear feedback shift register simulation

33

^

01000010110 1 0 1 1 0 1 0 0 0 0 1 0 0

Time

^

10100001011 1 1 1 0 1 0 0 0 0 1 0 1 1

^

11010000101 0 1 0 1 0 0 0 0 1 0 1 1 2

^

01101000010 0 0 1 0 0 0 0 1 0 1 1 0 3

^

00110100001 1 1 0 0 0 0 1 0 1 1 0 0 4

^

10011010000 0 0 0 0 0 1 0 1 1 0 0 1 5

History of register contents

a pseudo-random
bit sequence !

A random bit sequence?

34

Q. Is this a random sequence?

1100100100111101101110010110101110011000101111110100100001001101001011110011001001111111011100000101
0110001000011101010011010000111100100110011101111111010100000100001000101001010100011000001011110001
0010011010110111100011010011011100111101011110010001001110101011101000001010010001000110101010111000
0000101100000100111000101110110100101011001100001111111001100000111111000110000110111100111010011110
1001110010011101110111010101010100000000001000000001010000001000100001010101001000000011010000011100
1000110111010111010100010100001010001001000101011010100001100001001111001011100111001011110111001001
0101110110000101011100100001011101001001010011011000111101110110010101011110000001001100001011111001
0010001110110101101011000110001110111101101010010110000110011100111111011110000101001100100011111101
0110000100011100101011011100001101011001110001111101101100010110111010011010100111100001110011001101
1111111101000000010010000010110100010011001010111111000010000110010100111110001110001101101101110110
1101010110110000011011100011101011011010001101100101110111100101010011100000111011000110101110111000
1010101101000000110010000111110100110001001111101011100010001011010101001100000011111000011000110011
1101111110010100001110001001101101011110110001001011101011001010001111000101100110100111111001110000
1111011001100101111111100100000011101000011010010011100110111011111010101000100000010101000010000010
0101000101100010100111010001110100101101001100110011111111111000000000110000000111100000110011000111
1111101100000010111000010010110010110011110011111001111000111100110110011111011111000101000110100010
1110010100101110001100101101111100110100011111001011000111001110110111101011010010001100110101111111
0001000001101010001110000101101100100110111101111010010100100110001101111101110100010101001010000011
0001000111101010110010000011110100011001001011111011001000101111010100100100001101101001110110011101
0111110100010001001010101011000000001110000001101100001110111001101010111110000010001100010101111010

A. No. It is the output of an [11, 9] LFSR with seed 01101000010! It is pseudo-random
(at least to some observers).

one-time pad in our example

Looks random to me. No long repeats.
997 0s, 1003 1s.
256 00s, 254 01s, 256 10s, 257 11s.
...

35

Self-assessment on LFSRs

Q. Give first 10 steps of [5,4] LFSR with initial fill 00001.

Encryption/decryption with an LFSR

36

Preparation
• Alice creates a book of "random" (short) seeds.
• Alice sends the book to Bob through a secure channel.

Encryption/decryption
• Alice sends Bob a description of which seed to use.
• They use the specified seed to initialize an LFSR and produce N bits.
 [and proceed in the same way as for one-time pads]

ciphertext

010010000100001101000011001100001110001101000100011000S E N D M O N E Ymessage

g X 7 6 W 3 v 7 K 100000010111111011111010010110110111101111111011001010

XOR

010010000100001101000011001100001110001101000100011000S E N D M O N E Ymessage

XOR

“Use the next seed in the book to
decode this secret video (1 GB)”

“ OK (consults book)
01101000010 ”

Alice

Bob

110010010011110110111001011010111001100010111111010010seed 01101000010 LFSR

g X 7 6 W 3 v 7 K
110010010011110110111001011010111001100010111111010010seed 01101000010 LFSR

Eve's opportunity with LFSR encryption

37

Eve has computers. Why not try all possible seeds?

• Seeds are short, messages are long.

• All seeds give a tiny fraction of all messages.

• Extremely likely that all but real seed will produce gibberish.

Good news (for Eve): This approach can work.

• Ex: 11-bit register implies 2047 possibilities.

• Extremely likely that only one of those is not gibberish.

• After this course, you could write a program to check whether
any of the 2047 messages have words in the dictionary.

Bad news (for Eve): It is easy for Alice and Bob to use a much longer LFSR.

Eve

Key properties of LFSRs

Property 1.

• Don’t use all 0s as a seed!

• Fill of all 0s will not otherwise occur.

38

^

00000000000 0

Key properties of LFSRs

Property 1.

• Don’t use all 0s as a seed!

• Fill of all 0s will not otherwise occur.

39

Property 2. Bitstream must eventually cycle.

• 2N − 1 nonzero fills in an N-bit register.

• Future output completely determined by current fill.

0 0 1 0 15

0 0 1 0 00

0 1 0 0 11

1 0 0 1 21

0 0 1 1 30

0 1 1 0 41

1 1 0 1 50

1 0 1 0 61

0 1 0 1 71

1 0 1 1 81

0 1 1 1 91

1 1 1 1 100

1 1 1 0 110

1 1 0 0 120

1 0 0 0 131

0 0 0 1 140

Ex. [4,3] LFSR

^

Key properties of LFSRs

Property 1.

• Don’t use all 0s as a seed!

• Fill of all 0s will not otherwise occur.

40

Property 2. Bitstream must eventually cycle.

• 2N − 1 nonzero fills in an N-bit register.

• Future output completely determined by current fill.

Property 3. Cycle length in an N-bit register is at most 2N − 1.

• Could be smaller; cycle length depends on tap positions.

