Simulation

COS 323



lL.ast Time

Stability of ODEs
Stability of PDEs

Review of methods for solving large, sparse
systems

Multi-grid methods



Reminders

- Homework 4 due Tuesday

 Homework 5, final project proposal due
Friday December 16



Today

« Simulation examples

* Discrete event simulation

— Time-driven and event-driven approaches, with
examples

— Cellular automata, microsimulation, agent-based
simulation

» Population genetics overview
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Why simulation?

Make predictions or make decisions
regarding complex phenomena or poorly-
understood phenomena

Test theories about how real systems work

Explore consequences of changes to a
system

Train people to make better decisions or take
correct actions



Simulation

One program variable for each element in the
system being simulated,

... as opposed to

— analytical solution
— formulation of algebraic or differential equations



Approaches to Simulation

 Differential equation solvers can be thought of
as conducting a simulation of a physical
system
— Advance through time
— “Continuous” equations model change in state

« Some simulations are more “discrete”:

— Decisions, actions, events happen at discrete
points in time



Discrete Event

Bank Teller |

Simulation:

Hxample
- |

« Simple example: lines at the bank
— Customers arrive at random times

— Wait in line(s) until teller available

— Conduct transaction of random length

X

Teller




Bank Teller

« Simple example: lines at the bank
— Customers arrive at random times

— Wait in line(s) until teller available
— Conduct transaction of random length

« Simulate arbitrary phenomena
(e.g. spike in customer rate during lunch)

* Goal: mean and variance of waiting times
— As a function of customer rate, # tellers, # queues



Bank Teller

 [ime-driven simulation:

— A master clock increments time in fixed-length
steps

— At each step, compute probability of customer(s)
arriving, determine whether any transactions
finishing

* e.g., probability of 2% that a new customer arrives at
each time step

— More accurate simulation with shorter time steps,
but then have more steps when nothing happens



Bank Teller

» Event-driven simulation:
— Events change system state:
* New customer arrives
» Teller finishes processing a customer
— Compute times of events and put in a “future event list”:
* When will new customers arrive?

 When new customer reaches teller, compute time that
customer will finish.

— Repeatedly process one event, then fast-forward
until scheduled time of next event

— Good accuracy and efficiency: automatically use time steps
appropriate for how much is happening



Time-driven Example: Epidemics




The SIR Model

« W. O. Kermack and A. G. McKendrick, 1929
« susceptible: susceptible, not yet infected
* Infected: infected and capable of spreading

 recovered / removed: recovered and immune
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Time-Driven Simulation: Epidemics

* [Dur95] R. Durrett, "Spatial Epidemic Models,"
iIn Epidemic Models: Their Structure and
Relation to Data, D. Mollison (ed.),

Cambridge University Press, Cambridge,
U.K., 1995.

» Discrete-time, discrete-space, discrete-state



Durrett’s Spatial SIR model

« Time, =0, 1, 2, ...
« Space: orthogonal (square) grid
« State: {susceptible, infected, removed}

Rules tell us how to get from t to t+7 for each
spatial location

Each site has 4 neighbors,
contains 0 or 1 individual



Durrett’s Rules for Spatial SIR model

« Susceptible individuals become infected at rate
proportional to the number of infected neighbors

* |Infected individuals become healthy (removed)
at a fixed rate o

 Removed individuals become susceptible at a
fixed rate a



EESSSSE:

Time, 1=0,1, 2, ...
Space: orthogonal (square) grid
State: { 'ible, infected, removed}

SSE=ci




Simulation Results

a = 0 : No return from removed; immunity is

permanent. If O, recovery rate, is large, epidemic
dies out. If o is less than some critical number,

the epidemic spreads /inearly and approaches a
fixed shape.

- Can be formulated and proven as a theorem!

a > 0 : behavior is more complicated



More recent work:

"Epidemic
Thresholds and
Vaccination in a
Lattice Model of

Disease Spread”,
C.J. Rhodes and
R.M. Anderson,
Theoretical
Population Biology
52, 101118 (1997)
Article No.
TP971323.

