
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

2.2 MERGESORT

‣ mergesort

‣ bottom-up mergesort

‣ sorting complexity

‣ comparators

‣ stability

2

Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

・Full scientific understanding of their properties has enabled us

to develop them into practical system sorts.

・Quicksort honored as one of top 10 algorithms of 20th century

in science and engineering.

Mergesort. [this lecture]

・Java sort for objects.

・Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...

Quicksort. [next lecture]

・Java sort for primitive types.

・C qsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ mergesort

‣ bottom-up mergesort

‣ sorting complexity

‣ comparators

‣ stability

2.2 MERGESORT

Basic plan.

・Divide array into two halves.

・Recursively sort each half.

・Merge two halves.

4

Mergesort

M E R G E S O R T E X A M P L E

E E G M O R R S T E X A M P L E

E E G M O R R S A E E L M P T X

A E E E E G L M M O P R R S T X

input

sort left half

sort right half

merge results

Mergesort overview

5

Abstract in-place merge demo

E E G M R A C E R T

lo mid mid+1 hi

a[]

sorted sorted

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

6

Abstract in-place merge demo

A C E E E G M R R Ta[]

sorted

lo hi

Goal. Given two sorted subarrays a[lo] to a[mid] and a[mid+1] to a[hi],

replace with sorted subarray a[lo] to a[hi].

7

Merging: Java implementation

A G L O R H I M S T

A G H I L M

i j

k

lo himid

aux[]

a[]

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
 assert isSorted(a, lo, mid); // precondition: a[lo..mid] sorted
 assert isSorted(a, mid+1, hi); // precondition: a[mid+1..hi] sorted

for (int k = lo; k <= hi; k++)
aux[k] = a[k];

int i = lo, j = mid + 1;
for (int k = lo; k <= hi; k++)
{

if (i > mid) { a[k] = aux[j]; j++ }
else if (j > hi) { a[k] = aux[i]; i++ }
else if less(aux[j], aux[i]) { a[k] = aux[j]; j++ }
else { a[k] = aux[i]; i++ }

}

 assert isSorted(a, lo, hi); // postcondition: a[lo..hi] sorted
}

copy

merge

Assertion. Statement to test assumptions about your program.

・Helps detect logic bugs.

・Documents code.

Java assert statement. Throws exception unless boolean condition is true.

Can enable or disable at runtime. ⇒ No cost in production code.

Best practices. Use assertions to check internal invariants;

assume assertions will be disabled in production code.

8

Assertions

assert isSorted(a, lo, hi);

java -ea MyProgram // enable assertions
java -da MyProgram // disable assertions (default)

do not use for external

argument checking

9

Mergesort: Java implementation

lo mid hi

10 11 12 13 14 15 16 17 18 19

public class Merge
{
 private static void merge(...)
 { /* as before */ }

 private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
 {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, aux, lo, mid);
 sort(a, aux, mid+1, hi);
 merge(a, aux, lo, mid, hi);
 }

 public static void sort(Comparable[] a)
 {
 aux = new Comparable[a.length];
 sort(a, aux, 0, a.length - 1);
 }
}

10

Mergesort: trace

result after recursive call

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, aux, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, aux, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, aux, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, aux, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, aux, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, aux, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, aux, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

Mergesort: animation

11

http://www.sorting-algorithms.com/merge-sort

50 random items

in order

current subarray

algorithm position

not in order

Mergesort: animation

12

http://www.sorting-algorithms.com/merge-sort

50 reverse-sorted items

in order

current subarray

algorithm position

not in order

13

Mergesort: empirical analysis

Running time estimates:

・Laptop executes 108 compares/second.

・Supercomputer executes 1012 compares/second.

Bottom line. Good algorithms are better than supercomputers.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N)

computer thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min

super instant 1 second 1 week instant instant instant

Proposition. Mergesort uses at most N lg N compares and 6 N lg N array

accesses to sort any array of size N.

Proof. On board.

14

Mergesort: number of compares and array accesses

15

Mergesort: number of compares and array accesses

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }
}

Q. How many compares (i.e. calls to less) are made in the worst case when

merging two subarrays of length N/2 into a single array of length N?

