
COMPUTER  SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

2. Basic Programming 
Concepts

Sections 1.1 and 1.2

http://introcs.cs.princeton.edu

COMPUTER  SC I ENCE
S E D G E W I C K / W A Y N E

2. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

2a.Basics.Why

in order to be able to tell a computer what you want it to do.

Naive ideal:  Natural language instructions.

Prepackaged solutions (apps)  are great when what they do is what you want.

Programming enables you to make a computer do anything you want.

You need to know how to program

3

Ada Lovelace Analytic Engine

first computerfirst programmer

well, almost anything (stay tuned)

“Please simulate the motion of N heavenly bodies, 
subject to Newton’s laws of motion and gravity.”

4

Programming: telling a computer what to do

Programming

• Is not just for experts.

• Is a natural, satisfying and creative experience.

• Enables accomplishments not otherwise possible.

• The path to a new world of intellectual endeavor.

“ Instead of imagining that our main task is to instruct a 
  computer  what to do, let us concentrate rather on explaining
  to human  beings what we want a computer to do. ”

− Don Knuth

Challenges

• Need to learn what computers can do.

• Need to learn a programming language. Telling a computer what to do



Telling a computer what to do

5

Kids Make Nutritious Snacks.

Red Tape Holds Up New Bridge.

Police Squad Helps Dog Bite Victim.

Local High School Dropouts Cut in Half.

Actual newspaper headlines
—Rich Pattis

Natural language
• Easy for human.
• Error-prone for computer.

Machine language
• Easy for computer.
• Error-prone for human.

High-level language
• Some difficulty for both.
• An acceptable tradeoff.

But which high-level language?

Naive ideal: A single programming language for all purposes.

for (int t = 0; t < 2000; t++)
{
   a[0] = (a[11] ^ a[9]);
   System.out.print(a[0]);
   for (int i = 11; i > 0; i--)
       a[i] = a[i-1];
}

Simulating an LFSR (see Lecture 1)

10: 8A00   RA ← mem[00]
11: 8B01   RB ← mem[01]
12: 1CAB   RC ← RA + RB
13: 9C02   mem[02] ← RC
14: 0000   halt

Adding two numbers (see Lecture 10)

6

Our Choice: Java

Java features

• Widely used.

• Widely available.

• Continuously under development since early 1990s.

• Embraces full set of modern abstractions.

• Variety of automatic checks for mistakes in programs.
James Gosling
http://java.net/jag

Java economy

• Mars rover.

• Cell phones.

• Blu-ray Disc.

• Web servers.

• Medical devices.

• Supercomputing.

•…

$100 billion,
5 million developers

7

Our Choice: Java

Java features

• Widely used.

• Widely available.

• Continuously under development since early 1990s.

• Embraces full set of modern abstractions.

• Variety of automatic checks for mistakes in programs.

Facts of life

• No language is perfect.

• You need to start with some language.

Our approach

• Use a minimal subset of Java.

• Develop general programming skills that are applicable to many languages.

“ There are only two kinds of programming 
languages: those people always [gripe] 
about and those nobody uses.”

− Bjarne Stroustrup

It’s not about the language!

A rich subset of the Java language vocabulary

8

built-in
types

int

long

double

char

String

boolean

flow control

if

else

for

while
boolean

operations

true

false

!

&&

||

String
operations

+

""

length()

charAt()

compareTo()

matches()

operations on
numeric types

+

-

*

/

%

++

--

punctuation

{

}

(

)

,

;

punctuation

int

long

double

char

String

boolean

assignment

=

arrays

a[]

length

new

object
oriented

static

class

public

private

new

final

toString()

main()

Math
methods

Math.sin()

Math.cos()

Math.log()

Math.exp()

Math.pow()

Math.sqrt()

Math.min()

Math.max()

Math.abs()

Math.PI

Math
methods

Math.sin()

Math.cos()

Math.log()

Math.exp()

Math.pow()

Math.sqrt()

Math.min()

Math.max()

Math.abs()

Math.PI

System
methods

System.print()

System.println()

System.printf()

type conversion methods

Integer.parseInt()

Double.parseDouble()

Your programs will primarily consist of these plus identifiers (names) that you make up.

comparisons

<

<=

>

>=

==

!=

our Std methods

StdIn.read*()

StdOut.print*()

StdDraw.*()

StdAudio.*()

StdRandom.*()



Anatomy of your first program

9

public class HelloWorld
{ 
    public static void main(String[] args)
    { 
        System.out.println("Hello, World");
    }
}

text file named
HelloWorld.java

program name

main() method

body of main()
(a single statement)

Anatomy of your next several programs

10

public class MyProgram
{ 
    public static void main(String[] args)
    { 
        ...

