
COS 326

David Walker

Optional Reading:

“Beautiful Concurrency”,

“The Transactional Memory / Garbage Collection Analogy”

“A Tutorial on Parallel and Concurrent Programming in Haskell”

Thanks to Kathleen Fisher and recursively to

Simon Peyton Jones for much of the content of these slides.

Atomic blocks

Library
 Library
 Library

Library

Library

Library

Library

Hardware

Atomic blocks are
much easier to
use, and do
compose

Atomic blocks
are pieces of
code that you
can count on to
operate exactly
like sequential
programs

Tricky gaps, so a
little harder than
immutable data but
you can do more
stuff

action 1: action 2:

read x
write x
read x
write x

read x
write x
read x
write x

read x
write x
read x
write x

read x
write x
read x
write x

action 1: action 2:

with transactions:

or
read x
write x
read x
write x

read x
write x
read x
write x

read x
write x
read x
write x

read x
write x
read x
write x

Software Transactions:
A means to cut down program non-determinism

without atomic transactions:

read x

write x

read x

write x

read x

write x

read x

write x

main = do

 id <- fork action1
 action2
 ...

§  The fork function spawns a thread.

§  It takes an action as its argument.

fork :: IO a -> IO ThreadId

action 1 and
action 2 in
parallel

main = do
 id <- fork (atomic action1)
 atomic action2
 ...

§  Idea: add a function atomic that guarantees atomic
execution of a suspended (effectful) computation

action 1 and
action 2
atomic
and parallel

read x
write x
read x
write x

read x
write x
read x
write x

action 1: action 2:

with transactions:

or
read x
write x
read x
write x

read x
write x
read x
write x

read x
write x
read x
write x

read x
write x
read x
write x

main = do
 id <- fork (atomic action1)
 atomic action2
 ...

§  Introduce a type for imperative transaction variables
(TVar) and a new Monad (STM) to track transactions.

-  STM a == a computation producing a value with type a that

does transactional memory book keeping on the side

-  Haskell type system ensures TVars can only be modified in

transactions.

atomic :: STM a -> IO a
new :: a -> STM (TVar a)
read :: TVar a -> STM a
write :: TVar a -> a -> STM ()

TVar a == ‘a ref

Haskell OCaml

-- inc adds 1 to the mutable reference r

inc :: TVar Int -> STM ()

inc r = do

 v <- read r

 write r (v+1)

main = do

 r <- atomic (new 0)
 fork (atomic (inc r))
 atomic (inc r);

-- inc adds 1 to the mutable reference r

inc :: TVar Int -> STM ()

inc r = do

 v <- read r

 write r (v+1)

main = do

 r <- atomic (new 0)
 fork (atomic (inc r))
 atomic (inc r);

Haskell is lazy so these
computations are suspended
and executed within the atomic
block

The STM monad includes a specific set of operations:

§  Can’t use TVars outside atomic block

§  Can’t do IO inside atomic block:

§  atomic is a function, not a syntactic construct

-  called atomically in the actual implementation

§  ...and, best of all...

atomic :: STM a -> IO a
new :: a -> STM (TVar a)
read :: TVar a -> STM a
write :: TVar a -> a -> STM()

atomic (if x<y then launchMissiles)

The type guarantees that
an STM computation is
always executed
atomically.

-  Glue many STM
computations together
inside a “do” block

-  Then wrap with atomic to
produce an IO action.

inc r = do

 v <- read r
 write r (v+1)

inc2 r = do

 inc r

 inc r

foo = atomic (inc2 r)

Composition is THE way to build big programs that work

§  The STM monad supports exceptions:

���

§  In the call (atomic s), if s throws an exception, the
transaction is aborted with no effect and the
exception is propagated to the enclosing code.

§  No need to restore invariants, or release locks!

throw :: Exception -> STM a
catch :: STM a ->(Exception -> STM a) -> STM a

§  Worry: Could the system “thrash” by
continually colliding and re-executing?

§  No: A transaction can be forced to re-execute
only if another succeeds in committing. That
gives a strong progress guarantee.

§  But: A particular thread could starve:

Thread 1

Thread 2

Thread 3

§  retry means “abort the current transaction and re-
execute it from the beginning”.

§  Implementation avoids early retry using reads in the
transaction log (i.e. acc) to wait on all read variables.

-  ie: retry only happens when one of the variables read on the

path to the retry changes

withdraw :: TVar Int -> Int -> STM ()
withdraw acc n =

 do bal <- readTVar acc
 if bal < n then retry
 writeTVar acc (bal-n)

retry :: STM ()

§  Retrying thread is woken up automatically when acc is
written, so there is no danger of forgotten notifies.