A. N/2 [149918] D. N [878502]

B. N/2 + 1 [149927] E. N+1 [777444]

C. N-1 [149941]

pollEv.com/jhug text to 37607

16

Q. How many Ns are we summing? Assume N is a power of 2.

A. lnN [164439] D. lgN [164498]

B. lnN - 1 [164440] E. lgN - 1 [164783]

C. lnN + 1 [164446] F. lgN + 1 [165137]

pollEv.com/jhug text to 37607

Proposition. Mergesort uses at most N lg N compares and 6 N lg N array

accesses to sort any array of size N.

Proof. Compares completed and on board.

・Array accesses?

17

Mergesort: number of compares and array accesses

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }
}

N-1 compares

Proposition. Mergesort uses at most N lg N compares and 6 N lg N array

accesses to sort any array of size N.

Proof. Compares completed and on board.

・Array accesses: Same proof but times 6.

18

Mergesort: number of compares and array accesses

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }
}

N-1 compares 6N - 2 array accesses

2N

2N

2N-2

Characterizing performance

Common technique (and exam question)

・Analyze code with the same structure, but which does no real work.

19

sort(Comparable[] a, Comparable[] aux, int lo, int hi)

merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)

Proposition. Mergesort uses at most N lg N compares and 6 N lg N array

accesses to sort any array of size N.

Pf sketch. The number of compares C (N) and array accesses A (N)
to mergesort an array of size N satisfy the recurrences:

 C (N) ≤ C (⎡N / 2⎤) + C (⎣N / 2⎦) + N for N > 1, with C (1) = 0.

 A (N) ≤ A (⎡N / 2⎤) + A (⎣N / 2⎦) + 6 N for N > 1, with A (1) = 0.

We solve the recurrence when N is a power of 2.

 D (N) = 2 D (N / 2) + N, for N > 1, with D (1) = 0.

20

Mergesort: number of compares and array accesses

left half right half merge

result holds for all N

Proposition. If D (N) satisfies D (N) = 2 D (N / 2) + N for N > 1, with D (1) = 0,

then D (N) = N lg N.

Pf 1. [assuming N is a power of 2]

21

Divide-and-conquer recurrence: proof by picture

...

lg N

N lg N

N = N

2 (N/2) = N

2k (N/2k) = N

N/2 (2) = N

...

D (N)

D (N / 2)D (N / 2)

D (N / 4)D (N / 4)D (N / 4) D (N / 4)

D (2) D (2) D (2) D (2) D (2) D (2) D (2)

D (N / 2k)

D (2)

4 (N/4) = N

Proposition. If D (N) satisfies D (N) = 2 D (N / 2) + N for N > 1, with D (1) = 0,

then D (N) = N lg N.

Pf 2. [assuming N is a power of 2]

22

Divide-and-conquer recurrence: proof by expansion

 D (N) = 2 D (N/2) + N

D (N) / N = 2 D (N/2) / N + 1

 = D (N/2) / (N/2) + 1

 = D (N/4) / (N/4) + 1 + 1

 = D (N/8) / (N/8) + 1 + 1 + 1

 . . .

 = D (N/N) / (N/N) + 1 + 1 + ... + 1

 = lg N

given

divide both sides by N

algebra

apply to first term

apply to first term again

stop applying, D(1) = 0

Proposition. If D (N) satisfies D (N) = 2 D (N / 2) + N for N > 1, with D (1) = 0,

then D (N) = N lg N.

Pf 3. [assuming N is a power of 2]

・Base case: N = 1.

・Inductive hypothesis: D (N) = N lg N.

・Goal: show that D (2N) = (2N) lg (2N).

23

Divide-and-conquer recurrence: proof by induction

D (2N) = 2 D (N) + 2N

 = 2 N lg N + 2N

 = 2 N (lg (2N) – 1) + 2N

 = 2 N lg (2N)

given

inductive hypothesis

algebra (logarithmic identity)

QED

24

Mergesort analysis: memory

Proposition. Mergesort uses extra space proportional to N.

Pf. The array aux[] needs to be of size N for the last merge.

Def. A sorting algorithm is in-place if it uses ≤ c log N extra memory.

