

COS 495 - Lecture 1 Autonomous Robot Navigation

Instructor: Chris Clark Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh

Introduction

- Education
 - B.Sc.Eng Engineering Phyics, Queen's University
 - M.A.Sc. Mechanical Engineering, University of Toronto
 - Ph.D. Aeronautics & Astronautics / Computer Sci, Stanford University
- Industrial Work
 - Control Systems Designer Sterner Engineering
 - Software Architect Kiva Systems
- Academic Appointments
 - Assistant Prof University of Waterloo
 - Associate Prof Cal Poly

MSc – Neural Network Manipulator Control, 1998

PhD - Multi-Robot Systems, 2004

Kiva Systems, 2005

- An introduction to mobile robots and current approaches to robot autonomy.
- Topics include:
 - Mobile robot systems and modeling
 - Control structures
 - Sensors & Estimation
 - Localization and Mapping
 - Motion planning

- This course will consider the design and programming of robots using existing technology (i.e. off-the-shelf materials).
- This course will provide a broad overview of all components related to mobile robots with an emphasis is on robot autonomy.

Key Question

Where am I?

Key Answer

Use Probability!

- Required Text:
 - "An Introduction to Autonomous Robots", <u>Roland Siegwart</u> and <u>Illah R. Nourbakhsh</u>, MIT Press, 2004

- Recommended Texts:
 - "Behavior-Based Robotics", Ronald C. Arkin, MIT Press, 1998
 - "Principles of Robot Motion", Choset et. Al., MIT Press, 2005

- Recommended Background:
 - Programming skills, knowledge of microprocessors, linear algebra, control systems, C++.

The X80 Robot

The Iver2 Autonomous Underwater Vehicle (AUV)

Class Format

- Lecture
 - Engineering Quad E Wing E225
 - 1-2 hours theory
- Lab
 - Engineering Quad F Wing F114
 - 1-2 hours experiments

Grading

- 10% Midterm Exam
- 30% Final Exam
- 15% Competition
- 45% Experiments
 - Demonstrations
 - Lab Reports

Robot Competition

- Lab time to prepare
- Several matches in a tournament style

Administrative Info.

Web site

http://www.cs.princeton.edu/courses/archive/fall11/cos495/

Administrative Info.

- Instructor:
 - email:
 - Office Phone:
 - Office Hours:
 - Office Location:

Chris Clark cmclark@cs.princeton.edu 609-258-0558 Mon/Wed 9:05-9:55 OBA CS-410

Navigation and Control

1. Course Objective

- 2. Example Systems
- 3. Approaches To Control
- 4. Navigation Example

Course Objective

- Provide robots with the ability to accomplish tasks autonomously.
- Autonomously?
 - Different levels dependant on application

Robot Navigation

- For autonomous behavior, mobile robots need the ability to navigate:
 - Learn the environment-> "Model"
 - Estimate where it is in the environment-> "Localize"
 - Move to desired locations in the environment

Navigation Problem

- Problem Characteristics
 - Environments are Known versus Unknown
 - Environments are Static versus Dynamic
 - Environments are Structured versus Unstructured (Indoors versus Outdoors?)
- Most robot navigation systems are tailored to the problem characteristics.

Navigation and Control

- 1. Course Objective
- 2. Example Systems
- 3. Approaches To Control
- 4. Navigation Example

Historical Examples

The Tortoise (Walter, 1950)

Courtesy of Hans Moravec

Historical Examples

Shakey (SRI 1969)

Stanford Research Institute

Historical Examples

Stanford Cart (Moravec, 1977)

Courtesy of Hans Moravec

Planetary Exploration

Image of jpl's mars rover

Submersible ROV: Remotely Operated Vehicle

MBARI's ROV Ventana

Legged Robots

jpl's Lemur robot

Security Robots

Frontline Robotics

Security Robots

Multi-Robot Systems

Kiva Systems

UAVs: Unmanned Aerial Vehicles

AUV "Big Blue" from Advanced Ceramics Research, Inc.

AGVs: Autonomic Guided Vehicles

Competitions

Navigation and Control

- 1. Course Objective
- 2. Example Systems
- 3. Approaches To Control
- 4. Navigation Example

Approaches to Control

Approaches to Control

- 1. Planning Based Control
 - Traditional methods born out of AI (1960's +)
- 2. Reactive (i.e. Behavior) Based Control
 - More recent (mid to late 1980's)
- 3. Mixture of Planning and Reactive
 - Today

- Through *perception* and *sensors fusion*, a model of the "real" world is captured in memory.
- A goal is given and a plan is generated, assuming the "real" world is not changing.
- Then, the "plan" is executed, one (abstract) "operation" at a time.

- Example: A robot is equipped with a camera and two arms to perform an assembly task.
 - Goal: put part A into part B
 - World: where are A and B?
 - Plan:
 - move left arm to A;
 - move right arm to B;
 - grab A; grab B;
 - move left and right arm closer;
 - assemble

- Example continued:
 - What the camera sees is a world of "pixels".
 - What is "interesting" in the "real" world to be captured?
 - At what level of details should we represent the "real" world?
 - What if during plan execution, the "real" world changes? e.g., drop part A.

Planning-based navigation architecture

- Perception, modeling and planning are computationally intensive.
- Our model of the "real" world must be at all times *accurate* (consistent and reliable).
- Sudden changes in the world may not be reflected *instantly* in our model.
- This approach works well in a predictable world.

Approaches to Control Behavior-Based Control

- Actions are connected to precepts via "behaviors".
- No internal model: The real world is our model.
- A robot *reacts* to changes and exhibits complex behaviors due to both internal and external interactions.

- A robot is equipped with many "simple" behaviors.
- Each behavior defines its own sensor data and actions.
- Interactions among the behaviors are resolved by *coordination*.
- These behaviors are *concurrent* and *independent*; they *react* to changes instantly.

Example: A simple roaming mobile robot is equipped with the following behaviors:

- Different behaviors may share same sensors and/or actuators.
- Competitive or cooperative actions are handled by careful coordination.
- Behaviors may be added or deleted incrementally.

Subsumption Architecture

- Subsumption Architecture
 - Behavioral coordination can be based on a fixed priority of suppression.

- Each behavior may generate more than one type of action.
- Multiple subsumption orderings may coexist at the same time.
- A behavior may be lower in one ordering, but be higher in an other.
- Each behavior's decision "cycle" time is independent.

Control Structures Planning Based Control

Motion Control

Software: Low-Level Control (e.g. PID)

Hardware: Motors, legs, wheels

Perception

SICK

Hardware: Sensors

Software: Filtering raw data

Localization

Modeling and Mapping

Cognition

Hardware: Processors

Software: Planning Algorithms

Navigation and Control

- 1. Course Objective
- 2. Example Systems
- 3. Approaches To Control

4. Navigation Example

Example System 1: Minerva

Courtesy of Sebastian Thrun