O’Caml Basics: Unit and Options

COS 326
David Walker
Princeton University

Tuples

 Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Tuples

 Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

 Here's a tuple with 3 fields:

(4.0, 5, "hello") : float * int * string

Tuples

 Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

 Here's a tuple with 3 fields:

(4.0, 5, "hello") : float * int * string

 Here's a tuple with 4 fields:

(4.0, 5, "hello", 55) : float * int * string * int

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:
(4.0, 5, "hello") : float * int * string
Here's a tuple with 4 fields:
(4.0, 5, "hello", 55) : float * int * string * int

Have you ever thought about what a tuple with O fields might
look like?

Unit

* Unitis the tuple with zero fields!

() : unit

‘\

* the unit value is written with an pair of parens
* there are no other values with this type!

Unit

* Unitis the tuple with zero fields!

() : unit

\

* the unit value is written with an pair of parens
* there are no other values with this type!

* Why is the unit type and value useful?
* Every expression has a type:

(print_string "hello world\n") : ???

Unit

* Unitis the tuple with zero fields!

() : unit

\

* the unit value is written with an pair of parens
* there are no other values with this type!

* Why is the unit type and value useful?
* Every expression has a type:

(print_string "hello world\n") : unit

* Expressions executed for their effect return the unit value

Writing Functions Over Typed Data

* Steps to writing functions over typed data:
Write down the function and argument names
Write down argument and result types

Write down some examples (in a comment)
Deconstruct input data structures

Build new output values

U A T o

Clean up by identifying repeated patterns

* For unit type:

— when the input has type unit
e uselet()=...in... to deconstruct
* or better use el; ... to deconstruct if el has type unit
e or do nothing ... because unit carries no information of value

— when the output has type unit
e use () to construct

OUR THIRD DATA STRUCTURE!
THE OPTION

Options

A value v has type t option if it is either:
— the value None, or
— avalue Some v', and v' has type t

Options can signal there is no useful result to the computation

Example: we look up a value in a hash table using a key.
— If the key is present, return Some v where v is the associated value
— If the key is not present, we return None

[Slope between two points

(x1, y1)

type point = float * float

let slope (pl:point) (p2:point) : float =

[Slope between two points

(x1, y1)

type point = float * float

let slope (pl:point) (p2:point) : float =
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in

\\

deconstruct tuple

[Slope between two points

(x1, y1)

type point = float * float

let slope (pl:point) (p2:point) : float =
let (x1,yl) = pl in
let (x2,vy2) = p2 in
let xd = x2 -. x1 1in
1if xd !'= 0.0 then €\\\\\\\\\\\\\\\
els(z2 I avoid divide by zero

N
25 \

what can we return?

Slope between two points

(x1, y1)

type point = float * float (x2, y2)
let slope (pl:point) (p2:point) : float option =
let (x1,yl) = pl in
let (x2,vy2) = p2 in
let xd = x2 -. x1 1in
1if xd !'= 0.0 then
227
N we need an option
555 type as the result type

Slope between two points

(x1, y1)

type point = float * float (x2, y2)
let slope (pl:point) (p2:point) : float option =
let (x1,yl) = pl in
let (x2,vy2) = p2 in
let xd = x2 -. x1 1in
1f xd !'= 0.0 then
Some ((y2 -. yl) /. xd)
else
None

Slope between two points

(x1, y1)

type point = float * float (x2, y2)

let slope (pl:point) (p2:point) : float option =
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
let xd = x2 -. x1 1n
1if xd !'= 0.0 then
(yz -. yl) /. xd,
else Y‘\\\\\\\\\\\\
5 \NO“EZ\\\\\\ Has type float

Can have type float option

Slope between two points

(x1, y1)

type point = float * float (x2,y2)
let slope (pl:point) (p2:point) : float option =

let (x1,yl) = pl 1in

let (x2,y2) = p2 1in

let xd = x2 -. x1 1in

1if xd !'= 0.0 then

(y2 -. yl) /. xd

else Y‘\\\\\\\\\\\\

5 \NO“EZ\\\\\\ Has type float
AONG: Type mismatch

Can have type float option

Slope between two points

(x1, y1)

(x2, y2)

type point = float * float
let slope (pl:point) (p2:point)
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
let xd = x2 -. x1 1n
1if xd !'= 0.0 then
(y2 -. yl) /. xd
else Y‘\\\\\\\\\\\\
None

Has type float

float option

doubly WRONG:
result does not
match declared result

Remember the typing rule for if

if el : bool
and e2 :tand e3 : t (for some type t)
then if el thene2elsee3:t

 Returning an optional value from an if statement:

if ... then

None : t option
else

Some (...) : t option

How do we use an option?

slope

: point -> point -> float option

returns a float option

How do we use an option?

slope : point -> point -> float option

let print slope

(pl:point)

(p2:point)

: unit

How do we use an option?

slope : point -> point -> float option

let print slope (pl:point) (p2:point) : unit =
slope pl pZ2

;s \

returns a float option;
to print we must discover if it is
None or Some

How do we use an option?

slope : point -> point -> float option

let print slope (pl:point)
match slope pl p2 with

(p2:point)

unit

How do we use an option?

slope : point -> point -> float option

let print slope (pl:point) (p2:point) : unit =
match slope pl p2 with
some s —>
| None ->

There are two possibilities

\

Vertical bar separates possibilities

How do we use an option?