Ex. Insertion sort, selection sort, shellsort.

Challenge for the bored. In-place merge. [Kronrod, 1969]

 A C D G H I M N U V

 A B C D E F G H I J M N O P Q R S T U V

 B E F J O P Q R S T

two sorted subarrays

merged result

25

Mergesort: practical improvements

Use insertion sort for small subarrays.

・Mergesort has too much overhead for tiny subarrays.

・Cutoff to insertion sort for ≈ 7 items.

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
 if (hi <= lo + CUTOFF)
 {
 Insertion.sort(a, lo, hi);
 return;
 }
 int mid = lo + (hi - lo) / 2;
 sort (a, aux, lo, mid);
 sort (a, aux, mid+1, hi);
 merge(a, aux, lo, mid, hi);
}

26

Mergesort: practical improvements

Stop if already sorted.

・Is biggest item in first half ≤ smallest item in second half?

・Helps for partially-ordered arrays.

 A B C D E F G H I J

 A B C D E F G H I J M N O P Q R S T U V

 M N O P Q R S T U V

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort (a, aux, lo, mid);
 sort (a, aux, mid+1, hi);
 if (!less(a[mid+1], a[mid])) return;
 merge(a, aux, lo, mid, hi);
}

27

Mergesort: practical improvements

Eliminate the copy to the auxiliary array. Save time (but not space)

by switching the role of the input and auxiliary array in each recursive call.

private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) aux[k] = a[j++];
 else if (j > hi) aux[k] = a[i++];
 else if (less(a[j], a[i])) aux[k] = a[j++];
 else aux[k] = a[i++];
 }
}

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort (aux, a, lo, mid);
 sort (aux, a, mid+1, hi);
 merge(aux, a, lo, mid, hi);
}

merge from a[] to aux[]

switch roles of aux[] and a[]

28

Mergesort: visualization

Visual trace of top-down mergesort for with cuto! for small subarrays

"rst subarray

second subarray

"rst merge

"rst half sorted

second half sorted

result

2353.2 ! Mergesort

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ mergesort

‣ bottom-up mergesort

‣ sorting complexity

‣ comparators

‣ stability

2.2 MERGESORT

Basic plan.

・Pass through array, merging subarrays of size 1.

・Repeat for subarrays of size 2, 4, 8, 16,

30

Bottom-up mergesort

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, aux, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, aux, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, aux, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, aux, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, aux, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, aux, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, aux, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, aux, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 1

sz = 2

sz = 4

sz = 8

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, aux, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, aux, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, aux, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, aux, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, aux, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, aux, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, aux, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, aux, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 1

sz = 2

sz = 4

sz = 8

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, aux, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, aux, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, aux, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, aux, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, aux, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, aux, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, aux, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, aux, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 1

sz = 2

sz = 4

sz = 8

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, aux, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, aux, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, aux, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, aux, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, aux, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, aux, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, aux, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, aux, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 1

sz = 2

sz = 4

sz = 8

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, aux, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, aux, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, aux, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, aux, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, aux, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, aux, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, aux, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, aux, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, aux, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, aux, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, aux, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, aux, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, aux, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, aux, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, aux, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 1

sz = 2

sz = 4

sz = 8

31

Mergesort: visualization

Visual trace of top-down mergesort for with cuto! for small subarrays

"rst subarray

second subarray

"rst merge

"rst half sorted

second half sorted

result

2353.2 ! Mergesort

Top down Botom up

Bottom line. Simple and non-recursive version of mergesort.

32

Bottom-up mergesort: Java implementation

public class MergeBU
{
 private static void merge(...)
 { /* as before */ }

 public static void sort(Comparable[] a)
 {
 int N = a.length;
 Comparable[] aux = new Comparable[N];
 for (int sz = 1; sz < N; sz = sz+sz)
 for (int lo = 0; lo < N-sz; lo += sz+sz)
 merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
 }
}

but about 10% slower than recursive,

top-down mergesort on typical systems

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ mergesort

‣ bottom-up mergesort

‣ sorting complexity

‣ comparators

‣ stability

2.2 MERGESORT

34

Compares Required

・Mergesort: ~ N lg N

・Easy lower bound: ~ N

Questions

・Can any sort use only N compares?