§  No danger of forgetting to test conditions again when
woken up because the transaction runs from the
beginning.

§  Correct-by-construction design!

withdraw :: TVar Int -> Int -> STM ()
withdraw acc n =

 do { bal <- readTVar acc;
 if bal < n then retry;
 writeTVar acc (bal-n) }

§  retry can appear anywhere inside an atomic block,
including nested deep within a call. For example, ���

waits for:

§  a1 balance > 3

§  and a2 balance > 7

§  without any change to withdraw function.

atomic (do { withdraw a1 3;
 withdraw a2 7 })

§  Suppose we want to transfer 3 dollars from
either account a1 or a2 into account b.

orElse :: STM a -> STM a -> STM a

atomic (

 do
 (withdraw a1 3) `orElse` (withdraw a2 3)

 deposit b 3

)

Try this
 ...and if it retries, try
this

then afterward, do this

transfer ::
 TVar Int ->
 TVar Int ->
 TVar Int ->
 STM ()

transfer a1 a2 b =
 do
 withdraw a1 3 `orElse` withdraw a2 3
 deposit b 3

atomic (
 transfer a1 a2 b

 `orElse` transfer a3 a4 b
)

§  The function transfer calls orElse, but calls to
transfer can still be composed with orElse.

§  A transaction is a value of type STM a.

§  Transactions are first-class values.

§  Build a big transaction by composing little

transactions: in sequence, using orElse and
retry, inside procedures....

§  Finally seal up the transaction with���

 atomic :: STM a -> IO a

STM supports nice equations for reasoning:

a `orElse` (b `orElse` c) == (a `orElse` b) `orElse` s

retry `orElse` s == s

s `orElse` retry == s���

(These equations make STM an instance of a structure
known as a MonadPlus -- a Monad with some extra
operations and properties.)

The route to sanity is to establish invariants that
are assumed on entry, and guaranteed on exit, by
every atomic block.

-  just like in a module with representation invariants

-  this gives you local reasoning about your code

§  We want to check these guarantees. But we
don’t want to test every invariant after every
atomic block.

§  Hmm.... Only test when something read by the
invariant has changed.... rather like retry.

always :: STM Bool -> STM ()

newAccount :: STM (TVar Int)

newAccount =
 do { r <- new 0;
 always (accountInv r);
 return v }

accountInv r = do { x <- read r;
 return (x >= 0)};

An arbitrary boolean
valued STM computation

Any transaction that modifies the account will check the
invariant (no forgotten checks). If the check fails, the
transaction restarts. A persistent assert!!

always

§  The function always adds a new invariant to a global
pool of invariants.

§  Conceptually, every invariant is checked as every
transaction commits.

§  But the implementation checks only invariants that
read TVars that have been written by the transaction

§  ...and garbage collects invariants that are checking
dead Tvars.

always :: STM Bool -> STM ()

¡  Everything so far is intuitive and arm-wavey.

¡  But what happens if it’s raining, and you are inside an
orElse and you throw an exception that contains a
value that mentions...?

¡  We need a precise specification!

" No way to wait for complex conditions

One
exists

See “Composable Memory Transactions” for details.

Take COS 510 to understand what it means!

§  At first, atomic blocks look insanely expensive. ���
A naive implementation (c.f. databases):

-  Every load and store instruction logs information

into a thread-local log.

-  A store instruction writes the log only.

-  A load instruction consults the log first.

-  Validate the log at the end of the block.

ú  If succeeds, atomically commit to shared memory.

ú  If fails, restart the transaction.

No
rm

al
ise

d
ex

ec
ut

io
n

ti
m
e

Sequential
baseline (1.00x)

Coarse-grained
locking (1.13x)

Fine-grained
locking (2.57x)

Traditional STM
(5.69x)

Workload: operations on
a red-black tree,
1 thread, 6:1:1

lookup:insert:delete mix
with keys 0..65535

See “Optimizing Memory Transactions” for more information.

§  Direct-update STM

-  Allows transactions to make updates in place in the heap

-  Avoids reads needing to search the log to see earlier

writes that the transaction has made

-  Makes successful commit operations faster at the cost of

extra work on contention or when a transaction aborts

§  Compiler integration

-  Decompose transactional memory operations into
primitives

-  Expose these primitives to compiler optimization
(e.g. to hoist concurrency control operations out of a
loop)

§  Runtime system integration

-  Integrates transactions with the garbage collector to

scale to atomic blocks containing 100M memory accesses

No
rm

al
ise

d
ex

ec
ut

io
n

ti
m
e

Sequential
baseline (1.00x)

Coarse-grained
locking (1.13x)

Fine-grained
locking (2.57x)

Direct-update
STM (2.04x)

Direct-update STM +
compiler integration

(1.46x)

Traditional STM
(5.69x)

Scalable to multicore

Workload: operations on
a red-black tree,
1 thread, 6:1:1

lookup:insert:delete mix
with keys 0..65535

#threads

Fine-grained locking

Direct-update STM +
compiler integration

Traditional STM

Coarse-grained locking

M
ic
ro

se
co

nd
s

pe
r

op
er

at
io
n

¡  Naïve STM implementation is hopelessly inefficient.

