
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

COMBINATORIAL SEARCH

‣ introduction

‣ permutations

‣ backtracking

‣ counting

‣ subsets

‣ paths in a graph

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ permutations

‣ backtracking

‣ counting

‣ subsets

‣ paths in a graph

COMBINATORIAL SEARCH

3

Implications of NP-completeness

4

Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size ⇒

effectiveness may be limited to relatively small instances.

Backtracking. Systematic method for examining feasible solutions

to a problem, by systematically pruning infeasible ones.

Goal. Process all 2N bit strings of length N.

・Maintain array a[] where a[i] represents bit i.

・Simple recursive method does the job.

Remark. Equivalent to counting in binary from 0 to 2N – 1.
5

// enumerate bits in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
}

N = 4

Warmup: enumerate N-bit strings

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

N = 3

a[0] a[N-1]

0 0 0
0 0 1
0 0 0
0 1 0
0 1 1
0 1 0
0 0 0
1 0 0
1 0 1
1 0 0
1 1 0
1 1 1
1 1 0
1 0 0
0 0 0

clean up

public class BinaryCounter
{
 private int N; // number of bits
 private int[] a; // a[i] = ith bit

 public BinaryCounter(int N)
 {
 this.N = N;
 this.a = new int[N];
 enumerate(0);
 }

 private void process()
 {
 for (int i = 0; i < N; i++)
 StdOut.print(a[i]) + " ";
 StdOut.println();
 }

 private void enumerate(int k)
 {
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
 }
}

6

Warmup: enumerate N-bit strings

public static void main(String[] args)
{
 int N = Integer.parseInt(args[0]);
 new BinaryCounter(N);
}

% java BinaryCounter 4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

all programs in this
lecture are variations

on this theme

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ permutations

‣ backtracking

‣ counting

‣ subsets

‣ paths in a graph

COMBINATORIAL SEARCH

Euclidean TSP. Given N points in the plane, find the shortest tour.

Proposition. Euclidean TSP is NP-hard.

Brute force. Design an algorithm that checks all tours.
8

Traveling salesperson problem

13509 cities in the USA and an optimal tour

9

N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that

no rook can attack any other?

Representation. No two rooks in the same row or column ⇒ permutation.

Challenge. Enumerate all N ! permutations of N integers 0 to N – 1.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 };

a[4] = 6 means the rook
from row 4 is in column 6

10

Enumerating permutations

Recursive algorithm to enumerate all N ! permutations of N elements.

・Start with permutation a[0] to a[N-1].

・For each value of i:

– swap a[i] into position 0

– enumerate all (N – 1) ! permutations of a[1] to a[N-1]

– clean up (swap a[i] back to original position)

3 1 2 0
3 1 0 2
3 2 1 0
3 2 0 1
3 0 2 1
3 0 1 2

1 0 2 3
1 0 3 2
1 2 0 3
1 2 3 0
1 3 2 0
1 3 0 2

2 1 0 3
2 1 3 0
2 0 1 3
2 0 3 1
2 3 0 1
2 3 1 0

3 followed by
perms of 1 2 0

0 followed by
perms of 1 2 3

1 followed by
perms of 0 2 3

2 followed by
perms of 1 0 3

0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 2 1
0 3 1 2

0 1 2
0 2 1
0 1 2
1 0 2
1 2 0
1 0 2
0 1 2
2 1 0
2 0 1
2 1 0
0 1 2

cleanup swaps that bring
permutation back to original

N = 3

a[0] a[N-1]

Recursive algorithm to enumerate all N ! permutations of N elements.

・Start with permutation a[0] to a[N-1].

・For each value of i:

– swap a[i] into position 0

– enumerate all (N – 1) ! permutations of a[1] to a[N-1]

– clean up (swap a[i] back to original position)

// place N-k rooks in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }

 for (int i = k; i < N; i++)
 {
 exch(k, i);
 enumerate(k+1);
 exch(i, k);
 }
}

Enumerating permutations

11

clean up

public class Rooks
{
 private int N;
 private int[] a; // bits (0 or 1)

 public Rooks(int N)
 {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = i;
 enumerate(0);
 }

 private void enumerate(int k)
 { /* see previous slide */ }

 private void exch(int i, int j)
 { int t = a[i]; a[i] = a[j]; a[j] = t; }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 new Rooks(N);
 }
}

12

Enumerating permutations

% java Rooks 2
0 1
1 0

% java Rooks 3
0 1 2
0 2 1
1 0 2
1 2 0
2 1 0
2 0 1

initial permutation

13

4-rooks search tree

solutions

. . .

