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Optional Reading: 

“Beautiful Concurrency”, 

“The Transactional Memory / Garbage Collection Analogy”

“A Tutorial on Parallel and Concurrent Programming in Haskell”


Thanks to Kathleen Fisher and recursively to

Simon Peyton Jones for much of the content of these slides. 
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Atomic blocks are 
much easier to 
use, and do 
compose


Atomic blocks 
are pieces of 
code that you 
can count on to 
operate exactly 
like sequential 
programs


Tricky gaps, so a 
little harder than 
immutable data but 
you can do more 
stuff
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Software Transactions:  
A means to cut down program non-determinism  

without atomic transactions: 

read x 
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main = do  

          id <- fork action1 
  action2 
  ... 

 

§  The fork function spawns a thread.

§  It takes an action as its argument.




fork :: IO a -> IO ThreadId 

action 1 and 
action 2 in 
parallel 



main = do 
 id <- fork (atomic action1) 
 atomic action2 
 ... 

§  Idea: add a function atomic that guarantees atomic 
execution of a suspended (effectful) computation


action 1 and 
action 2  
atomic 
and parallel 
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action 1: action 2: 

with transactions: 

or 
read x 
write x 
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read x 
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main = do 
 id <- fork (atomic action1) 
 atomic action2 
 ... 



§  Introduce a type for imperative transaction variables 
(TVar) and a new Monad (STM) to track transactions.

-  STM a   ==  a computation producing a value with type a that 

does transactional memory book keeping on the side

-  Haskell type system ensures TVars can only be modified in 

transactions. 





atomic    :: STM a -> IO a           
new       :: a -> STM (TVar a) 
read      :: TVar a -> STM a 
write     :: TVar a -> a -> STM () 

TVar a      ==    ‘a ref 

Haskell OCaml 



-- inc adds 1 to the mutable reference r 

inc :: TVar Int -> STM () 

 
inc r = do  

           v <- read r 

           write r (v+1)  

 

main  = do  

           r <- atomic (new 0) 
 fork (atomic (inc r)) 
 atomic (inc r); 

            



-- inc adds 1 to the mutable reference r 

inc :: TVar Int -> STM () 

 
inc r = do  

           v <- read r 

           write r (v+1)  

 

main  = do  

           r <- atomic (new 0) 
 fork (atomic (inc r)) 
 atomic (inc r); 

            

Haskell is lazy so these 
computations are suspended 
and executed within the atomic 
block 



The STM monad includes a specific set of operations:

§  Can’t use TVars outside atomic block                   

§  Can’t do IO inside atomic block:  


§  atomic is a function, not a syntactic construct

-  called atomically in the actual implementation


§  ...and, best of all... 


atomic    :: STM a -> IO a 
new       :: a -> STM (TVar a) 
read      :: TVar a -> STM a 
write     :: TVar a -> a -> STM() 

atomic (if x<y then launchMissiles) 



The type guarantees that 
an STM computation is 
always executed 
atomically.  


-  Glue many STM 
computations together 
inside a “do” block


-  Then wrap with atomic to 
produce an IO action.


inc r = do  

   v <- read r                 
   write r (v+1)  

 
inc2 r = do  

           inc r 

           inc r  

 
foo = atomic (inc2 r) 

Composition is THE way to build big programs that work 



§  The STM monad supports exceptions:

���





§  In the call (atomic s), if s throws an exception, the 
transaction is aborted with no effect and the 
exception is propagated to the enclosing code.


§  No need to restore invariants, or release locks!


throw :: Exception -> STM a 
catch :: STM a ->(Exception -> STM a) -> STM a 



§  Worry: Could the system “thrash” by 
continually colliding and re-executing?


§  No: A transaction can be forced to re-execute 
only if another succeeds in committing.  That 
gives a strong progress guarantee.


§  But: A particular thread could starve:


Thread 1


Thread 2

Thread 3






§  retry means “abort the current transaction and re-
execute it from the beginning”.