¡  There is a lot of research going on in the compiler
and architecture communities to optimize STM.

¡  This work typically assumes transactions are smallish
and have low contention. If these assumptions are
wrong, performance can degrade drastically.

¡  We need more experience with “real” workloads and
various optimizations before we will be able to say
for sure that we can implement STM sufficiently
efficiently to be useful.

§  There are similar proposals for adding STM to
Java and other mainstream languages.

class Account {
 float balance;
 void deposit(float amt) {
 atomic { balance += amt; }
 }
 void withdraw(float amt) {
 atomic {
 if(balance < amt) throw new OutOfMoneyError();
 balance -= amt; }
 }
 void transfer(Acct other, float amt) {
 atomic { // Can compose withdraw and deposit.
 other.withdraw(amt);
 this.deposit(amt); }
 }
}

§  Unlike Haskell, type systems in mainstream
languages don’t control where effects occur.

§  What happens if code outside a transaction
conflicts with code inside a transaction?

-  Weak Atomicity: Non-transactional code can see

inconsistent memory states. Programmer should
avoid such situations by placing all accesses to
shared state in transaction.

-  Strong Atomicity: Non-transactional code is
guaranteed to see a consistent view of shared
state. This guarantee may cause a performance hit.

For more information: “Enforcing Isolation and Ordering in STM”

The essence of shared-memory concurrency is deciding
where critical sections should begin and end. This is still a
hard problem.

-  Too small: application-specific data races (Eg, may see deposit
but not withdraw if transfer is not atomic).

-  Too large: delay progress because deny other threads access to
needed resources.

In Haskell, we can compose STM subprograms but at some
point, we must decide to wrap an STM in "atomic"

-  When and where to do it can be a hard decision

Programs can still be non-deterministic and hard to debug

§  Consider the following program:

§  Successful completion requires A3 to run after A1
but before A2.

§  So deleting a critical section (by uncommenting
A0) changes the behavior of the program (from
terminating to non-terminating).

Thread 1
// atomic { //A0
 atomic { x = 1; } //A1
 atomic { if (y==0) abort; } //A2
//}

Thread 2
atomic { //A3
 if (x==0) abort;
 y = 1;
}

Initially, x = y = 0

§  Atomic blocks (atomic, retry, orElse) dramatically raise the level of
abstraction for concurrent programming.

-  Gives programmer back some control over when and where they have to

worry about interleavings

§  It is like using a high-level language instead of assembly code.
Whole classes of low-level errors are eliminated.

-  Correct-by-construction design

§  Not a silver bullet:

-  you can still write buggy programs;

-  concurrent programs are still harder than sequential ones

-  aimed only at shared memory concurrency, not message passing

§  There is a performance hit, but it is usually acceptable in Haskell
(and things can only get better as the research community focuses
on the question.)

val read_file : file_name -> string M

let concat f1 f2 =
 readfile f1 >>= (fun contents1 ->
 readfile f2 >>= (fun contents2 ->
 return (contents1 ^ contents2)
;;

do readfile f1
then do readfile f2
then do contents1 ^
 contents2

module type MONAD = sig
 type ‘a M
 return : ‘a -> ‘a M
 (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M
end

OCaml

foo : int -> int

Haskell function types are pure -- totally effect-free

Haskell’s type system forces* purity on
functions with type a -> b
•  no printing
•  no mutable data
•  no reading from files
•  no concurrency
•  no benign effects (like memoization)

* except for a function called unsafePerformIO

foo :: int -> int totally pure function

<code> :: IO int
suspended (lazy)
computation
that performs effects
when executed

foo :: int -> int totally pure function

<code> :: IO int
suspended (lazy)
computation
that performs effects
when executed

bar :: int -> IO int totally pure function
that returns suspended
effectful computation

foo :: int -> int totally pure function

<code> :: IO int

use monad operations to compose suspended computations

all effects in Haskell are treated as a kind of book keeping IO is the catch-all monad

suspended (lazy)
computation
that performs effects
when executed

bar :: int -> IO int totally pure function
that returns suspended
effectful computation

print :: string -> IO ()

reverse :: string -> string

reverse “hello” :: string

print (reverse “hello”) :: IO ()

the “IO monad”
-- contains effectful computations
like printing

the type system always tells you when an
effect has happened – effects can’t “escape” the I/O monad

read :: Ref a -> IO a

(+) :: int -> int -> int

r :: Ref int

(read r) + 3 :: int

Doesn’t type
check

read :: Ref a -> IO a

(+) :: int -> int -> int

r :: Ref int

(read r) >>= \x ->
x + 3 :: IO int

Use Bind to keep
the computation
in the monad!!

read :: Ref a -> IO a

(+) :: int -> int -> int

r :: Ref int

do
 x <- read r
 return (x + 3)

Prettier!!