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ permutations

‣ backtracking

‣ counting

‣ subsets

‣ paths in a graph

COMBINATORIAL SEARCH

Q. How many ways are there to place N queens on an N-by-N board so that

no queen can attack any other?

Representation. No 2 queens in the same row or column ⇒ permutation.

Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions.
15

N-queens problem

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

unlike N-rooks problem,
nobody knows answer for N > 30

int[] a = { 2, 7, 3, 6, 0, 5, 1, 4 };

a[1] = 6 means the queen
from row 1 is in column 6

16

4-queens search tree

diagonal conflict
on partial solution:

no point going deeper

solutions

17

4-queens search tree (pruned)

"backtrack" on
diagonal conflicts

solutions

18

Backtracking paradigm. Iterate through elements of search space.

・When there are several possible choices, make one choice and recur.

・If the choice is a dead end, backtrack to previous choice,

and make next available choice.

Benefit. Identifying dead ends allows us to prune the search tree.

Ex. [backtracking for N-queens problem]

・Dead end: a diagonal conflict.

・Pruning: backtrack and try next column when diagonal conflict found.

Applications. Puzzles, combinatorial optimization, parsing, ...

Backtracking

 private boolean canBacktrack(int k)
 {
 for (int i = 0; i < k; i++)
 {
 if ((a[i] - a[k]) == (k - i)) return true;
 if ((a[k] - a[i]) == (k - i)) return true;
 }
 return false;
 }

 // place N-k queens in a[k] to a[N-1]
 private void enumerate(int k)
 {
 if (k == N)
 { process(); return; }

 for (int i = k; i < N; i++)
 {
 exch(k, i);
 if (!canBacktrack(k)) enumerate(k+1);
 exch(i, k);
 }
 }

19

N-queens problem: backtracking solution

stop enumerating if
adding queen k leads
to a diagonal violation

% java Queens 4
1 3 0 2
2 0 3 1

% java Queens 5
0 2 4 1 3
0 3 1 4 2
1 3 0 2 4
1 4 2 0 3
2 0 3 1 4
2 4 1 3 0
3 1 4 2 0
3 0 2 4 1
4 1 3 0 2
4 2 0 3 1

% java Queens 6
1 3 5 0 2 4
2 5 1 4 0 3
3 0 4 1 5 2
4 2 0 5 3 1

a[0] a[N-1]

Pruning the search tree leads to enormous time savings.

Conjecture. Q(N) ~ N ! / c N, where c is about 2.54.

Hypothesis. Running time is about (N ! / 2.5N) / 43,000 seconds.

N-queens problem: effectiveness of backtracking

20

N Q(N) N ! time (sec)

8 92 40,320 –

9 352 362,880 –

10 724 3,628,800 –

11 2,680 39,916,800 –

12 14,200 479,001,600 1.1

13 73,712 6,227,020,800 5.4

14 365,596 87,178,291,200 29

15 2,279,184 1,307,674,368,000 210

16 14,772,512 20,922,789,888,000 1352

TSP. Concorde solves real-world TSP instances with ~ 85K points.

・Branch-and-cut.

・Linear programming.

・...

SAT. Chaff solves real-world instances with ~ 10K variable.

・Davis-Putnam backtracking.

・Boolean constraint propagation.

・...

Some backtracking success stories

21

Chaff: Engineering an Efficient SAT Solver
Matthew W. Moskewicz
Department of EECS
UC Berkeley
moskewcz@alumni.princeton.edu

Conor F. Madigan
Department of EECS
MIT
cmadigan@mit.edu

Ying Zhao, Lintao Zhang, Sharad Malik
Department of Electrical Engineering
Princeton University
{yingzhao, lintaoz, sharad}@ee.princeton.edu

ABSTRACT

Boolean Satisfiability is probably the most studied of
combinatorial optimization/search problems. Significant effort
has been devoted to trying to provide practical solutions to this
problem for problem instances encountered in a range of
applications in Electronic Design Automation (EDA), as well as
in Artificial Intelligence (AI). This study has culminated in the
development of several SAT packages, both proprietary and in
the public domain (e.g. GRASP, SATO) which find significant
use in both research and industry. Most existing complete solvers
are variants of the Davis-Putnam (DP) search algorithm. In this
paper we describe the development of a new complete solver,
Chaff, which achieves significant performance gains through
careful engineering of all aspects of the search – especially a
particularly efficient implementation of Boolean constraint
propagation (BCP) and a novel low overhead decision strategy.
Chaff has been able to obtain one to two orders of magnitude
performance improvement on difficult SAT benchmarks in
comparison with other solvers (DP or otherwise), including
GRASP and SATO.
Categories and Subject Descriptors
J6 [Computer-Aided Engineering]: Computer-Aided Design.