§  Implementation avoids early retry using reads in the 
transaction log (i.e. acc) to wait on all read variables.

-  ie: retry only happens when one of the variables read on the 

path to the retry changes


withdraw :: TVar Int -> Int -> STM () 
withdraw acc n = 

   do bal <- readTVar acc 
      if bal < n then retry 
      writeTVar acc (bal-n) 

retry :: STM () 



§  Retrying thread is woken up automatically when acc is 
written, so there is no danger of forgotten notifies.


§  No danger of forgetting to test conditions again when 
woken up because the transaction runs from the 
beginning.  


§  Correct-by-construction design!


withdraw :: TVar Int -> Int -> STM () 
withdraw acc n = 

         do { bal <- readTVar acc; 
              if bal < n then retry; 
              writeTVar acc (bal-n) } 



§  retry can appear anywhere inside an atomic block, 
including nested deep within a call.  For example, ���






waits for: 

§  a1 balance > 3 

§  and a2 balance > 7

§  without any change to withdraw function.




atomic (do { withdraw a1 3; 
             withdraw a2 7 }) 



§  Suppose we want to transfer 3 dollars from 
either account a1 or a2 into account b.


orElse :: STM a -> STM a -> STM a 

atomic ( 

  do 
   (withdraw a1 3) `orElse` (withdraw a2 3) 

       deposit b 3  

) 

Try this
 ...and if it retries, try 
this


then afterward, do this




transfer :: 
 TVar Int ->  
 TVar Int ->  
 TVar Int ->                 
 STM () 

 
transfer a1 a2 b =  
  do 
    withdraw a1 3 `orElse` withdraw a2 3 
    deposit b 3  

atomic ( 
  transfer a1 a2 b 

 `orElse` transfer a3 a4 b 
) 

§  The function transfer calls orElse, but calls to 
transfer can still be composed with orElse.




§  A transaction is a value of type STM a.

§  Transactions are first-class values.

§  Build a big transaction by composing little 

transactions: in sequence, using orElse and 
retry, inside procedures....


§  Finally seal up the transaction with���

      atomic :: STM a -> IO a




STM supports nice equations for reasoning:




a `orElse` (b `orElse` c) == (a `orElse` b) `orElse` s

retry `orElse` s == s


s `orElse` retry == s���





(These equations make STM an instance of a structure 
known as a MonadPlus -- a Monad with some extra 
operations and properties.)




The route to sanity is to establish invariants that 
are assumed on entry, and guaranteed on exit, by 
every atomic block.

-  just like in a module with representation invariants

-  this gives you local reasoning about your code


§  We want to check these guarantees. But we 
don’t want to test every invariant after every 
atomic block.


§  Hmm.... Only test when something read by the 
invariant has changed.... rather like retry.




always :: STM Bool -> STM () 

newAccount :: STM (TVar Int) 

newAccount =                              
 do { r <- new 0;                             
      always (accountInv r); 
       return v } 

 
accountInv r = do { x <- read r;                       
         return (x >= 0)};  

An arbitrary boolean 
valued STM computation


Any transaction that modifies the account will check the 
invariant (no forgotten checks). If the check fails, the 
transaction restarts.  A persistent assert!!




always 

§  The function always adds a new invariant to a global 
pool of invariants.


§  Conceptually, every invariant is checked as every 
transaction commits.


§  But the implementation checks only invariants that 
read TVars that have been written by the transaction


§  ...and garbage collects invariants that are checking 
dead Tvars.


always :: STM Bool -> STM () 



¡  Everything so far is intuitive and arm-wavey.


¡  But what happens if it’s raining, and you are inside an 
orElse and you throw an exception that contains a 
value that mentions...?


¡  We need a precise specification!




" No way to wait for complex conditions


One 
exists


See “Composable Memory Transactions” for details.


