Computer Science 126

General Computer Science
Fall 2014

Robert Sedgewick



COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming
in Java

.
An Interdiscipl

Prologue:

A Simple Machine

€ linary Approach

Robert Sedgewick Kevin Wayne

http://introcs.cs.princeton.edu



CS.0.A.Prologue.Introduction

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Prologue: A Simple Machine

* Brief introduction
e Secure communication with a one-time pad
* Linear feedback shift registers

e Implications



[data from 2011-12]

Who are you?

@ Social Sciences
other Science/Math
other Engineering
Humanities

CS

Intended major

® none

some

@ lots

Programming experience

® Istyear
Sophomore

@ Junior

@ Senior

Class

Over 60% of all Princeton students take COS 126



What is this course about?

A broad introduction to computer science.

Goals
« Demystify computer systems.
« Empower you to exploit available technology.
* Build awareness of substantial intellectual underpinnings.

Topics
 Programming in Java. “Science is everything we understand
» Design and architecture of computers. well enough to explain to a computer. ”

« Theory of computation.
— Don Knuth

« Applications in science and engineering.

|

. “Computers are incredibly fast, accurate, and stupid;
and art, music, finance,
and many other fields. humans are incredibly slow, inaccurate, and brilliant;
together they are powerful beyond imagination. ”

— Albert Einstein



The basics

Lectures. [Sedgewick]

RS office hours. «<——everyone needs to meet me!

Precepts. [Gabai, Ginsburg and team]
» Tips on assignments / worked examples
» Questions on lecture material.
e Informal and interactive.

Friend 016/017 lab. [undergraduate assistants]
» Help with systems/debugging.
* No help with course material.

Piazza. [online discussion]

 Best chance of quick response to a question.

 Post to class or private post to staff.

I -<— assignments due

See www.princeton.edu/~cosl26
for full current details and office hours.



Grades

are based on achievement.

Opportunities for us to determine your level of achievement:

* 9 programming assignments.
» 2 written exams (in class, 10/9 and 12/11).

e 2 programming exams (evenings, 10/23 and 12/8).

 Final programming project (due Dean’s date — 1).

 Extra credit / staff discretion. Adjust borderline cases.

We do not grade on a "curve".

frequent absence hurts

T

participation helps

/
S

AN
/ .

AN

you are already here

SEP

oCT

NOV

DEC

JAN

Due dates

Su Mo Tu

7 8 9
14 15 16
21 22 23
28 29 30

5 6 7
12 13 14
19 20 21

26 27 28 2

2 3 4
9 10 11
16 17 18
23 24 25
30

2
7 9
14 !ﬁ'l6

21 22 23
28 29 30

4 6
11 13
18 20

25 26 27

We Th Fr

3 4 5
10 11 12
17 18 19
24 25 26

22 24
9 e20,31

5 6 7
12 13 14
19 20 21
26 27 28

3 5
10 12
17 19

24 25 26
31

1 2
7 8 9
14 15 16
21 22 23
28 29 30

Sa

13
20
27

11
18
25

15
22
29

13
20
27

10
17
24
31



Course website

http://www.princeton.edu/~co0s126 <«— bookmark this pagel!

e OO0 Computer Science 126, Princeton University, Fall 2014 "

w Universiry Computer Science 126 General Computer Science Fall 2014

Course Information | People | Assignments | Lectures | Precepts | Exams | Booksite

COURSE INFORMATION

Course description. An introduction to computer science in the context of scientific, engineering, and commercial applications. The goal
of the course is to teach basic principles and practical issues, while at the same time preparing students to use computers effectively for
applications in computer science, physics, biology, chemistry, engineering, and other disciplines. Topics include: programming in Java;
hardware and software systems; algorithms and data structures; fundamental principles of computation; and scientific computing, including
simulation, optimization, and data analysis.

Instructor. Robert Sedgewick.
Lectures. Lectures meet on Tuesdays and Thursdays at 10am (LO1)

Preceptors. Donna Gabai (co-lead) - Maia Ginsburg (co-lead) - Doug Clark * Andrea LaPaugh - Dan Leyzberg - Stephen Cook - Katie
Edwards * Young Kun Ko * Theodore Brundage * Nevin Li - Jordan Ash + Shaoqing (Victor) Yang * Emily Nelson * Colin Watson

Precepts. Precepts meet twice a week on Tuesdays and Thursdays or Wednesdays and Fridays. Precepts begin either Thursday Sept 11 or
Friday Sept 12.

Undergraduate coordinator. For enrollment problems, see Colleen Kenny-McGinley in CS 210.

Course website. The course website contains a wealth of information, including precept rosters, office hours, lecture slides, programming




Textbook and Booksite

INTRODUCTION TO

Programming

in Java

Textbook.