・Is there some clever way to raise our lower bound to prove optimality?

Complexity of sorting

Lower bound for best algorithm

don’t care don’t care ~ N

Best Average Worst

Worst case number of

compares for sorting

Merge sort

 ~ N lg N

Best Average Worst

 don’t caredon’t care

 ~ N lg N

~ N

35

Computational complexity. Framework to study efficiency of algorithms

for solving a particular problem X.

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for X.

Lower bound. Proven limit on cost guarantee of all algorithms for X.

Optimal algorithm. Algorithm with best possible cost guarantee for X.

Example: sorting.

・Model of computation: decision tree.

・Cost model: # compares.

・Upper bound: ~ N lg N from mergesort.

・Lower bound: ?

・Optimal algorithm: ?

lower bound ~ upper bound

can access information

only through compares

(e.g., Java Comparable framework)

Complexity of sorting

slight change from Analysis lecture

36

Decision tree (for 3 distinct items a, b, and c)

b < c

yes no

a < c

yes no

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

height of tree =

worst-case number

of compares

a < b

yes no

code between compares

(e.g., sequence of exchanges)

(at least) one leaf for each possible ordering

N=3

・6 leaves required.

・Depth of the decision tree must

be at least 3.

・Requires at least 3 compares.

37

Q. Give a lower bound on the number of compares needed if N=4.

A. 3 [800685] D. 6 [800688]
B. 4 [800686] E. 7 [800689]
C. 5 [800687]

pollEv.com/jhug text to 37607

38

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least

lg (N !)

Pf.

・Assume array consists of N distinct values a1 through aN.

・Worst case dictated by height h of decision tree.

・Binary tree of height h has at most 2 h leaves.

・N ! different orderings ⇒ at least N ! leaves.

at least N! leaves no more than 2h leaves

h

39

Compares Required

・Mergesort: ~ N lg N

・Easy lower bound: ~ N

Stirling’s Formula

・lg (N !) ~ N lg N

Complexity of sorting

Lower bound for best algorithm

don’t care don’t care ~ lg (N !)

Best Average Worst

Worst case number of

compares for sorting

Merge sort

 ~ N lg N

Best Average Worst

 don’t caredon’t care

 ~ N lg N

~ lg (N !)

40

Compares Required

・Mergesort: ~ N lg N

・Easy lower bound: ~ N

Stirling’s Formula

・lg (N !) ~ N lg N

Complexity of sorting

Lower bound for best algorithm

don’t care don’t care ~ N lg N

Best Average Worst

Worst case number of

compares for sorting

Merge sort

 ~ N lg N

Best Average Worst

 don’t caredon’t care

 ~ N lg N

~ N lg N

41

Compare-based lower bound for sorting

Proposition. Any compare-based sorting algorithm must use at least

lg (N !) ~ N lg N compares in the worst-case.

Pf.

・Assume array consists of N distinct values a1 through aN.

・Worst case dictated by height h of decision tree.

・Binary tree of height h has at most 2 h leaves.

・N ! different orderings ⇒ at least N ! leaves.

2 h ≥ # leaves ≥ N !

⇒ h ≥ lg (N !) ~ N lg N

Stirling's formula

42

Complexity of sorting

Model of computation. Allowable operations.

Cost model. Operation count(s).

Upper bound. Cost guarantee provided by some algorithm for X.

Lower bound. Proven limit on cost guarantee of all algorithms for X.

Optimal algorithm. Algorithm with best possible cost guarantee for X.

Example: sorting.

・Model of computation: decision tree.

・Cost model: # compares.

・Upper bound: ~ N lg N from mergesort.

・Lower bound: ~ N lg N.

・Optimal algorithm = mergesort.

First goal of algorithm design: optimal algorithms.
Worst case number of

compares for sorting

 ~ N lg N

~ N lg N

43

Complexity results in context

Compares? Mergesort is optimal with respect to number compares.

Space? Mergesort is not optimal with respect to space usage.

Lessons. Use theory as a guide.

Ex. Design sorting algorithm that guarantees ½ N lg N compares?