slope : point -> point -> float option

let print slope (pl:point) (p2:point) : unit =
match slope pl p2 with

Ssome s =>
| None ->
rr

The "Some s" pattern includes the variable s

The object between | and -> is called a pattern

How do we use an option?

slope : point -> point -> float option

let print slope (pl:point) (p2:point) : unit =
match slope pl p2 with
some s —>
print string ("Slope: "
| None ->
print string "Vertical line.\n"

AN

string of float s)

Writing Functions Over Typed Data

e Steps to writing functions over typed data:
Write down the function and argument names
Write down argument and result types

Write down some examples (in a comment)
Deconstruct input data structures

Build new output values

U A T o

Clean up by identifying repeated patterns
* For option types:

when the input has type t option, when the output has type t option,
deconstruct with: construct with:

match .. with
| None -> .. some (...) None
| Some s -> ..

MORE PATTERN MATCHING

Recall the Distance Function

type point = float * float

let distance (pl:point) (pZ2:point) : float =
let square x = X *. X 1n
let (x1,yl) = pl in
let (x2,y2) = p2 1in

sgqrt (square (x2 -. x1) +. square (y2 —-. yl))

e o
r 7

Recall the Distance Function

type point = float * float
let distance (pl:point) (p2:point) float =
let square x X *. X 1n
let (x1,yl) = pl 1n
let (x2,y2) = p2 1in
sgqrt/ (square (x2 -. x1) +. square (y2 —-. yl))

e o
r 7

/

(x2, y2) is an example of a pattern — a pattern for tuples.

So let declarations can contain patterns just like match statements

The difference is that a match allows you to consider multiple different data shapes

Recall the Distance Function

type point = float * float

let distance (pl:point) (pZ2:point) : float =
let square x = X *. X 1n
match pl with
| (x1,yl) ->
let (x2,y2) = p2 in
sgrt (square (x2 -. x1) +. square (y2 -. vyl))

There is only 1 possibility when matching a pair

Recall the Distance Function

type point = float * float

let distance (pl:point) (pZ2:point) : float =
let square x = x *. X 1n
match pl with
| (x1,yl) ->
match p2 with
| (x2,y2) ->
l/ sgqrt (square (x2 -. xl1l) +. square (y2 -. yl))

/

We can nest one match expression inside another.
(We can nest any expression inside any other, if the expressions have the
right types)

Better Style: Complex Patterns

we built a pair of pairs

type point = float * float
let distance (pl:pgint) (p2:point) : float =
let square x = *., X 1n
match (pl, p2) with
| ((x1,y1), (x2, y2)) ->
sgrt (square (x2 -. x1) +. square (y2 -. vyl))

/

Pattern for a pair of pairs: ((variable, variable), (variable, variable))
All the variable names in the pattern must be different.

Better Style: Complex Patterns

we built a pair of pairs

type point = float * float

let distance (pl:pgint) (pZ2:point) : float =
let square x = . X 1n
match (pl, p2) with
| (p3, pd) ->
let (x1, yl) = p3 1in
let (x2, y2) = p4 1in
sgrt (square (x2 -. x1) +. square (y2 -. yl))

e o
r 7

/

A pattern must be consistent with the type of the expression
in between match ... with
We use (p3, p4) here instead of ((x1, y1), (x2, y2))

| like the original the best

type point = float * float

let distance (pl:point) (pZ2:point) : float =

let square x = xXx *. X 1n

let (x1,yl) = pl 1in

let (x2,y2) = p2 1in

sgrt (square (x2 -. x1) +. square (y2 -. vyl))

e o
r 7

It is the clearest and most compact.
Code with unnecessary nested patterns matching is particularly ugly to read.

You'll be judged on code style in this class.

Combining patterns

type point = float * float

(* returns a nearby point in the graph 1f one exists *)
nearby : graph -> point -> point option

let printer (g:graph) (p:point) : unit =
match nearby g p with
| None -> print string "could not find one\n"
| Some (x,y) —->
print float x;
print string ", ";
print float y;
print newline();

Other Patterns

 Constant values can be used as patterns

let small prime (n:int)

match n with
| 2 -> true
| 3 => true
| 5 => true
| -> false

rs I\

bool =

the underscore pattern
matches anything
itis the "don't care" pattern

let iffy (b:bool)
match b with
| true -> 0
| false -> 1

int

OVERALL SUMMARY:
A SHORT INTRODUCTION TO
FUNCTIONAL PROGRAMMING

Functional Programming

Steps to writing functions over typed data:
Write down the function and argument names

2. Write down argument and result types
3. Write down some examples
4. Deconstruct input data structures

 the argument types suggest how you do it
 the types tell you which cases you must cover
5. Build new output values
* the result type suggests how you do it
6. Clean up by identifying repeated patterns
 define and reuse helper functions

 refactor code to use your helpers
 your code should be elegant and easy to read

[Summary: Constructing/Deconstructing Values]

Construct Values Number of Cases Deconstruct Values

0,-1,2,. 2731-1 match i with
| 0-> ...
| -1-> ...

| x> ...

bool true, false 2 match b with
| true -> ...
| false -> ...

t1*t2 (2, "hi") (# of t1) * (# of t2) let (x,y) =

match p with (x,y) -> ...

unit () 1 el; ...
t option None, Some 3 1+ (# of t1) match opt with
| None -> ...

| Some x -> ...

END