« Developed for this course.

Robert Sedgewick ~Kevin Wayne

e Full introduction to course material.

« For use while learning and studying.

e 00 Introduction to Programming in Java: An Interdisciplinary Approach e
| @ introcs.cs.princeton.edu/java/home ¢ @
Princeton v reference v rsrch ¥ save Y shop v travel v teach v Coursera¥ Yahoo! YouTube Wikipedia Mathematica v ; ¥ g

Booksite.
« Summary of content.

Code, exercises, examples.
Supplementary material.

INTRO TO PROGRAMMING

1. Elements of Programming
2. Functions
3. ooP

NTRODUCTION TO PROGRAMMING IN JAVA

a textbook for a first course in computer science
for the next generation
of scientists and engineers

Our Intr ion to Prog; ing in Java [Amazon - Addison-Wesley] is an interdisciplinary approach to the
traditional CS1 curriculum. We teach all of the classic elements of programming, using an "objects-in-the-middle" approach that
emphasizes data abstraction. A key feature of the book is the manner in which we motivate each programming concept by
examining its impact on specific applications, taken from fields ranging from materials science to genomics to astrophysics to
internet commerce. The book is organized around four stages of learning to program:

Chapter 1: Elements of Programming introduces variables; assignment statements; built-in types of data; conditionals and
loops; arrays; and input/output, including graphics and sound.
Chapter 2: Functions introduces modular programming. We stress the fundamental idea of dividing a program into

that can be i debugged, maintained, and reused.

4. Data Structures
0. Prologue
5. A Computing Machine

6. Building a Computer

NOT the textbook.
(also not the course web page).

Chapter 3: Object-Oriented Programming introduces data abstraction. We emphasize the concept of a data type and its
implementation using Java's class mechanism.

Chapter 4: Algorithms and Data Structures introduces classical algorithms for sorting and searching, and fundamental data
structures, including stacks, queues, and symbol tables.

Booksite. Reading a book and surfing the web are two different activities: This booksite is intended for your use while online (for
while programming and while browsing the web); the textbook is for your use when initially learning new material and

7. Theory of Computation
8. Systems
9. Scientific Computation

For use while online.

http://introcs.cs.princeton.edu

when reinforcing your understanding of that material (for example, when reviewing for an exam). The booksite consists of the
following elements:

* Excerpts. A condensed version of the text narrative for reference while online.
* Exercises. Hundreds of exercises and some solutions.

e Java code. Hundreds of easily downloadable Java programs and real-world data sets.

<«— bookmark this page, too!



Programming assignments

are an essential part of the experience in learning CS.

Desiderata
« Address an important scientific or commercial problem.
« lllustrate the importance of a fundamental CS concept.
* You solve the problem from scratch on your own computer!

N-body simulation pluck a guitar string

estimate Avogadro's number



What's Ahead?

Coming events
» Lecture 2. Basic programming concepts.
e Precept 1. Meets today/tomorrow.
* Not registered? Go to any precept now; officially register ASAP.
* Change preCEptS? Use SCORE. ¥~ see Colleen Kenny-McGinley in CS 210

if the only precept you can attend is closed

=) Assignment O due Monday 11:59PM

Things to do before attempting assignment
« Read Sections 1.1 and 1.2 in textbook.
« Read assignment carefully.
e Install introcs software as per instructions.
» Do a few exercises.
 Lots of help available, don't be bashful.

http://introcs.cs.princeton.edu/assignments.php

END OF ADMINISTRATIVE STUFF



e Secure communication with a onetime pad

CS.1.B.Prologue.OneTimePad



Sending a secret message with a cryptographic key

) “use yT25a51/S if | ever segd
Alice wants to send a secret message to Bob. you an encrypted message

* Sometime in the past, they exchange a cryptographic key.
* Alice uses the key to encrypt the message.
* Bob uses the same key to decrypt the message.

=Bl B 6:32PM\

Hey, Bob. Here's a secret message. Hey, Bob. Here's a secret message.

Hi Alice. OK, I'm ready. Hi Alice. OK, I'm ready.

key: yT25a5i/S gX76W3v7K

key: yT25a5i/S SENDMONEY

SENDMONEY | sending gX76W3v7K

encrypted message is "in the clear" (anyone can read it)

Critical point: Without the key, Eve cannot understand the message.

Q. How does the system work?



Encrypt/decrypt methods

Goal. Design a method to encrypt and decrypt data.

0 N E

encrypt

decrypt

M
g X 7 6 W 3 v 7
M

Example 1. Enigma encryption machine
» Broken by Turing bombe (one of the first uses of a computer).
» Broken code helped win Battle of Atlantic by providing U-boat locations.