General Terms
Algorithms, Verification.

Keywords
Boolean satisfiability, design verification.

1. Introduction
The Boolean Satisfiability (SAT) problem consists of

determining a satisfying variable assignment, V, for a Boolean
function, f, or determining that no such V exists. SAT is one of
the central NP-complete problems. In addition, SAT lies at the
core of many practical application domains including EDA (e.g.
automatic test generation [10] and logic synthesis [6]) and AI
(e.g. automatic theorem proving). As a result, the subject of
practical SAT solvers has received considerable research
attention, and numerous solver algorithms have been proposed
and implemented.

 Many publicly available SAT solvers (e.g. GRASP [8],
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been
developed, most employing some combination of two main
strategies: the Davis-Putnam (DP) backtrack search and heuristic
local search. Heuristic local search techniques are not
guaranteed to be complete (i.e. they are not guaranteed to find a
satisfying assignment if one exists or prove unsatisfiability); as a
result, complete SAT solvers (including ours) are based almost
exclusively on the DP search algorithm.

1.1 Problem Specification
Most solvers operate on problems for which f is specified in

conjunctive normal form (CNF). This form consists of the
logical AND of one or more clauses, which consist of the logical
OR of one or more literals. The literal comprises the
fundamental logical unit in the problem, being merely an
instance of a variable or its complement. (In this paper,
complement is represented by ¬.) All Boolean functions can be
described in the CNF format. The advantage of CNF is that in
this form, for f to be satisfied (sat), each individual clause must
be sat.

1.2 Basic Davis-Putnam Backtrack Search
We start with a quick review of the basic Davis-Putnam

backtrack search. This is described in the following pseudo-code
fragment:

while (true) {
 if (!decide()) // if no unassigned vars
 return(satisifiable);
 while (!bcp()) {
 if (!resolveConflict())

return(not satisfiable);
 }
}

bool resolveConflict() {
 d = most recent decision not ‘tried both
ways’;

 if (d == NULL) // no such d was found
 return false;

 flip the value of d;
 mark d as tried both ways;
 undo any invalidated implications;
 return true;
}

The operation of decide() is to select a variable that is
not currently assigned, and give it a value. This variable
assignment is referred to as a decision. As each new decision is
made, a record of that decision is pushed onto the decision stack.

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ permutations

‣ backtracking

‣ counting

‣ subsets

‣ paths in a graph

COMBINATORIAL SEARCH

23

Counting: Java implementation

Goal. Enumerate all N-digit base-R numbers.

Solution. Generalize binary counter in lecture warmup.

// enumerate base-R numbers in a[k] to a[N-1]
private static void enumerate(int k)
{
 if (k == N)
 { process(); return; }

 for (int r = 0; r < R; r++)
 {
 a[k] = r;
 enumerate(k+1);
 }
 a[k] = 0;
}

% java Counter 2 4
0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3
2 0
2 1
2 2
2 3
3 0
3 1
3 2
3 3

% java Counter 3 2
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

a[0] a[N-1]

cleanup not needed; why?

24

Goal. Fill 9-by-9 grid so that every row, column, and box contains

each of the digits 1 through 9.

Sudoku

7 8 3

2 1

5

4 2 6

3 8

1 9

9 6 4

7 5

“ Sudoku is a denial of service attack on human intellect. ”

 — Ben Laurie (founding director of Apache Software Foundation)

25

Goal. Fill 9-by-9 grid so that every row, column, and box contains

each of the digits 1 through 9.

Sudoku

7 2 8 9 4 6 3 1 5

9 3 4 2 5 1 6 7 8

5 1 6 7 3 8 2 4 9

1 4 7 5 9 3 8 2 6

3 6 9 4 8 2 1 5 7

8 5 2 1 6 7 4 9 3

2 9 3 6 1 5 7 8 4

4 8 1 3 7 9 5 6 2

6 7 5 8 2 4 9 3 1

Remark. Natural generalization of Sudoku is NP-complete.

26

Sudoku is (probably) intractable

http://xkcd.com/74

27

Goal. Fill 9-by-9 grid so that every row, column, and box contains

each of the digits 1 through 9.

Solution. Enumerate all 81-digit base-9 numbers (with backtracking).