• Need theory of finite groups to know good tap positions.
0 0 1 0

0 0 1 0 01

0 1 0 1 11

1 0 1 1 21

0 1 1 1 31

1 1 1 1 40

1 1 1 0 50

1 1 0 0 60

1 0 0 0 71

0 0 0 1 80

Ex. [4,2] LFSR

^

Key properties of LFSRs

Property 1.

• Don’t use all 0s as a seed!

• Fill of all 0s will not otherwise occur.

41

Property 2. Bitstream must eventually cycle.

• 2N − 1 nonzero fills in an N-bit register.

• Future output completely determined by current fill.

Property 3. Cycle length in an N-bit register is at most 2N − 1.

• Could be smaller; cycle length depends on tap positions.

• Need theory of finite groups to know good tap positions.

Bottom line.

• [11, 9] register generates 2047 bits before repeating.

• [63, 62] register generates 263 -1 bits before repeating.

XILINX manual, 1990s

11, 9

63, 62

Definitely preferable: small cost, huge payoff.

Eve's problem with LFSR encryption

Without the seed, Eve cannot read the message.

42

gX76W3v7K ???

Eve

Bad news (for Alice and Bob): LFSR output is not random.

Bad news (for Eve): There are still way too many possibilities.

• Ex: 63-bit register implies 263 − 1 possibilities.

• If Eve could check 1 million seeds per second,
it would take her 2923 centuries to try them all!

Exponential growth dwarfs
technological improvements

[stay tuned]Eve has computers. Why not try all possible seeds?

• Seeds are short, messages are long.

• All seeds give a tiny fraction of all messages.

• Extremely likely that all but real seed will produce gibberish.

NOT ENOUGH COMPUTERS

experts have cracked LFSRs

Goods and bads of LFSRs

Goods.

• Very simple encryption method.

• Decrypt with the same method.

• Scalable: 20 cells for 1 million bits; 30 cells for 1 billion bits.

• Widely used in practice. [Example: military cryptosystems.]

43

Bads.

• Easily breakable if seed is re-used.

• Still need secure key distribution.

• Experts can crack LFSR encryption.

a commercially available LFSR

Example.

• CSS encryption widely used for DVDs.

• Widely available DeCSS breaks it!

/* efdtt.c Author: Charles M. Hannum <root@ihack.net> */
/* Usage is: cat title-key scrambled.vob | efdtt >clear.vob */

#define m(i)(x[i]^s[i+84])<<

 unsigned char x[5] ,y,s[2048];main(
 n){for(read(0,x,5);read(0,s ,n=2048
); write(1 ,s,n))if(s
 [y=s [13]%8+20] /16%4 ==1){int
 i=m(1)17 ^256 +m(0) 8,k =m(2)
 0,j= m(4) 17^ m(3) 9^k* 2-k%8
 ^8,a =0,c =26;for (s[y] -=16;
 --c;j *=2)a= a*2^i& 1,i=i /2^j&1
 <<24;for(j= 127; ++j<n;c=c>
 y)
 c

 +=y=i^i/8^i>>4^i>>12,
 i=i>>8^y<<17,a^=a>>14,y=a^a*8^a<<6,a=a
 >>8^y<<9,k=s[j],k ="7Wo~'G_\216"[k
 &7]+2^"cr3sfw6v;*k+>/n."[k>>4]*2^k*257/
 8,s[j]=k^(k&k*2&34)*6^c+~y
 ;}}

DeCSS DVD decryption code

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

Prologue: A Simple Machine

•Brief introduction
•Secure communication with a one-time pad
•Linear feedback shift registers
•Implications

CS.1.D.Prologue.Implications

LFSRs and general-purpose computers

45

Important similarities.

• Both are built from simple components.

• Both scale to handle huge problems.

• Both require careful study to use effectively.

component LFSR computer

control start, stop, load same

clock same

memory 12 bits billions of bits

input 12 bits bit sequence

computation shift, XOR + − * / ...

output pseudo-random bit
sequence

any computable
bit sequence

Critical differences: Operations, input.

• General purpose computer can simulate any abstract machine.

• All general purpose computers have equivalent power (!) [stay tuned].

but the simplest computers differ only slightly from LFSRs!

LFSR

computer

46

A Profound Idea

Programming. We can write a Java program to simulate the operation of any abstract machine.

• Basis for theoretical understanding of computation.

• Basis for bootstrapping real machines into existence.
Stay tuned (we cover these sorts of issues in this course).

YOU will be writing
code like this within

a few weeks.

Note: You will write and apply an LFSR simulator in Assignment 5.

% java LFSR
11001001001111011011100101101011100110001
01111110100100001001101001011110011001001
11111101110000010101100010000111010100110
10000111100100110011101111111010100000100
00100010100101010001100000101111000100100
11010110111100011010011011100111101...

public class LFSR
{
 public static void main(String[] args)
 {
 int[] a = { 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0 };
 for (int t = 0; t < 2000; t++)
 {
 a[0] = (a[11] ^ a[9]);
 System.out.print(a[0]);
 for (int i = 11; i > 0; i--)
 a[i] = a[i-1];
 }
 System.out.println();
 }
}

0

Profound questions

Q. What is a random number?

47

LFSRs do not produce random numbers.

• They are deterministic.

• It is not obvious how to distinguish the bits LFSRs produce from random,

• BUT experts have figured out how to do so.

Q. Are random processes found in nature?

• Motion of cosmic rays or subatomic particles?

• Mutations in DNA?

Q. Is the natural world a (not-so-simple) deterministic machine??

“ God does not play dice. ”

− Albert Einstein

von Neumann's "state of sin": we know that "deterministic" is incompatible with "random"

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

1. Prologue:
A Simple Machine