Example 2. One-time pad

Example 3. Linear feedback shift register




A digital world

A bit is a basic unit of information.
e Two possible values (0 or 1).

« Easy to represent in the physical world (on or off).

In modern computing and communications systems,
we represent everything as a sequence of bits.

» Text

* Numbers
« Sound

* Pictures

* Programs

07
50010 11101001010100010000101
0100001001010101001010101010

ooroo1001010101010101 0101010001

101001010101010101001001010l 1

0\%«001010010010100101010100
M 0100010101001010000“,7,m

010001012 = 6910

Bottom line. If we can send and receive bits, we can send and receive anything.



Encoding text as a sequence of bits

Base64 encoding of character strings bits
« A simple method for representing text. Base64 6
« 64 different symbols allowed: A-Z, a-z, 0-9, +, /. ASCII 8
* 6 bits to represent each symbol.
. .. Unicode 16

« ASCIl and Unicode methods used on your computer are similar.

000000 A [ 001000 I [010000 Q | 011000 Y | 100000 g [ 101000 o | 110000 w | 111000 4

000001 B | 001001 J | 010001 R | 011001 Z | 100001 h | 101001 p | 110001 x | 111001 5

000010 C | 001010 K | 010010 S | 011010 a | 100010 i | 101010 q | 110010 y | 111010 6

000011 D | 001011 L [010011 T |011011 b | 100011 j | 101011 r | 110011 z | 111011 7

000100 E | 001100 M | 010100 U | 011100 c | 100100 k | 101100 s | 110100 0 | 111100 8

000101 F [001101 N [ 010101 V [011101 d [ 100101 1 | 101101 t | 110101 1 | 111101 9

000110 G | 001110 0 [010110 W [ 011110 e [ 100110 m | 101110 u | 110110 2 | 111110 +

000111 H [001111 P [010111 X [011111 f [ 100111 n | 101111 v | 110111 3 | 111111 /
Example:

E N D M 0 N E

SENDMONEY

symbols
64

256

65,536+

> 0100140001oq00110qoooo1400110q00111q00110400010q011000




One-Time Pads

What is a one-time pad?

* A cryptographic key known only to the sender and receiver.
» Good choice: A random sequence of bits (stay tuned).

 Security depends on each sequence being used only once.

\ 4

y T 2 5 a 5 ] / S

11001q01001411011q11100qo1101q111004100010111111010010
000000 A [001000 I |010000 Q |011000 Y | 100000 g | 101000 o | 110000 w | 111000 4
000001 B (001001 J | 010001 R 011001 Z | 100001 h | 101001 p | 110001 x | 111001 5
000010 C | 001010 K 010010 S | 011010 a | 100010 1 | 101010 g | 110010 y | 111010 6
000011 D (001011 L | 010011 T |011011 b | 100011 j | 101011 r | 110011 z | 111011 7
000100 E |001100 M | 010100 U | 011100 c | 100100 k | 101100 s | 110100 O | 111100 8
000101 F |{001101 N | 010101 V | 011101 d | 100101 1 | 101101 t | 110101 1| 111101 9
000110 G |{001110 O | 010110 W | 011110 e | 100110 m | 101110 w | 110110 2| 111110 +
000111 H |001111 P | 010111 X | 011111 f | 100111 n | 101111 v | 110111 3| 111111 /

yT25a514/S

more convenient than bits

/ for initial exchange
Note: Any sequence of bits can be decoded into a sequence of characters.



Encryption with a one-time pad

Preparation (“use yT25a51/5 if  ever send )

\ ou an encrypted message” /
\ You an enclypied message /

» Create a "random" sequence of bits (a one-time pad).
« Send one-time pad to intended recipient through a secure channel.

Alice

Encryption

Bob

* Encode text as a sequence of N bits.

« Use the first N bits of the pad. «— imiaotrﬁin;a%o;r;ticP?eeridatrz ?na\t/ﬁea?n?sigésits
« Compute a new sequence of N bits from the message and the pad.
« Decode result to get a sequence of characters.

Result: A ciphertext (encrypted message).

F
simple
machine

message SENDMONEY »| 010010000100001101000011001100001110001101000100011000

one-timepad |y T2 5 a5 4i / S >» 110010010011110110111001011010111001100010111111010010

ciphertext gX76W3v 7K€ 100000010111111011111010010110110111101111111011001010




A (very) simple machine for encryption

To compute a cyphertext from a message and a one-time pad

* Encode message and pad in binary.

» Each cyphertext bit is the bitwise exclusive or of corresponding bits in message and pad.

Def. The bitwise exclusive or of two bits is 1 if they differ, O if they are the same.