    }
}

main() methodtext file named
MyProgram.java

program name

body of main()
(a sequence of statements)

TEQ on your first program (easy if you did Exercise 1.1.2)

Q. Use common sense to cope with the following error messages.

11

% javac MyProgram.java
% java MyProgram
Main method not public.

% javac MyProgram.java
MyProgram.java:3: invalid method declaration; return type required
       public static main(String[] args)
                     ^

Three versions of the same program.

12

/*************************************************************************
 *  Compilation:  javac HelloWorld.java
 *  Execution:    java HelloWorld
 *
 *  Prints "Hello, World". By tradition, this is everyone's first program.
 *
 *  % java HelloWorld
 *  Hello, World
 *
 *************************************************************************/

public class HelloWorld {

    public static void main(String[] args) {
        System.out.println("Hello, World");
    }
}

public class HelloWorld { public static void main(String[] args) { System.out.println("Hello, World"); } }

public class HelloWorld
{ 
    public static void main(String[] args)
    { 
        System.out.println("Hello, World");
    }
}

Lesson: Fonts, color, comments, and extra space are not relevant to Java.



Note on program style
Different styles are appropriate in different contexts.

• DrJava

• Booksite

• Book

• Your code

Enforcing consistent style can

• Stifle creativity.

• Confuse style with language.

Emphasizing consistent style can

• Make it easier to spot errors.

• Make it easier for others to read and use code.

• Enable development environment to provide visual cues.

Bottom line for this course: Life is easiest if you use DrJava style.

13

http://introcs.cs.princeton.edu

COMPUTER  SC I ENCE
S E D G E W I C K / W A Y N E

2. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

2a.Basics.Why

http://introcs.cs.princeton.edu

COMPUTER  SC I ENCE
S E D G E W I C K / W A Y N E

2. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

2b.Basics.Develop
16

Program development in Java
is a three-step process, with feedback

1. EDIT your program

• Create it by typing on your computer's keyboard.

• Result: a text file such as HelloWorld.java.

2. COMPILE it to create an executable file

• Use the Java compiler

• Result: a Java bytecode file file such as HelloWorld.class

• Mistake? Go back to 1. to fix and recompile.

3. RUN your program

• Use the Java runtime.

• Result: your program’s output.

• Mistake? Go back to 1. to fix, recompile, and execute
a legal Java program that does the wrong thing

not a legal Java program

EDIT

COMPILE RUN



Software for program development

17

Any creative process involves cyclic refinement/development.

A significant difference with programs: We can use our computers to faciliate the process.

Program development environment: Software for editing, compiling and running programs.

EDIT

COMPILE RUN

COMPOSE

PLAYREHEARSE

Integrated development environment
• Often language- or system-specific.
• Can be helpful to beginners.
Bottom line: Variety of useful tools.

Virtual terminals
• Same for many languages and systems.
• Effective even for beginners.
Bottom line: Extremely simple and concise.

Two time-tested options: (Stay tuned for details).

Program development environments: a very short history

Historical context is important in computer science.

• We regularly use old software.

• We regularly emulate old hardware.

• We depend upon old concepts and designs.

18

Widely-used methods for program development

• switches and lights

• punched cards/compiler/runtime

• editor/compiler/runtime/terminal

• editor/compiler/runtime/virtual terminal

• integrated development environment

1960

1970

1980

1990

2000

Program development with switches and lights

Circa 1970: Use switches to input binary program code and data, lights to read output.

19

Stay tuned for details [lectures on the "TOY machine"].

PDP-8, circa 1970

switches

lights

Program development with punched cards and line printers

Mid 1970s: Use punched cards to input program code and data, line printer for output.