Haskell uses new, read, and write* functions
within the IO Monad to manage mutable state.

main :: IO ()

main = do
 r <- new 0 -- int r := 0

 inc r -- r := r+1
 s <- read r -- s := r;
 print s

inc :: Ref Int -> IO ()
inc r = do

 v <- read r -- temp = r
 write r (v+1) -- r = temp+1

new :: a -> IO (Ref a)
read :: Ref a -> IO a
write :: Ref a -> a -> IO ()

* actually newRef, readRef, writeRef, …

val read_file : file_name -> string M

let concat f1 f2 =
 readfile f1 >>= (fun contents1 ->
 readfile f2 >>= (fun contents2 ->
 return (contents1 ^ contents2)
;;

do readfile f1
then do readfile f2
then do contents1 ^
 contents2

concat :: filename -> filename -> Maybe string

concat y z =
 do
 contents1 <- readfile f1
 contents2 <- readfile f2
 return (contents1 ^ contents2)
 .

module type MONAD = sig
 type ‘a M
 return : ‘a -> ‘a M
 (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M
end

the kind of monad is
controlled by the type
Maybe == option

syntax is pretty!
Compiler automatically
translates in to something
very similar to the OCaml

OCaml

Haskell

keyword do begins
monadic block of code!

Haskell is already using monads to implement state

It’s type system controls where mutation can occur

So now, software transactional memory is just a
slightly more sophisticated version of Haskell’s
existing IO monad.

Check out James Iry blog:

-  http://james-iry.blogspot.com/2007/09/monads-are-

elephants-part-1.html + 3 more parts

-  he’s a hacker and he’s using equational reasoning to

explain monads!

Main thing to remember:

-  bind is called “flatmap” in Scala

-  return is called “unit” in Scala

-  do notation in Haskell is similar to for notation in Scala

 for (x <- monad) yield result

== monad >>= (fun x -> return result)
== map (fun x -> result) monad

PPS: Check out monads in Python via generators:
http://www.valuedlessons.com/2008/01/monads-in-python-with-nice-syntax.html

¡  In languages like ML or Java, the fact that the language is in the
IO monad is baked in to the language. There is no need to mark
anything in the type system because IO is everywhere.

¡  In Haskell, the programmer can choose when to live in the IO
monad and when to live in the realm of pure functional
programming.

-  Counter-point: We have shown that it is useful to be able to

build pure abstractions using imperative infrastructure (eg:
laziness, futures, parallel sequences, memoization). You can’t do
that in Haskell (without escaping the type system via unsafeI0)

¡  Interesting perspective: It is not Haskell that lacks imperative
features, but rather the other languages that lack the ability to
have a statically distinguishable pure subset.

¡  At any rate, a checked pure-impure separation facilitates
concurrent programming.

Arbitrary effects

No effects

Safe

Useful

Useless

Dangerous

Arbitrary effects

No effects

Useful

Useless

Dangerous
 Safe

Nirvana

Plan A ���
(everyone else)

Plan B ���
(Haskell)

Examples

¡  Regions

¡  Ownership types

¡  Vault, Spec#, Cyclone

Arbitrary effects

Default = Any effect ���
Plan = Add restrictions

Two main approaches:

¡  Domain specific languages

(SQL, Xquery, Google
map/reduce)

¡  Wide-spectrum functional
languages + controlled
effects (e.g. Haskell)

Value oriented
programming

Types play a major role

Default = No effects���
Plan = Selectively permit effects

Arbitrary effects

No effects

Useful

Useless

Dangerous
 Safe

Nirvana

Plan A ���
(everyone else)

Plan B ���
(Haskell)

Envy

Arbitrary effects

No effects

Useful

Useless

Dangerous
 Safe

Nirvana

Plan A ���
(everyone else)

Plan B ���
(Haskell)

Ideas; e.g. Software
Transactional Memory
(retry, orElse)

One of Haskell’s most significant
contributions is to take purity seriously,
and relentlessly pursue Plan B.

Imperative languages will embody growing
(and checkable) pure subsets.

-- Simon Peyton Jones

Take home message: Haskell is cool. Check it out.