Take COS 510 to understand what it means!






§  At first, atomic blocks look insanely expensive. ���
A naive implementation (c.f. databases):

-  Every load and store instruction logs information 

into a thread-local log.

-  A store instruction writes the log only.

-  A load instruction consults the log first.

-  Validate the log at the end of the block.


ú  If succeeds, atomically commit to shared memory.

ú  If fails, restart the transaction.
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Sequential 
baseline (1.00x)


Coarse-grained 
locking (1.13x)


Fine-grained 
locking (2.57x)


Traditional STM 
(5.69x)


Workload: operations on 
a red-black tree,         
1 thread, 6:1:1 

lookup:insert:delete mix 
with keys 0..65535


See “Optimizing Memory Transactions” for more information.




§  Direct-update STM

-  Allows transactions to make updates in place in the heap

-  Avoids reads needing to search the log to see earlier 

writes that the transaction has made

-  Makes successful commit operations faster at the cost of 

extra work on contention or when a transaction aborts

§  Compiler integration


-  Decompose transactional memory operations into 
primitives


-  Expose these primitives to compiler optimization                 
(e.g. to hoist concurrency control operations out of a 
loop)


§  Runtime system integration 

-  Integrates transactions with the garbage collector to 

scale to atomic blocks containing 100M memory accesses
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baseline (1.00x)


Coarse-grained 
locking (1.13x)


Fine-grained 
locking (2.57x)


Direct-update 
STM (2.04x)


Direct-update STM + 
compiler integration 

(1.46x)


Traditional STM 
(5.69x)


Scalable to multicore


Workload: operations on 
a red-black tree,         
1 thread, 6:1:1 

lookup:insert:delete mix 
with keys 0..65535




#threads


Fine-grained locking


Direct-update STM + 
compiler integration


Traditional STM


Coarse-grained locking


M
ic
ro

se
co

nd
s 

pe
r 

op
er

at
io
n




¡  Naïve STM implementation is hopelessly inefficient.


¡  There is a lot of research going on in the compiler 
and architecture communities to optimize STM.


¡  This work typically assumes transactions are smallish 
and have low contention.  If these assumptions are 
wrong, performance can degrade drastically.


¡  We need more experience with “real” workloads and 
various optimizations before we will be able to say 
for sure that we can implement STM sufficiently 
efficiently to be useful.






§  There are similar proposals for adding STM to 
Java and other mainstream languages.


class Account {  
  float balance;  
  void deposit(float amt) {  
    atomic { balance += amt; }  
  }  
  void withdraw(float amt) {  
    atomic {  
      if(balance < amt) throw new OutOfMoneyError();  
      balance -= amt;  } 
  } 
  void transfer(Acct other, float amt) {  
    atomic {  // Can compose withdraw and deposit. 
      other.withdraw(amt); 
      this.deposit(amt); } 
  } 
} 



§  Unlike Haskell, type systems in mainstream 
languages don’t control where effects occur.


§  What happens if code outside a transaction 
conflicts with code inside a transaction?

-  Weak Atomicity: Non-transactional code can see 

inconsistent memory states. Programmer should 
avoid such situations by placing all accesses to 
shared state in transaction.


-  Strong Atomicity: Non-transactional code is 
guaranteed to see a consistent view of shared 
state.  This guarantee may cause a performance hit.


For more information: “Enforcing Isolation and Ordering in STM”




The essence of shared-memory concurrency is deciding 
where critical sections should begin and end.  This is still a 
hard problem.


-  Too small: application-specific data races (Eg, may see deposit 
but not withdraw if transfer is not atomic).


-  Too large: delay progress because deny other threads access to 
needed resources.




In Haskell, we can compose STM subprograms but at some 
point, we must decide to wrap an STM in "atomic"


-  When and where to do it can be a hard decision


Programs can still be non-deterministic and hard to debug




§  Consider the following program:


§  Successful completion requires A3 to run after A1 
but before A2.  