20

IBM System 360, circa 1975

Ask your parents about the "computer center"  for details.



Timesharing allowed many users to share the same computer.

Program development with timesharing terminals

Late 1970s: Use terminal for editing program, reading output, and controlling computer.

21

VT-100 terminal

VAX 11/780 circa 1977

Program development with personal computers (one approach)

1980s to present day: Use multiple virtual terminals to interact with computer.

• Edit your program using any text editor in a virtual terminal.

• Compile it by typing javac HelloWorld.java in another virtual terminal.

• Run it by typing javac HelloWorld.java 

22

virtual terminal for editor

virtual TV set

virtual terminal to compile, 
run and examine output

invoke Java compiler at command line

invoke Java runtime at command line

Program development with personal computers (another approach)

23

pseudo-command line

1980s to present day: Use a customized application for program development tasks.

• Edit your program using the built-in text editor.

• Compile it by clicking the “compile” button.

• Run it by clicking the “run” button or using the pseudo-command line.

“compile” button

“run” button

“Integrated Development 
Environment” (IDE)

http://drjava.org

Software for program development: tradeoffs

24

Pros
• Easy-to-use language-specific tools.
• System-independent (in principle).
• Used by professionals.
• Can be helpful to beginners.

Pros
• Approach works with any language.
• Useful beyond programming.
• Used by professionals.
• Has withstood the test of time.

Cons
• Overkill for short programs?
• Big application to learn and maintain.
• Often language- or system-specific.

Cons
• Good enough for long programs?
• Dealing with independent applications.
• Working at too low a level?

This course: Used in lectures/book.

Virtual terminals DrJava IDE

Recommended for assignments.



Lessons from short history

25

Every computer has a program development environment that allows us to

• EDIT programs. 

• COMPILE them to create an executable file.

• RUN them and examine the output.

Two approaches that have served for decades and are still effective:

• multiple virtual terminals. 

• integrated development environments.

Xerox Alto 1978

Apple Macintosh 1984
IBM PC 1990s

Macbook Air 2013

Wintel ultrabooks 2010s

http://introcs.cs.princeton.edu

COMPUTER  SC I ENCE
S E D G E W I C K / W A Y N E

2. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

2b.Basics.Develop

http://introcs.cs.princeton.edu

COMPUTER  SC I ENCE
S E D G E W I C K / W A Y N E

2. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

2c.Basics.Types

Built-in data types

A data type is a set of values and a set of operations on those values.

28

type set of values examples of values examples of operations

char characters 'A'
'@' compare

String sequences of characters "Hello World"
"CS is fun" concatenate

int integers 17
12345 add, subtract, multiply, divide

double floating-point numbers 3.1415
6.022e23 add, subtract, multiply, divide

boolean truth values true
false and, or, not

Java's built-in data types



29

TEQ on data types

Q. What is a data type?

int a, b;
a = 1234;
b = 99;
int c = a + b;

30

Basic Definitions

combined declaration
and assignment statement

A variable is a name that refers to a value.

A literal is a programming-language representation of a value.

A declaration statement associates variables with a type.

An assignment statement associates a value with a variable.

variables

literals

assignment statements

declaration statement

Variables, literals, declarations, and assignments example: exchange values

31

public class Exchange

{ 

    public static void main(String[] args)

    { 

        int a = 1234;

        int b = 99;

        int t = a;

        a = b;

        b = t;

    }

}

a b t

undefined undefined undefined

int a = 1234; 1234 undefined undefined

int b = 99; 1234 99 undefined

int t = a; 1234 99 1234

a = b; 99 99 1234

b = t; 99 1234 1234

This code exchanges
the values of a and b.

A trace is a table of variable values after each statement.

Q. What does this program do?

A. No way for us to confirm that it does the exchange! (Need output, stay tuned).

32

Data type for computing with strings: String

values sequences of characters

typical literals "Hello, "   "1 "   " * "

operation concatenate

operator +

String data type

expression value

"Hi, " + "Bob" "Hi, Bob"

"1" + " 2 " + "1" "1 2 1"

"1234" + " + " + "99" "1234 + 99"

"1234" + "99" "123499"

white
space

space
characters

Typical use: Input and output.