SENDMONEY

yT25a54i/Ss

gX76W3v7K

message

one-time pad

cyphertext

S E N D M O N E Y

o |

1oo140oo1040o11o4000014001104001114001104000104011000

=

10010|010011|110110|111001|011010|111001|100010|111111|010010

y T 2 5 a 5 i / S

hﬁooooklol1411101411101%01011%110114101114111014001010

g X 7 6 W 3 v 7 K



Self-assessment on bitwise XOR encryption

Q. Encrypt the message E A S Y withthepad 0 1 2 3.

20



Decryption with a one-time pad

Sending a secret message with a cryptographic key

Alice wants to send a secret message to Bob.
» Sometime in the past, they exchange a cryptographic key.
« Alice uses the key to encrypt the message.
» Bob uses the same key to decrypt the message. ~——

Hey, Bob. Here's a secret message. | Hey, Bob. Here's a secret message.

Hi Alice. OK, I'm ready. Hi Alice. OK, I'm ready.

key: yT25a5i/S gX76W3v7K
SENDMONEY | sending gX76W3v7K key: yT25a5i/S SENDMONEY

encrypted message is "in the clear" (anyone can read it)

Critical point: Without the key, Eve cannot understand the message.

(Q. How does the system wor@

‘Kuse yT25a51/Sif I ever send\‘|
\you an encrypted message” /

~N
gX76W3v7K 777

A. Alice's device uses a "bitwise exclusive or" machine to encrypt the message.

Q. What kind of machine does Bob's device use to decrypt the message?

A. The same one ()

21



A (very) simple machine for encryption and decryption

To compute a message from a cyphertext and a one-time pad

» Use binary encoding of cyphertext and pad.

» Each message bit is the bitwise exclusive or of corresponding bits in cyphertext and pad.

gX76W3v7K

yT25a54i/Ss

SENDMONEY

cyphertext

one-time pad

message (1)

™~

g X 7 6 W 3 v 7 K

1 if they differ; O if they are the same

=l

00000|010111|111011|111010|010110|110111|101111|111011|001010

[

1001qo1001411011q1110oqollolql1100410001%111114010010

y T 2 5 a 5 i / S

bﬁoo1okoo1oqoo11oqoooo1qoo11oqo0111q0011040001oq011000

S E N D M o N E Y

22



Why does it work?

S E N D M (0] N E Y

b
= =i} \'message SENDMONEY

|

010010000100001101/000011/001100/001110001101/000100011000

\ 4

one-time pad yT25ab5i/s

(/NN
d@» ciphertext |g X 7 6 W 3 v 7 K
\ "‘

\)

\ 4

110010010011110110111001011010111001100010111111010010

A

1000000101111110111110100101101101111101111(111011j001010

\4

\/\ \/

one-time pad yT25a54i/ S =—>» 110010010011110110111001011010111001100010111111010010

/4(@)\
&Wr message |SENDMONE Y

Crucial property: Decrypted message is the same as the original message.
Let m be a bit of the message and k be the corresponding bit of the one-time pad.

A

010010‘000100‘001101000011001100001110001101000100011000

S E N D M o N E Y

To prove: ( mA k ) A k= m <«—— Notation: mA kis equivalent to XOR(m, k)

Approach 1: Truth tables ™M k mAk (mAk) Ak Approach 2: Boolean algebra (kAk)y=0
0 0 0 0 MmAO=m
0o 1 1 0 MAKRAk=mA A K
1 0 1 1 =mAQ
110 ] v =m v

23



Decryption with the wrong pad

Eve cannot read a message without knowing the pad.

My informant

tells me that

Alice and Bob's
one-time pad

might be
gwDgbDuav

7 K

111011001010

100000‘011011 101110011010101111

100001100101

011010‘001101

g X 7
ciphertext gX76wW3v7K »| 100000010111111011
wrong pad gwDgbDuayvw > 101010110000000011
gibberish Kn4aNOBhII1 e 001010100111111000
K n 4

One-time pad is provably secure [Shannon, 1940s]

* IF each pad is used only once,
« AND the pad bits are random,

« THEN Eve cannot distinguish cyphertext from random bits.

h 1

Kn4aNOBhI ???

foiled again

24



Eve's problem with one-time pads

Eve has a computer. Why not try all possibilities?

Problem

* 54 bits, so there are 254 possible pad values.
» Suppose Eve could check a million values per second.
* It would still take 570+ years to check all possibilities.

Much worse problem
* There are also 254 possible messages.

* If Eve were to check all the pads, she'd see all the messages.

* No way to distinguish the real one from any other.