Ex. Design sorting algorithm that is both time- and space-optimal?

Lower bound may not hold if the algorithm has information about:

・The initial order of the input.

・The distribution of key values.

・The representation of the keys.

Partially-ordered arrays. Depending on the initial order of the input,

we may not need N lg N compares.

Duplicate keys. Depending on the input distribution of duplicates,

we may not need N lg N compares.

Digital properties of keys. We can use digit/character compares instead of

key compares for numbers and strings.

44

Complexity results in context (continued)

insertion sort requires only N-1
compares if input array is sorted

stay tuned for 3-way quicksort

stay tuned for radix sorts

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ mergesort

‣ bottom-up mergesort

‣ sorting complexity

‣ comparators

‣ stability

2.2 MERGESORT

46

Sort songs by artist

47

Sort songs by track name

Comparable interface: sort using a type's natural order.

48

Comparable interface: review

public class Date implements Comparable<Date>
{
 private final int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }
 …
 public int compareTo(Date that)
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

natural order

Comparator interface: sort using an alternate order.

Required property. Must be a total order.

Ex. Sort strings by:

・Natural order. Now is the time

・Case insensitive. is Now the time

・Spanish. café cafetero cuarto churro nube ñoño

・British phone book. McKinley Mackintosh

・. . .

49

Comparator interface

pre-1994 order for

digraphs ch and ll and rr

 public interface Comparator<Key> public interface Comparator<Key>

int compare(Key v, Key w)compare(Key v, Key w) compare keys v and w

50

Comparator interface: system sort

To use with Java system sort:

・Create Comparator object.

・Pass as second argument to Arrays.sort().

Bottom line. Decouples the definition of the data type from the

definition of what it means to compare two objects of that type.

String[] a;
...
Arrays.sort(a);
...
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER);
...
Arrays.sort(a, Collator.getInstance(new Locale("es")));
...
Arrays.sort(a, new BritishPhoneBookOrder());
...

uses alternate order defined by

Comparator<String> object

uses natural order

51

Comparator interface: using with our sorting libraries

To support comparators in our sort implementations:

・Use Object instead of Comparable.

・Pass Comparator to sort() and less() and use it in less().

public static void sort(Object[] a, Comparator comparator)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(comparator, a[j], a[j-1]); j--)
 exch(a, j, j-1);
}

private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }

private static void exch(Object[] a, int i, int j)
{ Object swap = a[i]; a[i] = a[j]; a[j] = swap; }

insertion sort using a Comparator

To implement a comparator:

・Define a (nested) class that implements the Comparator interface.

・Implement the compare() method.

public class Student
{
 public static final Comparator<Student> BY_NAME = new ByName();
 public static final Comparator<Student> BY_SECTION = new BySection();
 private final String name;
 private final int section;
 ...

 private static class ByName implements Comparator<Student>
 {
 public int compare(Student v, Student w)
 { return v.name.compareTo(w.name); }
 }

 private static class BySection implements Comparator<Student>
 {
 public int compare(Student v, Student w)
 { return v.section - w.section; }
 }
}

52

Comparator interface: implementing

this technique works here since no danger of overflow

one Comparator for the class

To implement a comparator:

・Define a (nested) class that implements the Comparator interface.

・Implement the compare() method.

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Chen 3 A 991-878-4944 308 Blair

Fox 3 A 884-232-5341 11 Dickinson

Furia 1 A 766-093-9873 101 Brown

Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Rohde 2 A 232-343-5555 343 Forbes

53

Comparator interface: implementing

Arrays.sort(a, Student.BY_NAME); Arrays.sort(a, Student.BY_SECTION);

Furia 1 A 766-093-9873 101 Brown

Rohde 2 A 232-343-5555 343 Forbes

Andrews 3 A 664-480-0023 097 Little

Chen 3 A 991-878-4944 308 Blair

Fox 3 A 884-232-5341 11 Dickinson

Kanaga 3 B 898-122-9643 22 Brown

Battle 4 C 874-088-1212 121 Whitman

Gazsi 4 B 766-093-9873 101 Brown

Distance order. Given a point p, order points by distance from p.

