Simulation

COS 323

Last Time

- Stability of ODEs
- Stability of PDEs
- Review of methods for solving large, sparse systems
- Multi-grid methods

Reminders

- Homework 4 due Tuesday
- Homework 5, final project proposal due Friday December 16

Today

- Simulation examples
- Discrete event simulation
 - Time-driven and event-driven approaches, with examples
 - Cellular automata, microsimulation, agent-based simulation
- Population genetics overview

Why simulation?

- Make predictions or make decisions regarding complex phenomena or poorlyunderstood phenomena
- Test theories about how real systems work
- Explore consequences of changes to a system
- Train people to make better decisions or take correct actions

Simulation

One program variable for each element in the system being simulated,

... as opposed to

- analytical solution
- formulation of algebraic or differential equations

Approaches to Simulation

- Differential equation solvers can be thought of as conducting a *simulation* of a physical system
 - Advance through time
 - "Continuous" equations model change in state
- Some simulations are more "discrete":
 - Decisions, actions, events happen at discrete points in time

Discrete Event Simulation: Bank Teller Example

- Simple example: lines at the bank
 - Customers arrive at random times
 - Wait in line(s) until teller available
 - Conduct transaction of random length

Bank Teller

- Simple example: lines at the bank
 - Customers arrive at random times
 - Wait in line(s) until teller available
 - Conduct transaction of random length
- Simulate arbitrary phenomena
 (e.g. spike in customer rate during lunch)
- Goal: mean and variance of waiting times
 - As a function of customer rate, # tellers, # queues

Bank Teller

- *Time-driven* simulation:
 - A master clock increments time in fixed-length steps
 - At each step, compute probability of customer(s) arriving, determine whether any transactions finishing
 - e.g., probability of 2% that a new customer arrives at each time step
 - More accurate simulation with shorter time steps, but then have more steps when *nothing* happens

Bank Teller

- *Event-driven* simulation:
 - **Events** change system state:
 - New customer arrives
 - Teller finishes processing a customer
 - Compute times of events and put in a "future event list":
 - When will new customers arrive?
 - When new customer reaches teller, compute time that customer will finish.
 - Repeatedly process one event, then fast-forward until scheduled time of next event
 - Good accuracy and efficiency: automatically use time steps appropriate for how much is happening

Time-driven Example: Epidemics

The SIR Model

- W. O. Kermack and A. G. McKendrick, 1929
- susceptible: susceptible, not yet infected
- infected: infected and capable of spreading
- recovered / removed: recovered and immune $\frac{dS}{dt} = -\beta SI$ $\frac{dI}{dt} = \beta SI - \gamma I$ $\frac{dR}{dt} = \gamma I$

Time-Driven Simulation: Epidemics

 [Dur95] R. Durrett, "Spatial Epidemic Models," in Epidemic Models: Their Structure and Relation to Data, D. Mollison (ed.), Cambridge University Press, Cambridge, U.K., 1995.

• Discrete-time, discrete-space, discrete-state

Durrett's Spatial SIR model

- Time, *t* = 0, 1, 2, ...
- Space: orthogonal (square) grid
- State: {susceptible, infected, removed}

Rules tell us how to get from *t* to *t*+1 for each spatial location

Each site has 4 neighbors, contains 0 or 1 individual

Durrett's Rules for Spatial SIR model

- Susceptible individuals become infected at rate proportional to the number of infected neighbors
- Infected individuals become healthy (removed) at a fixed rate δ
- Removed individuals become susceptible at a fixed rate α

Time, t = 0, 1, 2, ... Space: orthogonal (square) grid State: {susceptible, infected, removed}

 $\alpha = 0$: No return from removed; immunity is permanent. If δ , recovery rate, is large, epidemic dies out. If δ is less than some critical number, the epidemic spreads *linearly* and approaches a *fixed shape*.

 \rightarrow Can be formulated and proven as a theorem!

 $\alpha > 0$: behavior is more complicated

More recent work:

"Epidemic Thresholds and Vaccination in a Lattice Model of Disease Spread", C.J. Rhodes and R.M. Anderson, Theoretical Population Biology **52**, 101118 (1997) Article No. TP971323.

Note ring of vaccinated individuals.

The SZR model

- Susceptible
 - Can die naturally with parameter delta (become Removed)
 - Can become zombie-infected with parameter beta
- Zombie
 - Can be killed by human with parameter alpha (become removed)
- Removed
 - Removed humans can be resurrected into zombies with parameter zeta

Computing with SZR

$$S' = \Pi - \beta SZ - \delta S$$
$$Z' = \beta SZ + \zeta R - \alpha SZ$$
$$R' = \delta S + \alpha SZ - \zeta R.$$

• Short timescale: (no births / natural deaths):

$$\begin{aligned} -\beta SZ &= 0\\ \beta SZ + \zeta R - \alpha SZ &= 0\\ \alpha SZ - \zeta R &= 0. \end{aligned}$$

Using Euler's Method

Model with Latent Infection

Alternative Zombie Sim

http://kevan.org/proce55ing/zombies/

Event-Driven Examples

Example: Load Balancing Across Hosts

From Zhou, S. 1988. "A trace-driven simulation study of dynamic load balancing." *IEEE Trans. Software Eng.* 14(9).

Event-Driven Simulation

- Applications:
 - Circuit/chip simulation: clock rate needed for reliable operation

Event-Driven Simulation

- Applications:
 - Circuit/chip simulation: clock rate needed for reliable operation

- Event queue
 - Holds (time, event) tuples
 - Priority queue data structure: supports fast query of event with lowest time
 - Possible implementation: linked list
 O(n) insertion, O(1) query, O(1) deletion
 - Possible implementation: heap, binary tree
 O(log n) insertion, O(1) query, O(log n) deletion

- Event loop
 - Pull lowest-time event off event queue
 - Process event
 - Decode what type of event
 - Run appropriate code
 - (Compile statistics)
 - Insert any new events onto queue
 - Repeat.