One-time pad is provably secure.

pad value
AAAAAAAAA
AAAAAAAAB
AAAAAAAAC

wDgbDuay
Tepuke1E
JT2sasi/s
///}}}//+
/11177777

message?
gX76W3v7K
gX76W3v7L
gX76W3v7I
Kn4aNOBh
NEWTATTOO

SENDMONEY

fo7FpIQEOD
fo7FpIQEl

25



Goods and bads of one-time pads

Goodes.
* Very simple encryption method.
* Decrypt with the same method.

e Provably unbreakable if bits are truly random.

» Widely used in practice.

Bads.
« Easily breakable if seed is re-used.

* e Truly random bits are very hard to come by.
* Need separate secure channel to distribute key.

* « Pad must be as long as the message.

ZDXWWW EJKAWO FECIFE WSNZIP PXPKIY URMZHI JZTLBC YLGDYJ
HTSVTV RRYYEG EXNCGA GGQVRF FHZCIB EWLGGR BZXQDQ DGGIAK
YHJIYEQ TDLCQT HZBSIZ IRZDYS RBYJFZ AIRCWI UCVXTW YKPQMK
CKHVEX VXYVCS WOGAAZ OUVWVON GCNEVR LMBLYB SBDCDC PCGVJIX
QXAUIP PXZQIJ JIUWYH COVWMJ UZOJHL DWHPER UBSRUJ HGAAPR
CRWVHI FRNTQW AJVWRT ACAKRD 0ZKIIB VIQGBK IJCWHF GTTSSE
EXFIPJ KICASQ IOUQTP ZSGXGH YTYCTI BAZSTN JKMFXI RERYWE

a one-time pad

cold war hotline

“I'd like to send you a
secret video (1 GB)”

“Where are you going to get
8 billion bits for the key? ”

“No room on my phone for
both the video and the key.”

Bob

26



Random bits are not so easy to find

You might look on the internet. (The randomness comes from atmospheric noise)

RANDOM.ORG - Integer Generator /

Home mes Numbers Lists & More Drawings Web Tools Statistics Testimonials Learn More Login

RANDOM.ORG .../

Do you own an iPhone, iPad or iPod Touch? Check out or new app! Android version coming soon.

Random Integer Generator

This form allows you to generate random integersﬁ' he randomness comes from atmospheric noise,)«hich for many purposes is better
than the pseudo-random number algorithms typically used in computer programs.

“I think I'll call it
random.org”

Part 1: The Integers
Generate 1000 random integers (maximum 10,000).
Each integer should have a value between 0 and 1 (both inclusive; limits +1,000,000,000).

Formatin 5 column(s).

Part 2: Go! . .
. if you trust the internet.

Be patient! It may take a little while to generate your numbers...

Next: Creating a (long) sequence of "pseudo-random" bits from a (short) key.

27



COMPUTER SCIENCE
SEDGEWICK/WAYNE

Prologue: A Simple Machine

* Brief introduction
e Secure communication with a one-time pad
* Linear feedback shift registers

e Implications

CS.1.C.Prologue.LFSR



A pseudo-random number generator

is a deterministic machine that produces a long sequence of pseudo random bits.

Examples
Enigma.
Linear feedback shift register (next).
Blum-Blum-Shub generator.

[ an early application of computing ]
[ research still ongoing ]

3 fEE A “ Anyone who considers arithmetical
methods of producing random

digits is, of course, in a state of sin. ”

comiN O *

— John von Neumann

29



A pseudo-random number generator

is a deterministic machine that produces a long sequence of pseudo random bits.

Deterministic: Given the current state of the machine, we know the next bit.

T

An absolute requirement: Alice and Bob need the same sequence.

Random: We never know the next bit.

100000010TT1111011
111010010110110111 772
101111111011001010

Pseudo-random: The sequence of bits appears to be random.

5y
1l

27 Ex. 1: No long repeats
Appears to be random?: Ex. 2: About the same number of 0s and 1s
o A profound and elusive concept. Ex. 3: About the same number of 00s, Ols, 10s, and 11s.

 For this lecture: "Has enough properties of a random sequence that Eve can't tell the difference”.



Which of these sequences appear to be random?

00000000O00O0OO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOQOOQOOOQ

010101010101010101010101010101010101010101010101010101

0011011000110110001101100110110011011001101100110110060

010010000100001101000011001100001110001101000100011000

110010010011110110111001011010111001100010111111010010

100000010111111011111010010110110111101111111011001010

100000011100010110001000110001100010101001100101100110

100010010110111011111010010110110111101100011011001010

Note: Any one of them could be random!

X

but # of Os and 1s
X are about equal

but # of 00s 01s 10s
X and 11s are about equal

X SENDMONEY
v key for Alice and Bob
v ciphertext for SENDMONEY

v/ generated by coin flips

X typed arbitrarily
(no long seqs of Os or 15s)

31



Linear feedback shift register

Terminology
* Bit: Oorl.
 Cell: storage element that holds one bit.
« Register: sequence of cells.
« Seed: initial sequence of bits.
» Feedback: Compute XOR of two bits and put result at right.
« Shift register: when clock ticks, bits propagate one position to left.