Utilizes dynamic comparator.

・The results of comparing two points depends on a 3rd point.

54

Distance order

3

0

p

1

4

5

2

Arrays.sort(points, points[0].DISTANCE_TO_ORDER);

55

Comparator interface: dynamic comparators

public class Point2D
{
 public final Comparator<Point2D> DISTANCE_TO_ORDER = new distanceToOrder();
 private final double x, y;
 ...

 private class DistanceToOrder implements Comparator<Point2D>
 {
 public int compare(Point2D q1, Point2D q2)
 {
 double dist1 = this.distanceSquaredTo(p);
 double dist2 = this.distanceSquaredTo(q);
 if (dist1 < dist2) return -1;
 else if (dist1 > dist2) return +1;
 else return 0;
 }
 }
}

one Comparator for each point (not static)

to access invoking point from within inner class (optional)

Arrays.sort(points, points[0].DISTANCE_TO_ORDER);

Arrays.sort(points, points[1].DISTANCE_TO_ORDER);

ability to do this is why we need

that extra 8 bytes of overhead for

inner cllasses

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ mergesort

‣ bottom-up mergesort

‣ sorting complexity

‣ comparators

‣ stability

2.2 MERGESORT

57

Stability

A typical application. First, sort by name; then sort by section.

@#%&@! Students in section 3 no longer sorted by name.

A stable sort preserves the relative order of items with equal keys.

Selection.sort(a, Student.BY_NAME);

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Chen 3 A 991-878-4944 308 Blair

Fox 3 A 884-232-5341 11 Dickinson

Furia 1 A 766-093-9873 101 Brown

Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Rohde 2 A 232-343-5555 343 Forbes

Selection.sort(a, Student.BY_SECTION);

Furia 1 A 766-093-9873 101 Brown

Rohde 2 A 232-343-5555 343 Forbes

Chen 3 A 991-878-4944 308 Blair

Fox 3 A 884-232-5341 11 Dickinson

Andrews 3 A 664-480-0023 097 Little

Kanaga 3 B 898-122-9643 22 Brown

Gazsi 4 B 766-093-9873 101 Brown

Battle 4 C 874-088-1212 121 Whitman

Q. Which sorts are stable?

A. Insertion sort and mergesort (but not selection sort or shellsort).

Note. Need to carefully check code ("less than" vs. "less than or equal to").

58

Stability

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

sorted by time sorted by location (not stable) sorted by location (stable)

no
longer
sorted

by time

still
sorted

by time

Stability when sorting on a second key

59

Stability: insertion sort

Proposition. Insertion sort is stable.

Pf. Equal items never move past each other.

public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
 exch(a, j, j-1);
 }
} i j 0 1 2 3 4

0 0 B1 A1 A2 A3 B2

1 0 A1 B1 A2 A3 B2

2 1 A1 A2 B1 A3 B2

3 2 A1 A2 A3 B1 B2

4 4 A1 A2 A3 B1 B2

A1 A2 A3 B1 B2

Proposition. Selection sort is not stable.

Pf by counterexample. Long-distance exchange might move an item

past some equal item.

60

Stability: selection sort

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }
}

i min 0 1 2

0 2 B1 B2 A

1 1 A B2 B1

2 2 A B2 B1

A B2 B1

61

Stability: mergesort

Proposition. Mergesort is stable.

Pf. Suffices to verify that merge operation is stable.

public class Merge
{
 private static Comparable[] aux;
 private static void merge(Comparable[] a, int lo, int mid, int hi)
 { /* as before */ }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort(a, lo, mid);
 sort(a, mid+1, hi);
 merge(a, lo, mid, hi);
 }

 public static void sort(Comparable[] a)
 { /* as before */ }
}

Proposition. Merge operation is stable.

Pf. Takes from left subarray if equal keys.

62

Stability: mergesort

private static void merge(...)
{
 for (int k = lo; k <= hi; k++)
 aux[k] = a[k];

 int i = lo, j = mid+1;
 for (int k = lo; k <= hi; k++)
 {
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
 }
}

0 1 2 3 4

A1 A2 A3 B D

5 6 7 8 9 10

A4 A5 C E F G