Sudoku: brute-force solution

using digits 1 to 9 7 8 3 ...

0 1 2 3 4 5 6 7 8 80

a[]

7 8 3

2 1

5

4 2 6

3 8

1 9

9 6 4

7 5

28

Iterate through elements of search space.

・For each empty cell, there are 9 possible choices.

・Make one choice and recur.

・If you find a conflict in row, column, or box, then backtrack.

Sudoku: backtracking solution

7 8 3

2 1

5

4 2 6

3 8

1 9

9 6 4

7 5

backtrack on 3, 4, 5, 7, 8, 9

private void enumerate(int k)
{

 if (k == 81)
 { process(); return; }

 if (a[k] != 0)
 { enumerate(k+1); return; }

 for (int r = 1; r <= 9; r++)
 {
 a[k] = r;
 if (!canBacktrack(k))
 enumerate(k+1);
 }

 a[k] = 0;
}

29

Sudoku: Java implementation

clean up

unless it violates a
Sudoku constraint
(see booksite for code)

% more board.txt
7 0 8 0 0 0 3 0 0
0 0 0 2 0 1 0 0 0
5 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 2 6
3 0 0 0 8 0 0 0 0
0 0 0 1 0 0 0 9 0
0 9 0 6 0 0 0 0 4
0 0 0 0 7 0 5 0 0
0 0 0 0 0 0 0 0 0

% java Sudoku < board.txt
7 2 8 9 4 6 3 1 5
9 3 4 2 5 1 6 7 8
5 1 6 7 3 8 2 4 9
1 4 7 5 9 3 8 2 6
3 6 9 4 8 2 1 5 7
8 5 2 1 6 7 4 9 3
2 9 3 6 1 5 7 8 4
4 8 1 3 7 9 5 6 2
6 7 5 8 2 4 9 3 1

try 9 possible digits
for cell k

cell k initially filled in;
recur on next cell

found a solution

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ permutations

‣ backtracking

‣ counting

‣ subsets

‣ paths in a graph

COMBINATORIAL SEARCH

Given N elements, enumerate all 2N subsets.

・Count in binary from 0 to 2N – 1.

・Maintain array a[] where a[i] represents element i.

・If 1, a[i] in subset; if 0, a[i] not in subset.

31

Enumerating subsets: natural binary encoding

empty
0
1
1 0
2
2 0
2 1
2 1 0
3
3 0
3 1
3 1 0
3 2
3 2 0
3 2 1

 3 2 1 0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

i binary subset

32

Enumerating subsets: natural binary encoding

Given N elements, enumerate all 2N subsets.

・Count in binary from 0 to 2N – 1.

・Maintain array a[] where a[i] represents element i.

・If 1, a[i] in subset; if 0, a[i] not in subset.

Binary counter from warmup does the job.

private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
}

Quad. Starting with empty stage, 4 characters enter and exit

one at a time, such that each subset of actors appears exactly once.

33

Digression: Samuel Beckett play

empty
0
1 0
1
2 1

2 1 0
2 0
2
3 2

3 2 0
3 2 1 0
3 2 1
3 1

3 1 0
3 0
 3

0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
0 1 1 1
0 1 0 1
0 1 0 0
1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0

-
enter 0
enter 1
exit 1
enter 2
enter 0
exit 1
exit 0
enter 3
enter 0
enter 1
exit 0
exit 2
enter 0
exit 1
exit 0

binary subset move

ruler functionbinary reflected Gray code

“ Epic fail. The subsets { R, W, Y, B } and { R, W, B } each appear twice;
 the subsets { R }, { B, Y }, { W, R }, and { W, B, Y } do not appear.”
 — Kevin Wayne

34

Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit

one at a time, such that each subset of actors appears exactly once.

“ faceless, emotionless one of the far future, a world where people are born,
 go through prescribed movements, fear non-being even though their lives
 are meaningless, and then they disappear or die.” — Sidney Homan

Def. The k-bit binary reflected Gray code is:

・The (k – 1) bit code with a 0 prepended to each word, followed by

・The (k – 1) bit code in reverse order, with a 1 prepended to each word.

35

Binary reflected gray code

a[0] a[N-1]

36

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:

・Flip a[k] instead of setting it to 1.

・Eliminate cleanup.

Advantage. Only one element in subset changes at a time.

