Prove that alpha-beta search returns the correct minimax values in the following sense: Let s be the state of a game (and assume the game tree has a finite number of nodes). Let v be the actual minimax value of s so that

$$v = MINIMAX(s).$$

Let v' be the result of running alpha-beta search on s with some given values of α and β (where $-\infty \le \alpha \le \beta \le +\infty$) so that

$$v' = \text{Alpha-Beta-Minimax}(s, \alpha, \beta).$$

Prove that the following statements are true:

- If $\alpha \leq v \leq \beta$ then v' = v.
- If $v \leq \alpha$ then $v' \leq \alpha$.
- If $v \ge \beta$ then $v' \ge \beta$.

In other words, if the true minimax value is between α and β , then alphabeta search returns the correct value. On the other hand, if the true minimax value is outside this range, alphabeta search may return a different value, but will at least accurately report that the true value is below α or above β . In particular, note that these statements imply that v' = v if $\alpha = -\infty$ and $\beta = +\infty$.

Hint: Use induction. That is, if s is not a terminal state, then assume that the claim above holds for all of s's children (successor states), and use this assumption to prove that it also holds for s.

[Note: MINIMAX(s) is the procedure presented in class for computing minimax values. It is the same as the functions MAX-VALUE(s) and MIN-VALUE(s) (for MAX states and MIN states respectively) which appear in Figure 5.3 of R&N. Likewise, ALPHA-BETA-MINIMAX(s, α, β) is the procedure given in class for estimating minimax values using alpha-beta search. It is the same as the functions MAX-VALUE(s, α, β) and MIN-VALUE(s, α, β) given in Figure 5.7 of R&N.]