Note ring of
vaccinated
individuals.
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The SZR model

« Susceptible

— Can die naturally with parameter delta (become
Removed)

— Can become zombie-infected with parameter beta

e Zombie

— Can be killed by human with parameter alpha
(become removed)

« Removed

— Removed humans can be resurrected into
zombies with parameter zeta



Computing with SZR

S’ = II—-B3SZ— 48
7' = BSZ+(CR-—aSZ
R = 6S+aSZ—(R.

» Short timescale: (no births / natural deaths):

_BSZ = 0
BSZ+(R—aSZ = 0
aSZ —(R = 0.



Using Euler’s Method

500

400

Population Values (1000's)

Basic Model- R0 > 1 with IC = DFE

Suscepties
—— Zombies




w
3

Population Values (1000's)
N
3

Model with Latent Infection

SIZR Model- RO > 1 with IC = DFE
(same values for parameters used in previous figure)

c—

Suscepties
— Zombies

10



Alternative Zombie Sim

* http://kevan.org/proce55ing/zombies/



Event-Driven Examples




“xample: L.oad Balancing Across Hosts
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Event-Driven Simulation

* Applications:
— Circuit/chip simulation: clock rate needed for
reliable operation

11 Events:

0 ' N_____cIlnput: b(1)=1

3 " «Qutput: c(3)=0




Event-Driven Simulation

Applications:

— Circuit/chip simulation: clock rate needed for
reliable operation

D
] ®



Ingredients of Event-Driven Simulations

* Event queue
— Holds (time, event) tuples

— Priority queue data structure: supports
fast query of event with lowest time

— Possible implementation: linked list
O(n) insertion, O(1) query, O(1) deletion

— Possible implementation: heap, binary tree
O(log n) insertion, O(1) query, O(log n) deletion



Ingredients of Event-Driven Simulations

* Event loop
— Pull lowest-time event off event queue

— Process event
« Decode what type of event
* Run appropriate code
» (Compile statistics)

 Insert any new events onto queue

— Repeat.



Ingredients of Event-Driven Simulations

« How are new events scheduled?

— Some are a direct result of current event.
Example: teller takes new customer

— Some are background events.
Example: new customer arrives

— Some are generated via real-time user input



Stochastic Simulation

- Events have different likelihoods of
OoCcurrence
— New customer arrives
— Person contracts disease

* Properties of simulation components may

vary
— Bank customers may have more or less difficult
problems

— Drivers may be more or less polite

— Individuals may be more or less susceptible to
disease



Sources of “Randomness”

“Digital Chaos”: Deterministic, complicated.

Examples: pseudorandom RNGs in code,
digital slot machines.

‘Analog Chaos”. Unknown initial conditions.

Examples: roulette wheel, dice, card shuffle,
analog slot machines.

“Truly random”™: Quantum mechanics.

Examples: some computer hardware-based
RNGs



“Anyone who considers arithmetical methods
of producing random digits is, of course, in a
state of sin.”

--- John von Neumann (1951)



Using RNGs

How would you...

* Choose an integer j between 1 and N
randomly

« Choose from a discrete probability
distribution; example: p(heads) = 0.4, p(tails)
=0.6

* Pick a random point in 2-D: square, circle

« Shuffle a deck of cards



Bank Simulation: Scheduling Arrival Events

* Given time of last customer arrival, how to
generate time of next arrival?

 Assume arrival rate is uniform over time:
k customers per hour

* Then in any interval of length At, expected
number of arrivals is k At



Scheduling Arrival Events

 Probability distribution for next arrival?

— Equal to probability that there are no arrivals
before time t

— Subdivide into intervals of length At

time
t

p(no arrivals before t) =p(no arrival between 0 and At) *

p(no arrival between At and 2At) * ...



