Below is the syntax highlighted version of LR.java.
/************************************************************************* * Name: Kevin Wayne * Login: wayne * * Compilation: javac LR.java * Execution: java LR < input.txt * * Simpler linear regression data type. * Reads a sequence of observation pairs from standard input, * computes the best-fit line, and prints out the observation * pairs and the predicted values. * * % more lr4.txt * 4 * 20.0 91.0 * 40.0 83.0 * 60.0 68.0 * 80.0 50.0 * * % java LR < lr4.txt * y = -0.69 x + 107.50 * 20.00 91.00 93.70 * 40.00 83.00 79.90 * 60.00 68.00 66.10 * 80.00 50.00 52.30 * *************************************************************************/ public class LR { private final double xbar, ybar; // mean of x- and y-values private double sxx, sxy; // intermediate statistics private final int N; // number of observation pairs // linear regression with observations pairs (x[i], y[i]) public LR(double[] x, double[] y) { if (x.length != y.length) { throw new RuntimeException("dimensions don't agree"); } N = x.length; // first pass: compute mean x- and y-values double sumx = 0.0, sumy = 0.0; for (int i = 0; i < N; i++) sumx += x[i]; for (int i = 0; i < N; i++) sumy += y[i]; xbar = sumx / N; ybar = sumy / N; // second pass: compute sxx and sxy for (int i = 0; i < N; i++) { sxx += (x[i] - xbar) * (x[i] - xbar); sxy += (x[i] - xbar) * (y[i] - ybar); } } // slope of best-fit line public double slope() { return sxy / sxx; } // y-intercept of best-fit line public double intercept() { return meany() - slope() * meanx(); } // mean of x- and y-values public double meanx() { return xbar; } public double meany() { return ybar; } // estimated response variable, given predictor variable x0 public double predict(double x0) { return slope() * x0 + intercept(); } public static void main(String[] args) { // read in input int N = StdIn.readInt(); double[] x = new double[N]; double[] y = new double[N]; for (int i = 0; i < N; i++) { x[i] = StdIn.readDouble(); y[i] = StdIn.readDouble(); } // compute best-fit line LR lr = new LR(x, y); double a = lr.slope(); double b = lr.intercept(); StdOut.printf("y = %.2f x + %.2f\n", a, b); // print observation pairs and predicted values for (int i = 0; i < N; i++) { StdOut.printf("%6.2f %6.2f %6.2f\n", x[i], y[i], lr.predict(x[i])); } } }