7 N
An [11, 9] LFSR 0o 1.1 01 0 O 0 O 1 0|1

More terminology
« Tap: Bit positions used for XOR (one must be leftmost). «<——Numbered from right, starting at 1.
* [N, k] LFSR: N-bit register with taps at N and k. <«—— Not all values of k give desired effect (stay tuned).

32



Linear feedback shift register simulation

0

e

o/

o/

o

o/

~

1

History of register contents Time

1101000010 0

01000010011 2

a pseudo-random

/ bit sequence !

1 00001011)0 3




A random bit sequence?

Looks random to me) No long repeats.
997 0Os, 1003 1s.
256 00s, 254 01s, 256 10s, 257 11s.

Q. Is this a random sequence?

one-time pad in our example

(1100100100111101101110010110101110011000101111110100109001001101001011110011001001111111011100000101
0110001000011101010011010000111100100110011101111111010100000100001000101001010100011000001011110001
0010011010110111100011010011011100111101011110010001001110101011101000001010010001000110101010111000
0000101100000100111000101110110100101011001100001111111001100000111111000110000110111100111010011110
1001110010011101110111010101010100000000001000000001010000001000100001010101001000000011010000011100
1000110111010111010100010100001010001001000101011010100001100001001111001011100111001011110111001001
0101110110000101011100100001011101001001010011011000111101110110010101011110000001001100001011111001
0010001110110101101011000110001110111101101010010110000110011100111111011110000101001100100011111101
0110000100011100101011011100001101011001110001111101101100010110111010011010100111100001110011001101
1111111101000000010010000010110100010011001010111111000010000110010100111110001110001101101101110110
1101010110110000011011100011101011011010001101100101110111100101010011100000111011000110101110111000
1010101101000000110010000111110100110001001111101011100010001011010101001100000011111000011000110011
1101111110010100001110001001101101011110110001001011101011001010001111000101100110100111111001110000
1111011001100101111111100100000011101000011010010011100110111011111010101000100000010101000010000010
0101000101100010100111010001110100101101001100110011111111111000000000110000000111100000110011000111
1111101100000010111000010010110010110011110011111001111000111100110110011111011111000101000110100010
1110010100101110001100101101111100110100011111001011000111001110110111101011010010001100110101111111
0001000001101010001110000101101100100110111101111010010100100110001101111101110100010101001010000011
0001000111101010110010000011110100011001001011111011001000101111010100100100001101101001110110011101
0111110100010001001010101011000000001110000001101100001110111001101010111110000010001100010101111010

A. No. It is the output of an [11, 9] LFSR with seed 01101000010! ~__ is yseudo-random

(at least to some observers).

34



Self-assessment on LFSRs

Q. Give first 10 steps of [5,4] LFSR with initial fill 00001.

35



Encryption/decryption with an LFSR

Preparation

* Alice creates a book of "random" (short) seeds.
* Alice sends the book to Bob through a secure channel.

Encryption/decryption

D\
qé»
)

<

A\ U.l

"

* Alice sends Bob a description of which seed to use.
» They use the specified seed to initialize an LFSR and produce N bits.

“Use the next seed in the book to
decode this secret video (1 GB)”

[and proceed in the same way as for one-time pads] Bob

message

seed

“#\ﬁ?l" ciphertext

seed

message

SENDMONEY

“ OK (consults book)
01101000010~

01101000010 —)ﬂ—)

gX76W3v7K

L
>

&

010010000100001101000011001100001110001101000100011000

110010010011110110111001011010111001100010111111010010

01101000010 —)@—)

SENDMONEY

Y

&

100000010111111011111010010110110111101111111011001010

110010010011110110111001011010111001100010111111010010

—

010010000100001101000011001100001110001101000100011000

36



Eve's opportunity with LFSR encryption

Eve has computers. Why not try all possible seeds?

« Seeds are short, messages are long.

« All seeds give a tiny fraction of all messages.

« Extremely likely that all but real seed will produce gibberish.

Good news (for Eve): This approach can work.
« Ex: 11-bit register implies 2047 possibilities.
« Extremely likely that only one of those is not gibberish.

« After this course, you could write a program to check whether
any of the 2047 messages have words in the dictionary.

Bad news (for Eve): It is easy for Alice and Bob to use a much longer LFSR.

37



Key properties of LFSRs

Property 1.
*« Don’t use all Os as a seed!
« Fill of all Os will not otherwise occur.

X ™

7N
O 0o 0 0O OO OO O O 0/O

38



Key properties of LFSRs

Property 1.
« Don’t use all Os as a seed!
« Fill of all Os will not otherwise occur.