Scheduling Arrival Events

« p(no arrival in interval) = 1 — kAt
* S0, p(no arrivals before t) = ng%)(l - kAt)E =e™™

time



Exponential Distribution

* The exponential distribution describes the
time in between events in a Poisson process

_xr . —Az
f(:z:;/\):{)\e ., x>0, F(:z:;)\):{l_e , x>0,
0, x < 0. 0, x < 0.
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Sampling from a non-uniform distribution

* “Inversion method”
— Integrate f(x): Cumulative Distribution Function

— Invert CDF, apply to uniform random variable

F(x) [/ (x)dx

(]




Sampling from the Exponential Distribution

* time to next arrival event can be found from
uniform random variable £ &[0..1] via

_Ing
k



Ingredients of Event-Driven Simulations

« How are events handled?

— Need to run different piece of code depending on
type of event

— Code needs access to data: which teller?
which customer?

— Original motivation for Object-Oriented
Programming languages: encapsulate data and
code having a particular interface

— First OO language: Simula 67



Summary

* |Insert events onto queue

* Repeatedly pull them off head of queue
— Decode

— Process
— Add new events



CAs, Microsimulation and Agent-based

Simulation

(Micro-level behaviors leading to emergent
macro-level phenomena)
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http://upload.wikimedia.org/wikipedia/commons/e/
ed/Gospers_glider gun.gif



Cellular Automaton

* Discrete-time, discrete-space model
« Cells in grid have finite number of states

« Each cell's new state is a function of its
previous state and the previous states of its

neighbors

— Typically instantaneous updates, same rules for all
cells



Microsimulation

Model components of system as independent
entities with differing characteristics
— e.g., different susceptibility to disease

Behavior is governed by particular rules

Useful in traffic, health, econometrics (e.g.,
taxation)

Demo:
— http://www.traffic-simulation.de/



Agent-Based Modeling

- Accommodates interdependencies, adaptive
behaviors

- E.g., “The evolution of cooperation”



The Prisoner’s Dilemma

Prisoner B's Strategies

Do Not
Confess Confess
1 Year Parole

kS
a0
S Do Not
g Confess 1 Year Life
n
_(h
< Life 20 Years
o
=
o)
.
A&, Confess | Parole 20 Years

» Globally optimal: Neither confesses

- Game-theoretically optimal strategy: Always confess



The Evolution ot Cooperation

Robert Axelrod: A tournament for simulations
to play with each other in repeated rounds

Winning strategy: TFT
All top strategies are “nice”

Necessary conditions for success:
— Be nice

— Be provocable

— Don’t be envious

— Don’t be too clever



A better strategy

« Jennings et al. in 2004 tournament:
— Submit multiple prisoners and collude



Simulating Population Genetics




Simulating population genetics

(assignment 5)

* review of basic genetics: genes, alleles

* If there are two possible alleles at one site,
say A and a, there are in a diploid organism
three possible genotypes: AA, aa, Aa, the first
two homozygotes, the last heterozygote

* Question: How are these distributed in a
population as functions of time?



Why study this?

Understanding history of evolution, human
migration, human diversity

Understanding relationship between species

Understanding propagation of genetic
diseases

Agriculture



Approaches, pros and cons

* Field experiment
+ realistic
- hard work for one particular situation
 Mathematical model
+ can yields lots of insight, intuition
- usually uses very simplified models
- not always tractable
e Simulation
+ very flexible
+ works when math doesn’t
- not easy to make predictions



19th Century: Darwin et al. didn’t know about
genes, etc., and used the idea of blended
Inheritance

- But this requires an unreasonably large mutation
rate to explain variation, evolution

Enter Mendel... (rediscovered in 20t century)



Gregor Mendel (1822 - 1884)



http://bio.winona.edu/berg/241f00/Lec-note/Mendel.htm

Steven Berg, Winona State



Simplest Model

- Hardy-Weinberg equilibrium
— If probability of allele A'is p, of ais g=1-p
P(AA) = p%, p(Aa) = 2pq, p(aa) = ¢°
* Not always observed

— Wahlund effect: fewer heterozygotes if multiple
Isolated subpopulations

— Differences in viability, mating preference

« Assignment 5: limitations of theoretical model
— Finite population, others