Examples of String operations (concatenation)

Important note: 

Character interpretation depends on context!

character

"1234" + " + " + "99"Ex 1: plus signs

operator operator

"1234" + " + " + "99"Ex 2: spaces

white
space



Example of computing with strings: subdivisions of a ruler

33

public class Ruler
{
   public static void main(String[] args)
   {
      String ruler1 = "1";
      String ruler2 = ruler1 + " 2 " + ruler1;
      String ruler3 = ruler2 + " 3 " + ruler2;
      String ruler4 = ruler3 + " 4 " + ruler3;
      System.out.println(ruler4);
   }
} 

ruler1 ruler2 ruler3 ruler4

undefined undefined undefined undefined

 ruler1 = "1"; 1 undefined undefined undefined

 ruler2 = ruler1 + " 2 " + ruler1 1 1 2 1 undefined undefined

 ruler3 = ruler2 + " 3 " + ruler2 1 1 2 1 1 2 1 3 1 2 1 undefined

 ruler2 = ruler3 + " 4 " + ruler3 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

all + ops are concatenation

% java Ruler
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 

Input and output
is necessary for us to provide data to our programs and to learn the result of computations.

34

Humans prefer to work with strings.
Programs work more efficiently with numbers.

Command-line input
• Strings you type after the program name are available as args[0], args[1], ... at run time.
• Q. How do we give an integer as command-line input?
• A. Need to call system method Integer.parseInt() to convert the strings to integers.

Stay tuned for many more options for input and output, and more details on type conversion.

command-line
arguments

Output
• System.out.println() method prints the given string.
• Java automatically converts numbers to strings for output.

standard output

Bird's eye view of a Java program

Input and output warmup: exchange values

35

public class Exchange
{ 
    public static void main(String[] args)
    {  
        int a = Integer.parseInt(args[0]);
        int b = Integer.parseInt(args[1]);
        int t = a;
        a = b;
        b = t;
        System.out.println(a);
        System.out.println(b);
    }
}

Q. What does this program do?

A. Reads two integers from the command line, then prints them out in the opposite order.

% java Exchange 5 2
2
5

% java Exchange 1234 99
99
1234

Java automatically converts int values to String for output

36

Data type for computing with integers: int

values integers between �231 and 231�1

typical literals 1234  99  -99  0  1000000

operations     add        subtract     multiply    divide      remainder

operator +        �        *        /        %                     

int data type

expression value comment

5 + 3 8

5 - 3 2

5 * 3 15

5 / 3 1 drop fractional part

5 % 3 2 remainder

1 / 0 runtime error

Typical usage: Math calculations; specifying programs (stay tuned).

Examples of int operations

expression value comment

3 * 5 - 2 13 * has precedence

3 + 5 / 2 5 / has precedence

3 - 5 - 2 -4 left associative

( 3 - 5 ) - 2 -4 better style

Precedence

Important note: 

Only 232 different int values.

not quite the same as integers



Example of computing with integers and strings, with type conversion

37

public class IntOps
{
   public static void main(String[] args)
   {
      int a = Integer.parseInt(args[0]);
      int b = Integer.parseInt(args[1]);
      int sum  = a + b;
      int prod = a * b;
      int quot = a / b;
      int rem  = a % b;
      System.out.println(a + " + " + b + " = " + sum);
      System.out.println(a + " * " + b + " = " + prod);
      System.out.println(a + " / " + b + " = " + quot);
      System.out.println(a + " % " + b + " = " + rem);
   }
}

% java IntOps 5 2
5 + 2 = 7
5 * 2 = 10
5 / 2 = 2
5 % 2 = 1

% java IntOps 1234 99
1234 + 99 = 1333
1234 * 99 = 122166
1234 / 99 = 12
1234 % 99 = 46

Note:  1234 = 12*99 + 46

Java automatically converts int values to String for concatenation

Examples:

no double value for π.

no double value for 

no double value for 1/3.

38

Data type for computing with floating point numbers: double

values real numbers

typical literals 3.14159 -3.0  2.0  1.4142135623730951 6.022e23  

operations     add        subtract     multiply    divide      remainder

operator +        �        *        /        %                     

double data type

expression value

3.141 + .03 3.171

3.141 - .03 3.111

6.02e23/2 3.01e23

5.0 / 3.0 1.6666666666666667

10.0 % 3.141 0.577

Math.sqrt(2.0) 1.4142135623730951

Typical use: Scientific calculations.