Property 2. Bitstream must eventually cycle.
« 2N — 1 nonzero fills in an N-bit register.

 Future output completely determined by current fill.

Ex. [4,3] LFSR

J

o o o P P P P O P OB »H O O KB O

H O O O B B B B OKr O R KB O O K

o »r O OO P P P P OB O +HH +»H O O

©O B O O OB B B KB O K O R R O

AW N

O W 0 N O v

11

13
14
15

39



Key properties of LFSRs

Property 1.
. ’ |
Don’t use all Os as a seed! = [ 15
« Fill of all Os will not otherwise occur.

Property 2. Bitstream must eventually cycle.
« 2N — 1 nonzero fills in an N-bit register.
 Future output completely determined by current fill.

Property 3. Cycle length in an N-bit register is at most 2N— 1.
* Could be smaller; cycle length depends on tap positions.
* Need theory of finite groups to know good tap positions.

J

o o P B B B O B O O

oo o o »r B B B O Br»r o

H O O O K K KB KB O R

o B O O O B B »r KB O

©O B O O O KB KB R R

AW N

o N O wuv

40



Key properties of LFSRs

Linear Feedback Shift Reglster Taps
This table liste the iate tape for length 10 repeated requests, the list ie here extended

Prope rty ] LFSR counters of up to 168 bits. The basic descriptionand ~ to 168 bita. This information is based on unpublished
- the table for the first 40 bits was originally published in  research done by Wayne Stahnke while he was at Fairchid
XCELL and reprinted on page 9-24 of the 1993 and 1094 Semiconductor in 1970
Xiinx Data Books.

 Don’t use all Os as a seed! i L LFS G

n XNOR from n XNOR from n XNOR from n XNOR from
3 32 45 4544424 87 87,74 129 120,124
* Fill of all Os will not otherwise occur. -t
6 65 48 48472120 20 090,89,72,71 132 132,103
7 76 40 40,40 21 91,908.7 133 133,132,82.81
8 8654 50 50402423 92 92.01.80,79 134 13477
9 95 51 51,50,36.35 3 9301 135 135,124
10 52 52,40 o4 0473 136 136,135,11,10
11 (11,9 S 53523837 £ 05584 37 137.116
. 12 e 3 5453,18.17 06 | 00044047 | 138 | 138,137,131,130 |
Property 2. Bitstream must eventually cycle. N R
15 1514 57 57,50 29 00,97 54,52 141 141,140,110,109
N A . . . 16 1615134 58 58,39 100 100,63 142 142121
« 2N — 1 nonzero fills in an N-bit register. o e B 2
19 19621 61 61,60,46.45 103 103,94 145 14593
. o 20 20,17 62 104 1041039493 146 146,145,87.86
 Future output completely determined by current fill. T w63, 62k [ e | v Wi
23 23,18 65 65,47 107 10710544 42 149 140,148.40,39
24 24232217 66 | 06655756 | 108 108,77 150 150,97
25 2522 67 67,66,58,57 109 109,108,103,102 151 151,148
26 26.6.2.1 68 68,50 110 110,100,98,97 152 | 152,15187.86 |
27 27521 69 60,67,42.40 111 111,101 153 153,152
28 2825 70 70,60,55.54 112 112,110,69,67 154 154,15227,25
Property 3. Cycle length in an N-bit register is at most 2N — 1 1 L LTI T T R CE
" " 31 31,28 73 73.48 115 115,114,101,100 157 157,156,131,130
32 322221 74 74,73,50,58 116 1161154645 158 158,157,132,131
- - 33 33,20 75 75746564 17 117,11599,97 159 150,128
] ]
« Could be smaller; cycle length depends on tap positions. s T
36 36,25 78 78,77,59,58 120 120,1139.2 162 162,161,75,74
- . . . 37 3754321 79 79,70 121 121,103 163 163,162,104,103
* Need theory of finite groups to know good tap positions. B L L
30 40,3821,19 82 82,70,47.44 124 12487 166 | 166,165,128,127 |
41 41,38 83 83,82,38.37 125 1251241817 167 167,161
a2 3241,20,19 (23 8471 126 | 1261250080 | 168 | 168,166,153,151 |
43 43423837 85 85,84,58.57 127 127,126
44 44431817 86 86857473 128 128,126,101,99

Bottom line. XILINX manual, 1990s
« [11, 9] register generates 2047 bits before repeating.
« [63, 62] register generates 263 -1 bits before repeating. «—— Definitely preferable: small cost, huge payoff.



Eve's problem with LFSR encryption

Without the seed, Eve cannot read the message.

Eve has computers. Why not try all possible seeds?
« Seeds are short, messages are long.
« All seeds give a tiny fraction of all messages.