§  So deleting a critical section (by uncommenting 
A0) changes the behavior of the program (from 
terminating to non-terminating).


Thread 1  
// atomic {                      //A0 
     atomic { x = 1; }           //A1 
     atomic { if (y==0) abort; } //A2 
//}  

Thread 2  
atomic {      //A3 
  if (x==0) abort;  
  y = 1;  
} 

Initially, x = y = 0  



§  Atomic blocks (atomic, retry, orElse) dramatically raise the level of 
abstraction for concurrent programming.

-  Gives programmer back some control over when and where they have to 

worry about interleavings


§  It is like using a high-level language instead of assembly code. 
Whole classes of low-level errors are eliminated.

-  Correct-by-construction design


§  Not a silver bullet: 

-  you can still write buggy programs; 

-  concurrent programs are still harder than sequential ones

-  aimed only at shared memory concurrency, not message passing


§  There is a performance hit, but it is usually acceptable in Haskell 
(and things can only get better as the research community focuses 
on the question.)






val read_file : file_name -> string M 
 
let concat f1 f2 = 
  readfile f1  >>= (fun contents1 -> 
  readfile f2  >>= (fun contents2 -> 
  return (contents1 ^ contents2) 
;; 

do     readfile f1    
then do  readfile f2 
then do  contents1 ^ 
                  contents2  

module type MONAD = sig 
  type ‘a M 
  return : ‘a -> ‘a M 
  (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M 
end 

OCaml 



foo : int -> int 

Haskell function types are pure -- totally effect-free 

Haskell’s type system forces* purity on  
functions with type a -> b 
•  no printing 
•  no mutable data 
•  no reading from files 
•  no concurrency 
•  no benign effects (like memoization) 

* except for a function called unsafePerformIO 



foo :: int -> int totally pure function 

<code> :: IO int 
suspended (lazy) 
computation 
that performs effects 
when executed 



foo :: int -> int totally pure function 

<code> :: IO int 
suspended (lazy) 
computation 
that performs effects 
when executed 

bar :: int -> IO int totally pure function 
that returns suspended 
effectful computation 



foo :: int -> int totally pure function 

<code> :: IO int 

use monad operations to compose suspended computations  

all effects in Haskell are treated as a kind of book keeping IO is the catch-all monad 

suspended (lazy) 
computation 
that performs effects 
when executed 

bar :: int -> IO int totally pure function 
that returns suspended 
effectful computation 



print :: string -> IO ()  

reverse :: string -> string 

reverse “hello” :: string 

print (reverse “hello”) :: IO () 

the “IO monad” 
-- contains effectful computations 
like printing 

the type system always tells you when an 
effect has happened – effects can’t “escape” the I/O monad 



read ::  Ref a -> IO a 

(+) :: int -> int -> int 

r :: Ref int 

(read r) + 3  :: int 

Doesn’t type 
check 



read ::  Ref a -> IO a 

(+) :: int -> int -> int 

r :: Ref int 

(read r) >>= \x ->  
x + 3  :: IO int 

Use Bind to keep 
the computation 
in the monad!! 



read ::  Ref a -> IO a 

(+) :: int -> int -> int 

r :: Ref int 

do  
    x <- read r  
    return (x + 3)  

Prettier!! 