Examples of double operations

expression value

1.0 / 0.0 Infinity

Math.sqrt(-1.0) NaN

Special values

Typical double values are approximations

"not a number"

�.���× ����

√
�

Other built-in numeric types

39

values integers between �215 and 215�1

operations [ same as int ]

short data type

values integers between �263 and 263�1

operations [ same as int ]

long data type

values approximations to real numbers

operations [ same as double ]

float data type

Why different numeric types?

• Tradeoff between memory use and range for integers.

• Tradeoff between memory use and precision for real numbers.

short
int, float
long, double

40

Excerpts from Java’s Math Library

public class Math

   double abs(double a) absolute value of a

   double max(double a, double b) maximum of a and b

   double min(double a, double b) minimum of a and b

   double sin(double theta) sine function

   double cos(double theta) cosine function

   double tan(double theta) tangent function

   double exp(double a) exponential (ea)

   double log(double a) natural  log (loge a, or ln a)

   double pow(double a, double b) raise a to the bth power (ab)

     long round(double a) round to the nearest integer

   double random() random number in [0. 1)

   double sqrt(double a) square root of a

   double E value of e (constant)

   double PI value of π (constant)

also defined for
int, long, and float

inverse functions also available:
asin(), acos(), and atan()

Degrees in radians. Use toDegrees() and toRadians()) to convert.

You can discard your 
calculator now (please).



Example of computing with floating point numbers: quadratic equation

41

public class Quadratic
{
   public static void main(String[] args)
   {
   
      // Parse coefficients from command-line.
      double b = Double.parseDouble(args[0]);
      double c = Double.parseDouble(args[1]);

      // Calculate roots of x*x + b*x + c.
      double discriminant = b*b - 4.0*c;
      double d = Math.sqrt(discriminant);
      double root1 = (-b + d) / 2.0;
      double root2 = (-b - d) / 2.0;

      // Print them out.
      System.out.println(root1);
      System.out.println(root2);
   }
} 

% java Quadratic –3.0 2.0
2.0
1.0

% java Quadratic –1.0 –1.0
1.618033988749895
-0.6180339887498949

% java Quadratic 1.0 1.0
NaN
NaN

% java Quadratic 1.0 hello
java.lang.NumberFormatException: hello

% java Quadratic 1.0
java.lang.ArrayIndexOutOfBoundsException

From algebra: the roots of                     are_� + I_ + J �I ±
�
I� � �J
�

_� � �_ + �

_� � _ � �

_� + _ + �

Need two arguments.
(Fact of life: Not all error messages are crystal clear.)

42

Data type for computing with true and false: boolean

values true        false

literals true   false

operations     and        or        not        

operator  &&    ||     !

boolean data type

Typical usage: Control logic and flow of a program (stay tuned).

Truth-table definitions

Proof

a !a a b a && b a || b

true false false false false false

false true false true false true

true false false true

true true true true

Q. a XOR b?
A. (!a && b) || (a && !b)

a b !a && b a && !b (!a && b) || (a && !b)

false false false false false

false true true false true

true false false true true

true true false false false

43

Comparison operators

Fundamental operations that are defined for each built-in type allow us to compare values.

• Operands: two expressions of the same type.

• Result: a value of type boolean.

operator meaning true false

== equal 2 == 2 2 == 3

!= not equal 3 != 2 2 != 2

< less than 2 < 13 2 < 2

<= less than or equal 2 <= 2 3 <= 2

> greater than 13 > 2 2 < 13

>= greater than or equal 3 >= 2 2 >= 3

non-negative discriminant? ( b*b - 4.0*a*c ) >= 0.0

beginning of a century? ( year % 100 ) == 0

legal month? ( month >= 1 ) && ( month <= 12 )

Examples
Typical double values are 
approximations so beware 

of == comparisons

Example of computing with booleans: leap year test

44

public class LeapYear
{
   public static void main(String[] args)
   {
      int year = Integer.parseInt(args[0]);
      boolean isLeapYear;