« Extremely likely that all but real seed will produce gibberish.

Bad news (for Eve): There are still way too many possibilities.

« Ex: 63-bit register implies 263 — 1 possibilities.

* If Eve could check 1 million seeds per second,
it would take her 2923 centuries to try them all!

Bad news (for Alice and Bob): LFSR output is not random.

™

gX76W3v7K 77?7

(30,20~

Exponential growth dwarfs
technological improvements

[stay tuned] \

NOT ENOUGH COMPUTERS

(20, 2%0)

experts have cracked LFSRs

42



Goods and bads of LFSRs

Goods.
* Very simple encryption method.
» Decrypt with the same method.

« Scalable: 20 cells for 1 million bits; 30 cells for 1 billion bits.

a commercially available LFSR

» Widely used in practice. [Example: military cryptosystems.]

Bads.
e Easily breakable if seed is re-used.
« Still need secure key distribution.
» Experts can crack LFSR encryption.

Example.

» CSS encryption widely used for DVDs.

» Widely available DeCSS breaks it!

/* efdtt.c Author: Charles M. Hannum <root@ihack.net> */
/* Usage is: cat title-key scrambled.vob | efdtt >clear.vob */

#define m(i) (x[i]~s[i+84])<<

unsigned char x[5] ,Y¥,s[2048] ;main (
n) {for( read(0,x,5 ) ;read(0,s ,n=2048
); write(1l ,s,n) )if (s
[y=s [13]%8+20] /16%4 ==1 ) {int
i=m( 1)17 *256 +m(0) 8,k =m(2)
0,3= m(4) 17~ m(3) 9rk* 2-k%8
~8,a =0,c =26; for (slyl] -=16;
--c;j *=2)a= a*27ig 1,i=i /2*j&l
<<24;for (3= 127; ++j<n;c=c>
Y)

c

+=y=iri/82i>>47i>>12,
i=i>>8*y<<17,a*=a>>14,y=a*a*8"a<<6,a=a
>>84y<<9,k=s[j],k ="TWo~'G_\216" [k
&7]1+2*"cr3sfwév; *k+>/n." [k>>4] *2/°k*257/
8,s[j1=k” (k&k*2&34) *6 c+~y
i1}

DeCSS DVD decryption code

43



COMPUTER SCIENCE
SEDGEWICK/WAYNE

Prologue: A Simple Machine

* Brief introduction

e Secure communication with a one-time pad
* Linear feedback shift registers

e Implications

CS.1.D.Prologue.Implications



LFSRs and general-purpose computers

component LFSR computer
control start, stop, load same
clock same
compter memory 12 bits billions of bits
Important similarities. Input 12 bits bit sequence
« Both are built from simple components. computation shift, XOR -
» Both scale to handle huge problems.
« Both require careful study to use effectively. output ~ Pseudo-randombit any computable

sequence bit sequence

Critical differences: Operations, input. «<—— but the simplest computers differ only slightly from LFSRs!
» General purpose computer can simulate any abstract machine.
* All general purpose computers have equivalent power (!) [stay tuned].

45



A Profound Idea

Programming. We can write a Java program to simulate the operation of any abstract machine.

* Basis for theoretical understanding of computation.
e Basis for bootstrapping real machines into existence.
Stay tuned (we cover these sorts of issues in this course).

public class LFSR

{
public static void main(String[] args)
{
int[] a={0, O, 1, O, O, O, O, 1, O, 1, 1, O };
for (int t = 0; t < 2000; t++)
YOU will be writing {
code like this within —> a[0] = (a[11] A a[9D);
a few weeks. System.out.print(al[0]);
for (int i = 11; i > 0; i--)
a[i] = a[i-1];
}
System.out.println(Q);
}
}

% java LFSR
11001001001111011011100101101011100110001
01111110100100001001101001011110011001001
11111101110000010101100010000111010100110
10000111100100110011101111111010100000100
00100010100101010001100000101111000100100
11010110111100011010011011100111101.. ..

Note: You will write and apply an LFSR simulator in Assignment 5.

46



Profound questions

Q. What is a random number?

LFSRs do not produce random numbers.

. They are deterministic. <—— von Neumann's "state of sin": we know that "deterministic" is incompatible with "random"
* It is not obvious how to distinguish the bits LFSRs produce from random,
* BUT experts have figured out how to do so.

Q. Are random processes found in nature?
« Motion of cosmic rays or subatomic particles?
» Mutations in DNA?

Q. Is the natural world a (not-so-simple) deterministic machine??

“God does not play dice.”

— Albert Einstein

47



COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming
in Java

1. Prologue:

A Simple Machine

http://introcs.cs.princeton.edu