Haskell uses new, read, and write* functions 
within the IO Monad to manage mutable state.


main :: IO () 

main = do  
   r <- new 0         -- int r := 0 

 inc r             -- r := r+1 
 s <- read r       -- s := r; 
 print s  

 
inc :: Ref Int -> IO () 
inc r = do  

 v <- read r        -- temp = r 
 write r (v+1)      -- r = temp+1 

new   :: a -> IO (Ref a) 
read  :: Ref a -> IO a 
write :: Ref a -> a -> IO () 

* actually newRef, readRef, writeRef, … 



val read_file : file_name -> string M 
 
let concat f1 f2 = 
  readfile f1  >>= (fun contents1 -> 
  readfile f2  >>= (fun contents2 -> 
  return (contents1 ^ contents2) 
;; 

do     readfile f1    
then do  readfile f2 
then do  contents1 ^ 
                  contents2  

concat :: filename -> filename -> Maybe string 
 
concat y z = 
  do  
      contents1 <- readfile f1 
      contents2 <- readfile f2 
      return (contents1 ^ contents2) 
      . 

module type MONAD = sig 
  type ‘a M 
  return : ‘a -> ‘a M 
  (>>=) : ‘a M -> (‘a -> ‘b M) -> ‘b M 
end 

the kind of monad is 
controlled by the type 
Maybe == option 

syntax is pretty! 
Compiler automatically 
translates in to something 
very similar to the OCaml 

OCaml 

Haskell 

keyword do begins 
monadic block of code! 



Haskell is already using monads to implement state



It’s type system controls where mutation can occur



So now, software transactional memory is just a 
slightly more sophisticated version of Haskell’s 
existing IO monad.




Check out James Iry blog:

-  http://james-iry.blogspot.com/2007/09/monads-are-

elephants-part-1.html + 3 more parts

-  he’s a hacker and he’s using equational reasoning to 

explain monads!

Main thing to remember:


-  bind is called “flatmap” in Scala

-  return is called “unit” in Scala

-  do notation in Haskell is similar to for notation in Scala


 for (x <- monad) yield result 

== monad >>= (fun x -> return result) 
== map (fun x -> result) monad 

PPS:  Check out monads in Python via generators:   
http://www.valuedlessons.com/2008/01/monads-in-python-with-nice-syntax.html  



¡  In languages like ML or Java, the fact that the language is in the 
IO monad is baked in to the language.  There is no need to mark 
anything in the type system because IO is everywhere.  


¡  In Haskell, the programmer can choose when to live in the IO 
monad and when to live in the realm of pure functional 
programming.

-  Counter-point:  We have shown that it is useful to be able to 

build pure abstractions using imperative infrastructure (eg:  
laziness, futures, parallel sequences, memoization).  You can’t do 
that in Haskell (without escaping the type system via unsafeI0)


¡  Interesting perspective: It is not Haskell that lacks imperative 
features, but rather the other languages that lack the ability to 
have a statically distinguishable pure subset.


¡  At any rate, a checked pure-impure separation facilitates 
concurrent programming.




Arbitrary effects


No effects


Safe


Useful


Useless


Dangerous




Arbitrary effects


No effects


Useful


Useless


Dangerous
 Safe


Nirvana


Plan A ���
(everyone else)


Plan B ���
(Haskell)




Examples


¡  Regions


¡  Ownership types


¡  Vault, Spec#, Cyclone


Arbitrary effects


Default = Any effect ���
Plan = Add restrictions




Two main approaches:

¡  Domain specific languages 

(SQL, Xquery, Google 
map/reduce)


¡  Wide-spectrum functional 
languages + controlled 
effects (e.g. Haskell)


Value oriented 
programming


Types play a major role


Default = No effects���
Plan = Selectively permit effects




Arbitrary effects


No effects


Useful


Useless


Dangerous
 Safe


Nirvana


Plan A ���
(everyone else)


Plan B ���
(Haskell)


Envy




Arbitrary effects


No effects


Useful


Useless


Dangerous
 Safe


Nirvana


Plan A ���
(everyone else)


Plan B ���
(Haskell)


Ideas; e.g. Software 
Transactional Memory 
(retry, orElse)




One of Haskell’s most significant 
contributions is to take purity seriously, 
and relentlessly pursue Plan B.  



Imperative languages will embody growing 
(and checkable) pure subsets.





 
 
-- Simon Peyton Jones


Take home message:  Haskell is cool.  Check it out. 