      // divisible by 4 but not 100
      isLeapYear = (year % 4 == 0) && (year % 100 != 0);
      
      // or divisible by 400
      isLeapYear = isLeapYear || (year % 400 == 0);

      System.out.println(isLeapYear);
   }
} 

% java LeapYear 2016
true

% java LeapYear 1993
false

% java LeapYear 1900
false

% java LeapYear 2000
true

Q.  Is a given year a leap year?
A.  Yes if either (i) divisible by 400 or (ii) divisible by 4 but not 100.



http://introcs.cs.princeton.edu

COMPUTER  SC I ENCE
S E D G E W I C K / W A Y N E

2. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

2c.Basics.Types

http://introcs.cs.princeton.edu

COMPUTER  SC I ENCE
S E D G E W I C K / W A Y N E

2. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

2d.Basics.Conversion

47

Type checking

Types of variables involved in data-type operations always must match the definitions.

When appropriate, we often convert a value from one type to another to make types match.

The Java compiler is your friend :  it checks for type errors in your code.

public class BadCode
{
   public static void main(String[] args)
   {
      String s = "123" * 2;
   }
} 

% javac BadCode.java
BadCode.java:5: operator * cannot be applied to java.lang.String,int
        String s = "123" * 2;
                         ^
1 error

48

Type conversion with built-in types

Type conversion is an essential aspect of programming. 

Type conversion can give counterintuitive results
but gets easier to understand with practicePay attention to the type of your data. 

Automatic 

• Convert number to string for "+". 

• Make numeric types match if no loss of precision.

Explicitly defined for function call.

Cast for values that belong to multiple types.

• Ex: small integers can be short, int or long.

• Ex: double values can be truncated to int values.

expression type value

"x: " + 99 String "x: 99"

11 * 0.3 double 3.3

Integer.parseInt("123") int 123

Math.round(2.71828) long 3

(int) 2.71828 int 2

(int) Math.round(2.71828) int 3

11 * (int) 0.3 int 0



49

TEQ on type conversion

Q. Give the type and value of each of the following expressions.

a.    ( 7 / 2 ) * 2.0

b.    ( 7 / 2.0 ) * 2

c.    "2" + 2

d.    2.0 + "2"

An instructive story about type conversion

Why different numeric types?

• Tradeoff between memory use and range for integers.

• Tradeoff between memory use and precision for floating-point.

50

short
int, float
long, double

What to do with an impossible conversion?

• Approach 1: Avoid doing it in the first place.

• Approach 2 (Java): Live with a well-defined result.

• Approach 3: Crash.

A conversion may be impossible.

• Example: (short) 70000.

• Short values must be between �215 and 215 � 1= 32767 .

First launch of Ariane 5, 1996

Example of type conversion put to good use: pseudo-random integers

51

public class RandomInt
{
   public static void main(String[] args) 
   {
      int N = Integer.parseInt(args[0]);
      double r = Math.random();
      int t = (int) (r * N);

      System.out.println(t);
   }
} 

% java RandomInt 6
3

% java RandomInt 6
0

% java RandomInt 10000
3184

System method Math.random() returns a pseudo-random double value in [0, 1).

String to int (system method)

double to int (cast) int to double (automatic)

Problem: Given N, generate a pseudo-random integer between 0 and N � 1.

http://introcs.cs.princeton.edu

COMPUTER  SC I ENCE
S E D G E W I C K / W A Y N E

2. Basic Programming Concepts

•Why programming?
•Program development
•Built-in data types
•Type conversion

2d.Basics.Conversion



Summary

A data type is a set of values and a set of operations on those values.

53

Commonly-used built-in data types in Java
• String, for computing with sequence of characters, for input and output.
• int, for computing with integers, for math calculations in programs.
• double, for computing with floating point numbers, typically for science and math apps.
• boolean, for computing with true and false, for decision making in programs.

In Java you must:
• Declare the types of your variables.
• Convert from one type to another when necessary.
• Identify and resolve type errors in order to compile your code.
Pay attention to the type of your data.

The Java compiler is your friend :  it will help you identify and fix type errors in your code.

COMPUTER  SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

2. Basic Programming 
Concepts

Sections 1.1 and 1.2