// all bit strings in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}

// all bit strings in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
}

standard binary counter (from warmup)Gray code binary counter

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

same values
since no cleanup

a[0] a[N-1]

37

More applications of Gray codes

3-bit rotary encoder

Chinese ring puzzle (Baguenaudier)
(move ith ring from right when bit i changes in Gray code)

8-bit rotary encoder

Towers of Hanoi
(move ith smallest disk when bit i changes in Gray code)

000

001

101111

011

010

110 100

Scheduling (set partitioning). Given N jobs of varying length, divide among

two machines to minimize the makespan (time the last job finishes).

Remark. This scheduling problem is NP-complete.
38

Scheduling

or, equivalently, difference
between finish times cost

0

2

1

3

0

3

1 2

machine 0

machine 1

machine 0

machine 1

job length

0 1.41

1 1.73

2 2.00

3 2.23

.09

Scheduling: improvements

Brute force. Enumerate 2N subsets; compute makespan; return best.

Many opportunities to improve.

・Fix first job to be on machine 0.

・Maintain difference in finish times.

(and avoid recomputing cost from scratch)

・Backtrack when partial schedule cannot beat best known.

・Preprocess all 2k subsets of last k jobs;

cache results in memory.

39

private void enumerate(int k)
{
 if (k == N) { process(); return; }
 if (canBacktrack(k)) return;
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}

factor of 2 speedup

factor of N speedup (using Gray code order)

huge opportunities
for improvement
on typical inputsreduces time to 2N – k

at cost of 2k memory

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ permutations

‣ backtracking

‣ counting

‣ subsets

‣ paths in a graph

COMBINATORIAL SEARCH

41

Enumerating all paths on a grid

Goal. Enumerate all simple paths on a grid of adjacent sites.

Application. Self-avoiding lattice walk to model polymer chains.

no two atoms can occupy
same position at same time

42

Enumerating all paths on a grid: Boggle

Boggle. Find all words that can be formed by tracing a simple path of

adjacent cubes (left, right, up, down, diagonal).

Backtracking. Stop as soon as no word in dictionary contains string of

letters on current path as a prefix ⇒ use a trie. B

BA
BAX

B A X X X

X C A C K

X K R X X

X T X X X

X X X X X

43

Boggle: Java implementation

private void dfs(String prefix, int i, int j)
{
 if ((i < 0 || i >= N) ||
 (j < 0 || j >= N) ||
 (visited[i][j]) ||
 !dictionary.containsAsPrefix(prefix))
 return;

 visited[i][j] = true;
 prefix = prefix + board[i][j];

 if (dictionary.contains(prefix))
 found.add(prefix);

 for (int ii = -1; ii <= 1; ii++)
 for (int jj = -1; jj <= 1; jj++)
 dfs(prefix, i + ii, j + jj);

 visited[i][j] = false;
}

backtrack

add current character

add to set of found words

try all possibilities

clean up

string of letters on current path to (i, j)

Goal. Find a simple path that visits every vertex exactly once

Remark. Euler path easy, but Hamilton path is NP-complete.
44

Hamilton path

visit every edge exactly once

45

Knight's tour

Goal. Find a sequence of moves for a knight so that (starting from any

desired square) it visits every square on a chessboard exactly once.

Solution. Find a Hamilton path in knight's graph.

legal knight moves a knight's tour

46

Hamilton path: backtracking solution

Backtracking solution. To find Hamilton path starting at v :

・Add v to current path.

・For each vertex w adjacent to v
– find a simple path starting at w using all remaining vertices

・Clean up: remove v from current path.

Q. How to implement?

A. Depth-first search + cleanup (!)

47

Hamilton path: Java implementation

public class HamiltonPath
{
 private boolean[] marked; // vertices on current path
 private int count = 0; // number of Hamiltonian paths

 public HamiltonPath(Graph G)
 {
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 dfs(G, v, 1);
 }

 private void dfs(Graph G, int v, int depth)
 {
 marked[v] = true;
 if (depth == G.V()) count++;

 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w, depth+1);

 marked[v] = false;
 }
}

clean up

length of current path
(depth of recursion)

found one

backtrack if w is
already part of path

Exhaustive search: summary

48

problem enumeration backtracking

N-rooks permutations no

N-queens permutations yes

Sudoku base-9 numbers yes

scheduling subsets yes

Boggle paths in a grid yes

Hamilton path paths in a graph yes

The longest path

49

The world’s longest path (Sendero de Chile): 9,700 km.
(originally scheduled for completion in 2010; now delayed until 2038)

50

That’s all, folks: keep searching!

Written by Dan Barrett in 1988 while a student
at Johns Hopkins during a difficult algorithms take-home final

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write.
I have a weakness;
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree.
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