- How are new events scheduled?
 - Some are a direct result of current event.
 Example: teller takes new customer
 - Some are background events.
 Example: new customer arrives
 - Some are generated via real-time user input

Stochastic Simulation

- Events have different likelihoods of occurrence
 - New customer arrives
 - Person contracts disease
- Properties of simulation components may vary
 - Bank customers may have more or less difficult problems
 - Drivers may be more or less polite
 - Individuals may be more or less susceptible to disease

Sources of "Randomness"

- "Digital Chaos": Deterministic, complicated.
 Examples: pseudorandom RNGs in code, digital slot machines.
- "Analog Chaos": Unknown initial conditions. Examples: roulette wheel, dice, card shuffle, analog slot machines.
- "Truly random": Quantum mechanics.
 Examples: some computer hardware-based RNGs

"Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin."

--- John von Neumann (1951)

Using RNGs

How would you...

- Choose an integer *i* between 1 and N randomly
- Choose from a discrete probability distribution; example: p(heads) = 0.4, p(tails) = 0.6
- Pick a random point in 2-D: square, circle
- Shuffle a deck of cards

Bank Simulation: Scheduling Arrival Events

- Given time of last customer arrival, how to generate time of next arrival?
- Assume arrival rate is uniform over time:
 k customers per hour
- Then in any interval of length Δt , expected number of arrivals is $k \Delta t$

Scheduling Arrival Events

- Probability distribution for next arrival?
 - Equal to probability that there are no arrivals before time t
 - Subdivide into intervals of length Δt

p(no arrivals before t) = p(no arrival between 0 and Δt) * p(no arrival between Δt and $2\Delta t$) * ...

Scheduling Arrival Events

- $p(no arrival in interval) = 1 k\Delta t$
- So, p(no arrivals before t) = $\lim_{\Delta t \to 0} (1 k \Delta t)^{\frac{t}{\Delta t}} = e^{-kt}$

Exponential Distribution

 The exponential distribution describes the time in between events in a Poisson process

Sampling from a non-uniform distribution

- "Inversion method"
 - Integrate f(x): Cumulative Distribution Function
 - Invert CDF, apply to uniform random variable

Sampling from the Exponential Distribution

• time to next arrival event can be found from uniform random variable $\xi \in [0..1]$ via

$$t = -\frac{\ln\xi}{k}$$

- How are events handled?
 - Need to run different piece of code depending on type of event
 - Code needs access to data: which teller? which customer?
 - Original motivation for Object-Oriented
 Programming languages: encapsulate data and code having a particular interface
 - First OO language: Simula 67

Summary

- Insert events onto queue
- Repeatedly pull them off head of queue
 - Decode
 - Process
 - Add new events

CAs, Microsimulation and Agent-based Simulation

(Micro-level behaviors leading to emergent macro-level phenomena)

•1

http://upload.wikimedia.org/wikipedia/commons/e/ e5/Gospers_glider_gun.gif

- Discrete-time, discrete-space model
- Cells in grid have finite number of states
- Each cell's new state is a function of its previous state and the previous states of its neighbors
 - Typically instantaneous updates, same rules for all cells

 Model components of system as independent entities with differing characteristics

– e.g., different susceptibility to disease

- Behavior is governed by particular rules
- Useful in traffic, health, econometrics (e.g., taxation)
- Demo:

– http://www.traffic-simulation.de/

Agent-Based Modeling

- Accommodates interdependencies, adaptive behaviors
- E.g., "The evolution of cooperation"

The Prisoner's Dilemma

- Globally optimal: Neither confesses
- Game-theoretically optimal strategy: Always confess

The Evolution of Cooperation

- Robert Axelrod: A tournament for simulations to play with each other in repeated rounds
- Winning strategy: TFT
- All top strategies are "nice"
- Necessary conditions for success:
 - Be nice
 - Be provocable
 - Don't be envious
 - Don't be too clever

A better strategy

• Jennings et al. in 2004 tournament:

- Submit multiple prisoners and collude

Simulating Population Genetics

Simulating population genetics (assignment 5)

- review of basic genetics: genes, alleles
- If there are two possible alleles at one site, say A and a, there are in a diploid organism three possible genotypes: AA, aa, Aa, the first two homozygotes, the last heterozygote
- Question: How are these distributed in a population as functions of time?

Why study this?

- Understanding history of evolution, human migration, human diversity
- Understanding relationship between species
- Understanding propagation of genetic diseases
- Agriculture

Approaches, pros and cons

- Field experiment
 - + realistic
 - hard work for one particular situation
- Mathematical model
 - + can yields lots of insight, intuition
 - usually uses very simplified models
 - not always tractable
- Simulation
 - + very flexible
 - + works when math doesn't
 - not easy to make predictions

19th Century: Darwin et al. didn't know about genes, etc., and used the idea of *blended inheritance*

But this requires an unreasonably large mutation rate to explain variation, evolution

Enter Mendel... (rediscovered in 20th century)

Gregor Mendel (1822 - 1884)

http://bio.winona.edu/berg/241f00/Lec-note/Mendel.htm

Steven Berg, Winona State

Simplest Model

- Hardy-Weinberg equilibrium
 - If probability of allele A is p, of a is q=1-pp(AA) = p^2 , p(Aa) = 2pq, p(aa) = q^2
- Not always observed
 - Wahlund effect: fewer heterozygotes if multiple isolated subpopulations
 - Differences in viability, mating preference
- Assignment 5: limitations of theoretical model
 - Finite population, others